Advanced Nanoscale Materials for Thermoelectric Applications
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Zhao, L.; Han, H.; Lu, Z.; Yang, J.; Wu, X.; Ge, B.; Yu, L.; Shi, Z.; Karami, A.M.; Dong, S.; Hussain, S.; Qiao, G.; Xu, J. Realizing the Ultralow Lattice Thermal Conductivity of Cu3SbSe4 Compound via Sulfur Alloying Effect. Nanomaterials 2023, 13, 2730.
- Da Câmara Santa Clara Gomes, T.; Marchal, N.; Abreu Araujo, F.; Piraux, L. Flexible Active Peltier Coolers Based on Interconnected Magnetic Nanowire Networks. Nanomaterials 2023, 13, 1735.
- Sun, M.; Liu, Y.; Chen, D.; Qian, Q. Multifunctional Cu-Se Alloy Core Fibers and Micro-Nano Tapers. Nanomaterials 2023, 13, 773.
- Sun, M.; Zhang, P.; Tang, G.; Chen, D.; Qian, Q.; Yang, Z. High-Performance n-Type Bi2Te3 Thermoelectric Fibers with Oriented Crystal Nanosheets. Nanomaterials 2023, 13, 326.
- Zimmerer, C.; Simon, F.; Putzke, S.; Drechsler, A.; Janke, A.; Krause, B. N-Type Coating of Single-Walled Carbon Nanotubes by Polydopamine-Mediated Nickel Metallization. Nanomaterials 2023, 13, 2813.
- Almasoudi, M.; Salah, N.; Alshahrie, A.; Saeed, A.; Aljaghtham, M.; Zoromba, M.S.; Abdel-Aziz, M.H.; Koumoto, K. High Thermoelectric Power Generation by SWCNT/PPy Core Shell Nanocomposites. Nanomaterials 2022, 12, 2582.
- Li, R.; Yang, X.; Li, J.; Liu, D.; Zhang, L.; Chen, H.; Zheng, X.; Zhang, T. Pre-Ball-Milled Boron Nitride for the Preparation of Boron Nitride/Polyetherimide Nanocomposite Film with Enhanced Breakdown Strength and Mechanical Properties for Thermal Management. Nanomaterials 2022, 12, 3473.
- Salah, N.; Baghdadi, N.; Abdullahi, S.; Alshahrie, A.; Koumoto, K. Thermoelectric Power Generation of TiS2/Organic Hybrid Superlattices Below Room Temperature. Nanomaterials 2023, 13, 781.
- Kim, S. Study on the Characteristics of the Dispersion and Conductivity of Surfactants for the Nanofluids. Nanomaterials 2022, 12, 1537.
References
- Liu, H.; Fu, H.; Sun, L.; Lee, C.; Yeatman, E.M. Hybrid energy harvesting technology: From materials, structural design, system integration to applications. Renew. Sustain. Energy Rev. 2021, 137, 110473. [Google Scholar] [CrossRef]
- Shi, X.L.; Zou, J.; Chen, Z.G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120, 7399. [Google Scholar] [CrossRef]
- Zhou, C.; Lee, Y.K.; Yu, Y.; Byun, S.; Luo, Z.-Z.; Lee, H.; Ge, B.; Lee, Y.-L.; Chen, X.; Lee, J.Y.; et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 2021, 20, 1378. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Wang, P.; Jiang, L.; Wang, B.; Yao, Y.; Liu, S.; Chu, D.; Cheng, W.; Lu, Y. Power generation for wearable systems. Energy Environ. Sci. 2021, 14, 2114. [Google Scholar] [CrossRef]
- Tang, X.; Li, Z.; Liu, W.; Zhang, Q.; Uher, C. A comprehensive review on Bi2Te3-based thin films: Thermoelectrics and beyond. Interdiscip. Mater. 2022, 1, 88. [Google Scholar] [CrossRef]
- Shen, Y.; Han, X.; Zhang, P.; Chen, X.; Yang, X.; Liu, D.; Yang, X.; Zheng, X.; Chen, H.; Zhang, K.; et al. Review on Fiber-Based Thermoelectrics: Materials, Devices, and Textiles. Adv. Fiber Mater. 2023, 5, 1105. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Z.; Wang, Z.; Wang, J.; Yang, X.; Zheng, X.; Chen, H.; Li, K.; Wei, L.; Zhang, T. Thermally drawn multifunctional fibers: Toward the next generation of information technology. InfoMat 2022, 4, e12318. [Google Scholar] [CrossRef]
- Masoumi, S.; O’Shaughnessy, S.; Pakdel, A. Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 2022, 92, 106774. [Google Scholar] [CrossRef]
- Abid, N.; Khan, M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Liu, Z.; Zhou, J.; Zhu, H.; Zhang, Q.; Chen, G.; Ren, Z. Advances in thermoelectrics. Adv. Phys. 2018, 67, 69. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.-G.; Dargusch, M.S.; Zou, J. High Performance Thermoelectric Materials: Progress and Their Applications. Adv. Energy Mater. 2018, 8, 1701797. [Google Scholar] [CrossRef]
- Wu, Y.; Finefrock, S.W.; Yang, H.R. Nanostructured thermoelectric: Opportunities and challenges. Nano Energy 2012, 1, 651. [Google Scholar] [CrossRef]
- Liu, Z.; Hong, T.; Xu, L.; Wang, S.; Gao, X.; Chang, C.; Ding, X.; Xiao, Y.; Zhao, L. Lattice expansion enables interstitial doping to achieve a high average ZT in n-type PbS. Interdiscip. Mater. 2023, 2, 161. [Google Scholar] [CrossRef]
- Su, L.; Wang, D.; Wang, S.; Qin, B.; Wang, Y.; Qin, Y.; Jin, Y.; Chang, C.; Zhao, L. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022, 375, 1385–1389. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T. Advanced Nanoscale Materials for Thermoelectric Applications. Nanomaterials 2023, 13, 3165. https://doi.org/10.3390/nano13243165
Zhang T. Advanced Nanoscale Materials for Thermoelectric Applications. Nanomaterials. 2023; 13(24):3165. https://doi.org/10.3390/nano13243165
Chicago/Turabian StyleZhang, Ting. 2023. "Advanced Nanoscale Materials for Thermoelectric Applications" Nanomaterials 13, no. 24: 3165. https://doi.org/10.3390/nano13243165
APA StyleZhang, T. (2023). Advanced Nanoscale Materials for Thermoelectric Applications. Nanomaterials, 13(24), 3165. https://doi.org/10.3390/nano13243165