Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Functionalized Polystyrene Template
2.2. Synthesis of Ni@HCSs Nanocatalysts
2.3. Characterization
3. Results and Discussion
3.1. Morphological Analysis
3.2. Textural and Thermal Stability Analysis
3.3. Investigation of Crystallinity
3.4. Structural Analysis
3.5. Surface Composition
3.6. Growth Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kroto, H.W.; Heath, J.R.; O’Brien, S.C.; Curl, R.F.; Smalley, R.E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163. [Google Scholar] [CrossRef]
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pasc, A.; Fierro, V.; Celzard, A. Hollow Carbon Spheres, Synthesis and Applications—A Review. J. Mater. Chem. A 2016, 4, 12686–12713. [Google Scholar] [CrossRef]
- Mashindi, V.; Mente, P.; Phaahlamohlaka, T.N.; Mpofu, N.; Makgae, O.A.; Moreno, B.D.; Barrett, D.H.; Forbes, R.P.; Levecque, P.B.; Ozoemena, K.I.; et al. Platinum Nanocatalysts Supported on Defective Hollow Carbon Spheres: Oxygen Reduction Reaction Durability Studies. Front. Chem. 2022, 10, 1–15. [Google Scholar] [CrossRef]
- Gangatharan, P.M.; Maubane-nkadimeng, M.S.; Coville, N.J. Building Carbon Structures inside Hollow Carbon Spheres. Sci. Rep. 2019, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Phaahlamohlaka, T.N.; Kumi, D.O.; Dlamini, M.W.; Jewell, L.L.; Coville, N.J. Ruthenium Nanoparticles Encapsulated inside Porous Hollow Carbon Spheres: A Novel Catalyst for Fischer–Tropsch Synthesis. Catal. Today 2016, 275, 76–83. [Google Scholar] [CrossRef]
- Noonan, O.; Zhang, H.; Song, H.; Xu, C.; Huang, X.; Yu, C. In Situ Stöber Templating: Facile Synthesis of Hollow Mesoporous Carbon Spheres from Silica–Polymer Composites for Ultra-High Level in-Cavity Adsorption. J. Mater. Chem. A 2016, 4, 9063–9071. [Google Scholar] [CrossRef]
- Li, Y.; Shi, J. Hollow-Structured Mesoporous Materials: Chemical Synthesis, Functionalization and Applications. Adv. Mater. 2014, 26, 3176–3205. [Google Scholar] [CrossRef]
- Kubo, S.; Demir-Cakan, R.; Zhao, L.; White, R.J.; Titirici, M.-M. Porous Carbohydrate-Based Materials via Hard Templating. ChemSusChem 2010, 3, 188–194. [Google Scholar] [CrossRef]
- Yang, Z.; Xia, Y.; Sun, X.; Mokaya, R. Preparation and Hydrogen Storage Properties of Zeolite-Templated Carbon Materials Nanocast via Chemical Vapor Deposition: Effect of the Zeolite Template and Nitrogen Doping. J. Phys. Chem. B 2006, 110, 18424–18431. [Google Scholar] [CrossRef]
- Mente, P.; Phaahlamohlaka, T.N.; Mashindi, V.; Coville, N.J. Polystyrene-b-Poly(Acrylic Acid) Nanospheres for the Synthesis of Size-Controlled Cobalt Nanoparticles Encapsulated inside Hollow Carbon Spheres. J. Mater. Sci. 2021, 56, 2113–2128. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, Z.; Wang, X.; Lai, Y.; Liu, Y.; Li, J. A Simple SDS-Assisted Self-Assembly Method for the Synthesis of Hollow Carbon Nanospheres to Encapsulate Sulfur for Advanced Lithium–Sulfur Batteries. J. Mater. Chem. A 2013, 1, 14306–14310. [Google Scholar] [CrossRef]
- Esumi, K.; Eshima, S.; Murakami, Y.; Honda, H.; Oda, H. Preparation of Hollow Carbon-Microbeads from Water-in-Oil Emulsion Using Amphiphilic Carbonaceous Material. Colloids Surf. A Physicochem. Eng. Asp. 1996, 108, 113–116. [Google Scholar] [CrossRef]
- Lu, A.-H.; Hao, G.-P.; Sun, Q. Can Carbon Spheres Be Created through the Stöber Method? Angew. Chemie Int. Ed. 2011, 50, 9023–9025. [Google Scholar] [CrossRef]
