Bulk Photovoltaic Current Mechanisms in All-Inorganic Perovskite Multiferroic Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Origin of Photocurrent
3.2. Bulk Photovoltaic Current
3.3. Magnetic Photogalvanic Effect
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BPE | Bulk Photovoltaic Effect |
SQL | Shockley and Queisser Limit |
PSC | Perovskite Solar Cell |
Voc | Open Circuit Voltage |
PCE | Power Conversion Efficiency |
XRD | X-ray Diffractometer |
SEM | Scanning Electron Microscope |
AFM | Atomic Force Microscope |
PPMS | Physical Property Measurement System |
BPC | bulk photovoltaic current |
References
- Lines, M.E.; Glass, A.M. Principles and Applications of Ferroelectrics and Related Materials; Oxford University Press: Oxford, UK, 2001. [Google Scholar] [CrossRef]
- Furukawa, T.; Date, M.; Ohuchi, M.; Chiba, A. Ferroelectric switching characteristics in a copolymer of vinylidene fluoride and trifluorethylene. J. Appl. Phys. 1984, 56, 1481–1486. [Google Scholar] [CrossRef]
- Chynoweth, A.G. Surface space-charge layers in barium titanate. Phys. Rev. 1956, 102, 705–714. [Google Scholar] [CrossRef]
- Burger, A.M.; Agarwal, R.; Aprelev, A.; Schruba, E.; Gutierrez-Perez, A.; Fridkin, V.M.; Spanier, J.E. Direct observation of shift and ballistic photovoltaic currents. Sci. Adv. 2019, 5, eaau5588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, A.M.; Gao, L.; Agarwal, R.; Aprelev, A.; Spanier, J.E.; Rappe, A.M.; Fridkin, V.M. Shift photovoltaic current and magnetically induced bulk photocurrent in piezoelectric sillenite crystals. Phys. Rev. B 2020, 102, 081113. [Google Scholar] [CrossRef]
- Shockley, W.; Queisser, H.J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Paillard, C.; Bai, X.; Infante, I.C.; Guennou, M.; Geneste, G.; Alexe, M.; Kreisel, J.; Dkhil, B. Photovoltaics with Ferroelectrics: Current Status and Beyond. Adv. Mater. 2016, 28, 5153–5168. [Google Scholar] [CrossRef]
- Tan, L.Z.; Zheng, F.; Young, S.M.; Wang, F.; Liu, S.; Rappe, A.M. Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond. npj Comput. Mater. 2016, 2, 16026. [Google Scholar] [CrossRef] [Green Version]
- Samanta, A.; Yadav, S.; Gu, Z.; Meyers, C.J.G.; Wu, L.; Chen, D.; Pandya, S.; York, R.A.; Martin, L.W.; Spanier, J.E.; et al. A Predictive Theory for Domain Walls in Oxide Ferroelectrics Based on Interatomic Interactions and its Implications for Collective Material Properties. Adv. Mater. 2022, 34, 2106021. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, F.; Long, P.; Lu, T.; Zeng, H.; Liu, Y.; Withers, R.L.; Li, Y.; Yi, Z. Anomolous photovoltaics: Anomalous photovoltaic effect in centrosymmetric ferroelastic bivo4 (adv. mater. 44/2018). Adv. Mater. 2018, 30, 1870334. [Google Scholar] [CrossRef]
- Spanier, J.E.; Fridkin, V.M.; Rappe, A.M.; Akbashev, A.R.; Polemi, A.; Qi, Y.; Gu, Z.; Young, S.M.; Hawley, C.J.; Imbrenda, D.; et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photonics 2016, 10, 611–616. [Google Scholar] [CrossRef]
- Sheng, Y.; Fina, I.; Gospodinov, M.; Schankler, A.M.; Rappe, A.M.; Fontcuberta, J. Bulk photovoltaic effect in hexagonal LuMnO3 single crystals. Phys. Rev. B 2021, 104, 184116. [Google Scholar] [CrossRef]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Li, F.; Gong, J.; Ma, Y.; Gu, J.; Liu, X.; Chen, S.; Liu, M. Pre-Buried Additive for Cross-Layer Modification in Flexible Perovskite Solar Cells with Efficiency Exceeding 22. Adv. Mater. 2022, 34, 2109879. [Google Scholar] [CrossRef]
- Yoo, J.J.; Seo, G.; Chua, M.R.; Park, T.G.; Lu, Y.; Rotermund, F.; Kim, Y.K.; Moon, C.S.; Jeon, N.J.; Correa-Baena, J.P.; et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593. [Google Scholar] [CrossRef]
- Sciuto, G.L.; Napoli, C.; Capizzi, G.; Shikler, R. Organic solar cells defects detection by means of an elliptical basis neural network and a new feature extraction technique. Optik 2019, 194, 163038. [Google Scholar] [CrossRef]
