Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Procedures
2.2.1. Synthesis of Magnetic Iron Oxide Nanoparticles (MIONs)
2.2.2. Synthesis of MMSNs
2.2.3. Functionalization of MMSNs with DTPA
2.2.4. Isotherm Experiments of Ni2+, Co2+, Sm3+ and Nd3+ Adsorption
2.2.5. Cell Culture
2.2.6. Cytotoxicity Study
2.2.7. Toxicity Study in Zebrafish (Danio Rerio) Embryos
2.2.8. Metabolic Assay
3. Results and Discussion
3.1. Preparation of MMSNs and MMSN-DTPAs
3.2. Adsorption of Heavy Metals Using MMSNs and MMSN-DTPAs
3.3. Nanosafety
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ménard, M.; Meyer, F.; Affolter-Zbaraszczuk, C.; Rabineau, M.; Adam, A.; Ramirez, P.D.; Bégin-Colin, S.; Mertz, D. Design of hybrid protein-coated magnetic core-mesoporous silica shell nanocomposites for MRI and drug release assessed in a 3D tumor cell model. Nanotechnology 2019, 30, 174001. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Xie, W.; Wang, Y.; Wang, D.; Guo, Z.; Gao, F.; Zhao, L.; Cai, Q. A theranostic nanocomposite system based on radial mesoporous silica hybridized with Fe3O4 nanoparticles for targeted magnetic field responsive chemotherapy of breast cancer. RSC Adv. 2018, 8, 4321–4328. [Google Scholar] [CrossRef]
- Das, R.K.; Pramanik, A.; Majhi, M.; Mohapatra, S. Magnetic Mesoporous Silica Gated with Doped Carbon Dot for Site-Specific Drug Delivery, Fluorescence, and MR Imaging. Langmuir 2018, 34, 5253–5262. [Google Scholar] [CrossRef] [PubMed]
- Nasirzadeh, K.; Nazarian, S.; Hayat, S.M.G. Inorganic nanomaterials: A brief overview of the applications and developments in sensing and drug delivery. J. Appl. Biotechnol. Rep. 2016, 3, 395–402. [Google Scholar]
- Wang, Y.; Zhou, B.; Wu, S.; Wang, K.; He, X. Colorimetric detection of hydrogen peroxide and glucose using the magnetic mesoporous silica nanoparticles. Talanta 2015, 134, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Vojoudi, H.; Badiei, A.; Bahar, S.; Mohammadi Ziarani, G.; Faridbod, F.; Ganjali, M.R. A new nano-sorbent for fast and efficient removal of heavy metals from aqueous solutions based on modification of magnetic mesoporous silica nanospheres. J. Magn. Magn. Mater. 2017, 441, 193–203. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zhang, L.; Li, P.; Wang, L.; Zhang, J. Multifunctional Magnetic Mesoporous Silica Nanocomposites with Improved Sensing Performance and Effective Removal Ability toward Hg(II). Langmuir 2012, 28, 1657–1662. [Google Scholar] [CrossRef]
- Dib, S.; Boufatit, M.; Chelouaou, S.; Sadi-Hassaine, F.; Croissant, J.; Long, J.; Raehm, L.; Charnay, C.; Durand, J.O. Versatile heavy metals removal via magnetic mesoporous nanocontainers. RSC Adv. 2014, 4, 24838–24841. [Google Scholar] [CrossRef]
- Li, J.; Gong, A.; Li, F.; Qiu, L.; Zhang, W.; Gao, G.; Liu, Y.; Li, J. Synthesis and characterization of magnetic mesoporous Fe3O4@mSiO2–DODGA nanoparticles for adsorption of 16 rare earth elements. RSC Adv. 2018, 8, 39149–39161. [Google Scholar] [CrossRef]
- Li, D.; Egodawatte, S.; Kaplan, D.I.; Larsen, S.C.; Serkiz, S.M.; Seaman, J.C. Functionalized magnetic mesoporous silica nanoparticles for U removal from low and high pH groundwater. J. Hazard. Mater. 2016, 317, 494–502. [Google Scholar] [CrossRef]
- Duenas-Ramirez, P.; Bertagnolli, C.; Müller, R.; Sartori, K.; Boos, A.; Elhabiri, M.; Bégin-Colin, S.; Mertz, D. Highly chelating stellate mesoporous silica nanoparticles for specific iron removal from biological media. J. Coll. Int. Sci. 2020, 579, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, K.; Hamed, M.; Masoumeh, A.; Parham, S.-Z.; Michael, R.H. Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnol. Rev. 2016, 5, 195–207. [Google Scholar] [CrossRef]