- Ranganathan, K.; Morais, A.; Nongwe, I.; Longo, C.; Nogueira, A.F.; Coville, N.J. Study of Photoelectrochemical Water Splitting Using Composite Films Based on TiO2 Nanoparticles and Nitrogen or Boron Doped Hollow Carbon Spheres as Photoanodes. J. Mol. Catal. A Chem. 2016, 422, 165–174. [Google Scholar] [CrossRef]
- Nongwe, I.; Bepete, G.; Shaikjee, A.; Ravat, V.; Terfassa, B.; Meijboom, R.; Coville, N.J. Synthesis of Gold Encapsulated in Spherical Carbon Capsules with a Mesoporous Shell Structure. A Robust Catalyst in a Nanoreactor. Catal. Commun. 2014, 53, 77–82. [Google Scholar] [CrossRef]
- Yu, Z.; Ji, N.; Xiong, J.; Li, X.; Zhang, R.; Zhang, L.; Lu, X. Ruthenium-Nanoparticle-Loaded Hollow Carbon Spheres as Nanoreactors for Hydrogenation of Levulinic Acid: Explicitly Recognizing the Void-Confinement Effect. Angew. Chemie Int. Ed. 2021, 60, 20786–20794. [Google Scholar] [CrossRef]
- Lee, J.; Jackson, D.H.K.; Li, T.; Winans, R.E.; Dumesic, J.A.; Kuech, T.F.; Huber, G.W. Enhanced Stability of Cobalt Catalysts by Atomic Layer Deposition for Aqueous-Phase Reactions. Energy Environ. Sci. 2014, 7, 1657–1660. [Google Scholar] [CrossRef]
- Hernandez, E.D.; Manookian, B.; Auerbach, S.M.; Jentoft, F.C. Shape-Selective Synthesis of Alkylcyclopentenyl Cations in Zeolites and Spectroscopic Distinction of Constitutional Isomers. ACS Catal. 2021, 11, 12893–12914. [Google Scholar] [CrossRef]
- Mezzavilla, S.; Baldizzone, C.; Mayrhofer, K.J.J.; Schüth, F. General Method for the Synthesis of Hollow Mesoporous Carbon Spheres with Tunable Textural Properties. ACS Appl. Mater. Interfaces 2015, 7, 12914–12922. [Google Scholar] [CrossRef] [PubMed]
- Fuertes, A.B.; Valle-Vigón, P.; Sevilla, M. One-Step Synthesis of Silica@resorcinol–Formaldehyde Spheres and Their Application for the Fabrication of Polymer and Carbon Capsules. Chem. Commun. 2012, 48, 6124–6126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DAI, X.; ZHANG, X.; MENG, Y.; SHEN, P. Preparation of Hollow Carbon Spheres by Carbonization of Polystyrene/Polyaniline Core-Shell Polymer Particles. New Carbon Mater. 2011, 26, 389–395. [Google Scholar] [CrossRef]
- Li, L.; Song, H.; Chen, X. Hollow Carbon Microspheres Prepared from Polystyrene Microbeads. Carbon N. Y. 2006, 44, 596–599. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Chen, J.; Chen, Z.; Huang, X.; Tang, X. Controlled Fabrication of Uniform Hollow Core Porous Shell Carbon Spheres by the Pyrolysis of Core/Shell Polystyrene/Cross-Linked Polyphosphazene Composites. Chem. Commun. 2010, 46, 6563–6565. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.J.; White, B.T.; Scanlon, C.J.; Saito, T.; Dadmun, M.D. Tunable Synthetic Control of Soft Polymeric Nanoparticle Morphology. Soft Matter 2017, 13, 8849–8857. [Google Scholar] [CrossRef]
- Marceau, E.; Carrier, X.; Che, M. Impregnation and Drying. In Synthesis of Solid Catalysts; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 59–82. [Google Scholar] [CrossRef]
- Schüth, F.; Unger, K. Precipitation and Coprecipitation. In Preparation of Solid Catalysts; John Wiley & Sons: Hoboken, NJ, USA, 1999; pp. 60–84. [Google Scholar] [CrossRef]
- Mieth, J.A.; Schwarz, J.A. The Effect of Catalyst Preparation on the Performance of Alumina-Supported Ruthenium Catalysts: I. The Impact of Catalytic Precursor on Particle Size and Catalytic Activity. J. Catal. 1989, 118, 203–217. [Google Scholar] [CrossRef]
- Song, D.; Zheng, J.; Liu, L.; Alsulami, H.; Amin Kutbi, M.; Xu, J.; Zhang, M. Templated Synthesis of Nickel Nanoparticles Embedded in a Carbon Layer within Silica Capsules. Dalt. Trans. 2020, 49, 2570–2577. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, X.; Ye, Y. Synthesis of Nickel Nanoparticles and Carbon Encapsulated Nickel Nanoparticles Supported on Carbon Nanotubes. J. Solid State Chem. 2006, 179, 91–95. [Google Scholar] [CrossRef]
- Salavati-Niasari, M.; Sobhani, A. Effect of Nickel Salt Precursors on Morphology, Size, Optical Property and Type of Products (NiSe or Se) in Hydrothermal Method. Opt. Mater. 2013, 35, 904–909. [Google Scholar] [CrossRef]
- Bin, D.-S.; Chi, Z.-X.; Li, Y.; Zhang, K.; Yang, X.; Sun, Y.-G.; Piao, J.-Y.; Cao, A.-M.; Wan, L.-J. Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres. J. Am. Chem. Soc. 2017, 139, 13492–13498. [Google Scholar] [CrossRef]
- Sinek, A.; Kupczak, M.; Mielańczyk, A.; Lemanowicz, M.; Yusa, S.; Neugebauer, D.; Gierczycki, A. Temperature and PH-Dependent Response of Poly(Acrylic Acid) and Poly(Acrylic Acid-Co-Methyl Acrylate) in Highly Concentrated Potassium Chloride Aqueous Solutions. Polymers 2020, 12, 486. [Google Scholar] [CrossRef] [Green Version]
- Boudjahem, A.-G.; Monteverdi, S.; Mercy, M.; Bettahar, M.M. Study of Support Effects on the Reduction of Ni2+ Ions in Aqueous Hydrazine. Langmuir 2004, 20, 208–213. [Google Scholar] [CrossRef]
- Boudjahem, A.G.; Monteverdi, S.; Mercy, M.; Bettahar, M.M. Study of Nickel Catalysts Supported on Silica of Low Surface Area and Prepared by Reduction of Nickel Acetate in Aqueous Hydrazine. J. Catal. 2004, 221, 325–334. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1936, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- du Toit, J. Hollow Carbon Nanospheres: A Structural Integrity Investigation. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, March 2018. [Google Scholar]
- Parshetti, G.K.; Kent Hoekman, S.; Balasubramanian, R. Chemical, Structural and Combustion Characteristics of Carbonaceous Products Obtained by Hydrothermal Carbonization of Palm Empty Fruit Bunches. Bioresour. Technol. 2013, 135, 683–689. [Google Scholar] [CrossRef]
- Shilapuram, V.; Ozalp, N.; Oschatz, M.; Borchardt, L.; Kaskel, S.; Lachance, R. Thermogravimetric Analysis of Activated Carbons, Ordered Mesoporous Carbide-Derived Carbons, and Their Deactivation Kinetics of Catalytic Methane Decomposition. Ind. Eng. Chem. Res. 2014, 53, 1741–1753. [Google Scholar] [CrossRef]
- Arenillas, A.; Rubiera, F.; Pevida, C.; Ania, C.O.; Pis, J.J. Relationship between Structure and Reactivity of Carbonaceous Materials. J. Therm. Anal. Calorim. 2004, 76, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Howe, J.Y.; Rawn, C.J.; Jones, L.E.; Ow, H. Improved Crystallographic Data for Graphite. Powder Diffr. 2003, 18, 150–154. [Google Scholar] [CrossRef]
- Tientong, J.; Garcia, S.; Thurber, C.R.; Golden, T.D. Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction. J. Nanotechnol. 2014, 2014, 193162. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Jurkiewicz, K.; Pawlyta, M.; Burian, A. Structure of Carbon Materials Explored by Local Transmission Electron Microscopy and Global Powder Diffraction Probes. C 2018, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Mildner, D.F.R.; Carpenter, J.M. On the Short Range Atomic Structure of Non-Crystalline Carbon. J. Non. Cryst. Solids 1982, 47, 391–402. [Google Scholar] [CrossRef]