- Knezevic, N.Z.; Gadjanski, I.; Durand, J.-O. Magnetic nanoarchitectures for cancer sensing, imaging and therapy. J. Mater. Chem. B 2019, 7, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yu, B.; Wang, S.; Shen, Y.; Cong, H. Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid Interface Sci. 2020, 281, 102165. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, E.; Ansari, L.; Abnous, K.; Taghdisi, S.M.; Naserifar, M.; Ramezani, M.; Alibolandi, M. Silica-magnetic inorganic hybrid nanomaterials as versatile sensing platform. Nanomed. J. 2020, 7, 183–193. [Google Scholar] [CrossRef]
- Gao, F. An Overview of Surface-Functionalized Magnetic Nanoparticles: Preparation and Application for Wastewater Treatment. ChemistrySelect 2019, 4, 6805–6811. [Google Scholar] [CrossRef]
- Clemons, T.D.; Kerr, R.H.; Joos, A. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. In Comprehensive Nanoscience and Nanotechnology, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; Volume 3, pp. 193–210. [Google Scholar]
- Albinali, K.E.; Zagho, M.M.; Deng, Y.; Elzatahry, A.A. A perspective on magnetic core-shell carriers for responsive and targeted drug delivery systems. Int. J. Nanomed. 2019, 14, 1707–1723. [Google Scholar] [CrossRef]
- Garcia, R.S.; Stafford, S.; Gun’ko, Y.K. Recent progress in synthesis and functionalization of multimodal fluorescent-magnetic nanoparticles for biological applications. Appl. Sci. 2018, 8, 172. [Google Scholar] [CrossRef]
- Zhao, T.; Nguyen, N.-T.; Xie, Y.; Sun, X.; Li, Q.; Li, X. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications. Front. Chem. 2017, 5, 118. [Google Scholar] [CrossRef]
- Ling, D.; Lee, N.; Hyeon, T. Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Acc. Chem. Res. 2015, 48, 1276–1285. [Google Scholar] [CrossRef]
- Knezevic, N.Z.; Ruiz-Hernandez, E.; Hennink, W.E.; Vallet-Regi, M. Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Adv. 2013, 3, 9584–9593. [Google Scholar] [CrossRef]
- Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery. ACS Nano 2008, 2, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, H.S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I.C.; Moon, W.K.; Hyeon, T. Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angew. Chem. Int. Ed. 2008, 47, 8438–8441. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.W.; Falkner, J.C.; Yavuz, C.T.; Colvin, V.L. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem. Commun. 2004, 2306–2307. [Google Scholar] [CrossRef]
- Fan, H.; Leve, E.; Gabaldon, J.; Wright, A.; Haddad, R.E.; Brinker, C.J. Ordered Two- and Three-Dimensional Arrays Self-Assembled from Water-Soluble Nanocrystal–Micelles. Adv. Mater. 2005, 17, 2587–2590. [Google Scholar] [CrossRef]
- Husin, H.; Leong, Y.K.; Liu, J.S. Surface force arising from adsorbed diethylenetriaminepentacetic acid (DTPA) and related compounds and their metal ions complexes in alumina suspensions. Colloids Surf. A 2013, 422, 172–180. [Google Scholar] [CrossRef]
- Repo, E.; Warchol, J.K.; Kurniawan, T.A.; Sillanpää, M.E.T. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-modified chitosan: Kinetic and equilibrium modeling. Chem. Engin. J. 2010, 161, 73–82. [Google Scholar] [CrossRef]
- Vardanyan, A.; Guillon, A.; Budnyak, T.; Seisenbaeva, G.A. Tailoring Nanoadsorbent Surfaces: Separation of Rare Earths and Late Transition Metals in Recycling of Magnet Materials. Nanomaterials 2022, 12, 974. [Google Scholar] [CrossRef]
- Roosen, J.; Binnemans, K. Adsorption and chromatographic separation of rare earths with EDTA- and DTPA-functionalized chitosan biopolymers. J. Mater. Chem. A 2014, 2, 1530–1540. [Google Scholar] [CrossRef]