- Krzton, H.; Niewiara, M. Studies on Commercial Carbon Black by Radial Distribution Function and Rietveld Refinement. Phys. Scr. 1995, 1995, 98–101. [Google Scholar] [CrossRef]
- Brayfindley, E.; Irace, E.E.; Castro, C.; Karney, W.L. Stone–Wales Rearrangements in Polycyclic Aromatic Hydrocarbons: A Computational Study. J. Org. Chem. 2015, 80, 3825–3831. [Google Scholar] [CrossRef]
- Stone, A.J.; Wales, D.J. Theoretical Studies of Icosahedral C60 and Some Related Species. Chem. Phys. Lett. 1986, 128, 501–503. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamondlike Carbon. Phys. Rev. B 2001, 64, 75414. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J.; Ferrari, A.C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured, Diamond–like Carbon, and Nanodiamond. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Yuan, X.; Mayanovic, R.A. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research. Appl. Spectrosc. 2017, 71, 2325–2338. [Google Scholar] [CrossRef]
- Tai, F.C.; Lee, S.C.; Chen, J.; Wei, C.; Chang, S.H. Multipeak Fitting Analysis of Raman Spectra on DLCH Film. J. Raman Spectrosc. 2009, 40, 1055–1059. [Google Scholar] [CrossRef]
- Prawer, S.; Nugent, K.W.; Jamieson, D.N. The Raman Spectrum of Amorphous Diamond. Diam. Relat. Mater. 1998, 7, 106–110. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, D.; Lee, S.; Ha, Y.; Lim, M.; Kim, K. Diamond-like Amorphous Carbon Layer Film by an Inductively Coupled Plasma System for next Generation Etching Hard Mask. Thin Solid Films 2018, 663, 21–24. [Google Scholar] [CrossRef]
- Xing, Z.; Qi, Y.; Yuan, Y.; Lu, J. Identify the Removable Substructure in Carbon Activation. Chem. Mater. 2017, 29, 7288–7295. [Google Scholar] [CrossRef]
- Wang, Q.; Allred, D.D.; Knight, L.V. Deconvolution of the Raman Spectrum of Amorphous Carbon. J. Raman Spectrosc. 1995, 26, 1039–1043. [Google Scholar] [CrossRef]
- Roy, D.; Chhowalla, M.; Wang, H.; Sano, N.; Alexandrou, I.; Clyne, T.W.; Amaratunga, G.A.J. Characterisation of Carbon Nano-Onions Using Raman Spectroscopy. Chem. Phys. Lett. 2003, 373, 52–56. [Google Scholar] [CrossRef]
- Marcus, B.; Fayette, L.; Mermoux, M.; Abello, L.; Lucazeau, G. Analysis of the Structure of Multi-component Carbon Films by Resonant Raman Scattering. J. Appl. Phys. 1994, 76, 3463–3470. [Google Scholar] [CrossRef]
- Shin, J.-K.; Lee, C.S.; Lee, K.-R.; Eun, K.Y. Effect of Residual Stress on the Raman-Spectrum Analysis of Tetrahedral Amorphous Carbon Films. Appl. Phys. Lett. 2001, 78, 631–633. [Google Scholar] [CrossRef]
- Härmas, R.; Palm, R.; Kurig, H.; Puusepp, L.; Pfaff, T.; Romann, T.; Aruväli, J.; Tallo, I.; Thomberg, T.; Jänes, A.; et al. Carbide-Derived Carbons: WAXS and Raman Spectra for Detailed Structural Analysis. C 2021, 7, 29. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro-Soares, J.; Cançado, L.G.; Falcão, N.P.S.; Martins Ferreira, E.H.; Achete, C.A.; Jorio, A. The Use of Raman Spectroscopy to Characterize the Carbon Materials Found in Amazonian Anthrosoils. J. Raman Spectrosc. 2013, 44, 283–289. [Google Scholar] [CrossRef]
- Jorio, A.; Pimenta, M.A.; Filho, A.G.S.; Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Characterizing Carbon Nanotube Samples with Resonance Raman Scattering. New J. Phys. 2003, 5, 139. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Summary of Raman Spectroscopy on Sp2 Nanocarbons. In Raman Spectroscopy in Graphene Related Systems; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 327–334. [Google Scholar] [CrossRef]
- Wepasnick, K.A.; Smith, B.A.; Bitter, J.L.; Fairbrother, D.H. Chemical and Structural Characterization of Carbon Nanotube Surfaces. Anal. Bioanal. Chem. 2010, 396, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Wepasnick, K.A.; Smith, B.A.; Schrote, K.E.; Wilson, H.K.; Diegelmann, S.R.; Fairbrother, D.H. Surface and Structural Characterization of Multi-Walled Carbon Nanotubes Following Different Oxidative Treatments. Carbon N. Y. 2010, 49, 24–36. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A Review on C1s XPS-Spectra for Some Kinds of Carbon Materials. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Estrade-Szwarckopf, H. XPS Photoemission in Carbonaceous Materials: A “Defect” Peak beside the Graphitic Asymmetric Peak. Carbon N. Y. 2004, 42, 1713–1721. [Google Scholar] [CrossRef]
- Ech-chamikh, E.; Essafti, A.; Ijdiyaou, Y.; Azizan, M. XPS Study of Amorphous Carbon Nitride (a-C:N) Thin Films Deposited by Reactive RF Sputtering. Sol. Energy Mater. Sol. Cells 2006, 90, 1420–1423. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Legrand, D.; Bancroft, G.M. Interpretation of Ni2p XPS Spectra of Ni Conductors and Ni Insulators. Phys. Chem. Miner. 2000, 27, 357–366. [Google Scholar] [CrossRef]
- Liu, D.; Li, D.; Yang, D. Size-Dependent Magnetic Properties of Branchlike Nickel Oxide Nanocrystals. AIP Adv. 2017, 7, 15028. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.C.; McIntyre, N.S. New Interpretations of XPS Spectra of Nickel Metal and Oxides. Surf. Sci. 2006, 600, 1771–1779. [Google Scholar] [CrossRef]
- Little, R.D.; Masjedizadeh, M.R.; Wallquist, O.; Mcloughlin, J.I. The Intramolecular Michael Reaction. In Organic Reactions; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 315–552. [Google Scholar] [CrossRef]
- Meyer, G.; Scheffer, F.E.C. The Properties of Nickel Carbide. J. Am. Chem. Soc. 1953, 75, 486. [Google Scholar] [CrossRef]
- Park, J.W.; Chae, E.H.; Kim, S.H.; Lee, J.H.; Kim, J.W.; Yoon, S.M.; Choi, J.-Y. Preparation of Fine Ni Powders from Nickel Hydrazine Complex. Mater. Chem. Phys. 2006, 97, 371–378. [Google Scholar] [CrossRef]
Sample | BET S.A. (m2/g) | Micropore Area (m2/g) | Pore vol. (cm3/g) | Pore Size (nm) | |
---|---|---|---|---|---|
Macro | Micro | ||||
HCSs | 656 | 464 | 0.65 | 0.23 | 3.9 |
Ni@HCSsNi(acet) | 565 | 398 | 0.58 | 0.20 | 4.1 |
Ni@HCSsNiCl2 | 607 | 388 | 0.80 | 0.19 | 5.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connor, R.; Matsoso, J.B.; Mashindi, V.; Mente, P.; Macheli, L.; Moreno, B.D.; Doyle, B.P.; Coville, N.J.; Barrett, D.H. Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres. Nanomaterials 2023, 13, 426. https://doi.org/10.3390/nano13030426
O’Connor R, Matsoso JB, Mashindi V, Mente P, Macheli L, Moreno BD, Doyle BP, Coville NJ, Barrett DH. Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres. Nanomaterials. 2023; 13(3):426. https://doi.org/10.3390/nano13030426
Chicago/Turabian StyleO’Connor, Ryan, Joyce B. Matsoso, Victor Mashindi, Pumza Mente, Lebohang Macheli, Beatriz D. Moreno, Bryan P. Doyle, Neil J. Coville, and Dean H. Barrett. 2023. "Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres" Nanomaterials 13, no. 3: 426. https://doi.org/10.3390/nano13030426
APA StyleO’Connor, R., Matsoso, J. B., Mashindi, V., Mente, P., Macheli, L., Moreno, B. D., Doyle, B. P., Coville, N. J., & Barrett, D. H. (2023). Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres. Nanomaterials, 13(3), 426. https://doi.org/10.3390/nano13030426