- Ashour, R.M.; Samouhos, M.; Polido Legaria, E.; Svärd, M.; Högblom, J.; Forsberg, K.; Palmlöf, M.; Kessler, V.G.; Seisenbaeva, G.A.; Rasmuson, Å.C. DTPA-Functionalized Silica Nano- and Microparticles for Adsorption and Chromatographic Separation of Rare Earth Elements. ACS Sustain. Chem. Eng. 2018, 6, 6889–6900. [Google Scholar] [CrossRef]
- Gaete, J.; Molina, L.; Valenzuela, F.; Basualto, C. Recovery of lanthanum, praseodymium and samarium by adsorption using magnetic nanoparticles functionalized with a phosphonic group. Hydrometallurgy 2021, 203, 105698. [Google Scholar] [CrossRef]
- Baber, O.; Jang, M.; Barber, D.; Powers, K. Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells. Inhal. Toxicol. 2011, 23, 532–543. [Google Scholar] [CrossRef]
Sample | Ni | Co | Nd | Sm |
---|---|---|---|---|
MMSNs | 1.00 | 1.00 | 0.88 | 0.85 |
MMSN-DTPAs | 2.16 | 1.44 | 2.00 | 1.66 |
Metal Ion | Ce (mM) | Qmax (mmol/g) | R2 |
---|---|---|---|
Ni | 24.8 | 2.23 (130.9 mg/g) | 0.99 |
Co | 25.6 | 1.48 (87.17 mg/g) | 0.99 |
Nd | 25.0 | 2.16 (311.5 mg/g) | 0.98 |
Sm | 25.3 | 1.69 (254.1 mg/g) | 0.99 |
Adsorbent | Metal | Qmax (mg/g) | References |
---|---|---|---|
DTPA–chitosan biopolymers | Ni (II) | 64.139 | [28] |
EDTA–chitosan | Ni (II) | 77.073 | [28] |
(N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane SiO2 nanoparticles | Ni (II) | 106.830 | [29] |
DTPA–chitosan biopolymers | Co (II) | 52.866 | [1,28] |
EDTA–chitosan | Co (II) | 65.466 | [28] |
(N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane SiO2 nanoparticles | Co (II) | 111.910 | [29] |
DTPA–chitosan biopolymers | Nd (III) | 74.000 | [30] |
(N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane SiO2 nanoparticles | Nd (III) | 161.550 | [29] |
DTPA-SiO2 nano and microparticles | Nd (III) | 132.700 | [31] |
phosphonic acid magnetic nanoparticles | Sm (III) | 55.630 | [32] |
(N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane SiO2 nanoparticles | Sm (III) | 196.970 | [29] |
DTPA–chitosan biopolymers | Ni (II) | 64.139 | [28] |
EDTA–chitosan | Ni (II) | 77.073 | [28] |
(N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane SiO2 nanoparticles | Ni (II) | 106.830 | [29] |
Sample | Ni:Nd | Co:Sm | Ni:Co |
---|---|---|---|
MMSNs | 1:1 | ||
MMSN-DTPAs | 12:1 | 1:2.4 | 9.4:1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ménard, M.; Ali, L.M.A.; Vardanyan, A.; Charnay, C.; Raehm, L.; Cunin, F.; Bessière, A.; Oliviero, E.; Theodossiou, T.A.; Seisenbaeva, G.A.; et al. Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation. Nanomaterials 2023, 13, 3155. https://doi.org/10.3390/nano13243155
Ménard M, Ali LMA, Vardanyan A, Charnay C, Raehm L, Cunin F, Bessière A, Oliviero E, Theodossiou TA, Seisenbaeva GA, et al. Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation. Nanomaterials. 2023; 13(24):3155. https://doi.org/10.3390/nano13243155
Chicago/Turabian StyleMénard, Mathilde, Lamiaa M. A. Ali, Ani Vardanyan, Clarence Charnay, Laurence Raehm, Frédérique Cunin, Aurélie Bessière, Erwan Oliviero, Theodossis A. Theodossiou, Gulaim A. Seisenbaeva, and et al. 2023. "Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation" Nanomaterials 13, no. 24: 3155. https://doi.org/10.3390/nano13243155
APA StyleMénard, M., Ali, L. M. A., Vardanyan, A., Charnay, C., Raehm, L., Cunin, F., Bessière, A., Oliviero, E., Theodossiou, T. A., Seisenbaeva, G. A., Gary-Bobo, M., & Durand, J.-O. (2023). Upscale Synthesis of Magnetic Mesoporous Silica Nanoparticles and Application to Metal Ion Separation: Nanosafety Evaluation. Nanomaterials, 13(24), 3155. https://doi.org/10.3390/nano13243155