- Sciuto, G.L.; Capizzi, G.; Shikler, R.; Napoli, C. Organic solar cells defects classification by using a new feature extraction algorithm and an EBNN with an innovative pruning algorithm. Int. J. Intell. Syst. 2021, 36, 2443–2464. [Google Scholar] [CrossRef]
- Du, Z.; Xiang, H.; Xie, A.; Ran, R.; Zhou, W.; Wang, W.; Shao, Z. Monovalent Copper Cation Doping Enables High-Performance CsPbIBr2-Based All-Inorganic Perovskite Solar Cells. Nanomaterials 2022, 12, 4317. [Google Scholar] [CrossRef]
- Liu, Q.; Qiu, J.; Yan, X.; Fei, Y.; Qiang, Y.; Chang, Q.; Wei, Y.; Zhang, X.; Tian, W.; Jin, S.; et al. Surface passivation and hole extraction: Bifunctional interfacial engineering toward high-performance all-inorganic CsPbIBr2 perovskite solar cells with efficiency exceeding 12%. J. Energy Chem. 2022, 74, 387–393. [Google Scholar] [CrossRef]
- Guo, Q.; Duan, J.; Zhang, J.; Zhang, Q.; Duan, Y.; Yang, X.; He, B.; Zhao, Y.; Tang, Q. Universal Dynamic Liquid Interface for Healing Perovskite Solar Cells. Adv. Mater. 2022, 34, 2202301. [Google Scholar] [CrossRef]
- Jia, Y.; Pan, Y.; Wang, C.; Liu, C.; Shen, C.; Pan, C.; Guo, Z.; Liu, X. Flexible Ag Microparticle/MXene-Based Film for Energy Harvesting. Nano-Micro Lett. 2021, 13, 201. [Google Scholar] [CrossRef]
- Grinberg, I.; West, D.V.; Torres, M.; Gou, G.; Stein, D.M.; Wu, L.; Chen, G.; Gallo, E.M.; Akbashev, A.R.; Davies, P.K.; et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512. [Google Scholar] [CrossRef]
- Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.; Chakrabartty, J.; Rosei, F. Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 2015, 9, 61–67. [Google Scholar] [CrossRef]
- Ma, N.; Yang, Y. Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect. Nano Energy 2017, 40, 352–359. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Yang, Y.; Chen, M.; Zhang, J.; Ma, J.; Nan, C.W. Ferroelectric photodetector with high current on-off ratio in self-assembled topological nanoislands. ACS Appl. Electron. Mater. 2019, 1, 862–868. [Google Scholar] [CrossRef]
- Swain, A.B.; Rath, M.; Biswas, P.P.; Rao, M.S.R.; Murugavel, P. Polarization controlled photovoltaic and self-powered photodetector characteristics in Pb-free ferroelectric thin film. APL Mater. 2019, 7, 011106. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.P.; Xiao, R.J.; Zhang, Y.X.; Shi, Z.; Zhu, G.Q. Novel behaviors of single-crystalline BiFeO3 nanorods hydrothermally synthesized under magnetic field. J. Mater. Chem. C 2015, 3, 6924–6931. [Google Scholar] [CrossRef]
- Kan, D.; Pálová, L.; Anbusathaiah, V.; Cheng, C.J.; Fujino, S.; Nagarajan, V.; Rabe, K.M.; Takeuchi, I. Universal Behavior and Electric-Field-Induced Structural Transition in Rare-Earth-Substituted BiFeO3. Adv. Funct. Mater. 2010, 20, 1108–1115. [Google Scholar] [CrossRef]
- Singh, S.K.; Ishiwara, H.; Maruyama, K. Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett. 2006, 88, 262908. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Deng, Y. Competition between compressive strain and Mn doping on tuning the structure and magnetic behavior of BiFeO3 thin films. Funct. Mater. Lett. 2015, 08, 1550066. [Google Scholar] [CrossRef]
- Ji, D.; Cai, S.; Paudel, T.R.; Sun, H.; Zhang, C.; Han, L.; Wei, Y.; Zang, Y.; Gu, M.; Zhang, Y.; et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90. [Google Scholar] [CrossRef]
- Dong, G.; Tan, G.; Luo, Y.; Liu, W.; Ren, H.; Xia, A. Structural transformation and multiferroic properties of single-phase Bi0.89Tb0.11Fe1-xMnxO3 thin films. Appl. Surf. Sci. 2014, 290, 280–286. [Google Scholar] [CrossRef]
- Yang, C.H.; Kan, D.; Takeuchi, I.; Nagarajan, V.; Seidel, J. Doping BiFeO3: Approaches and enhanced functionality. Phys. Chem. Chem. Phys. 2012, 14, 15953. [Google Scholar] [CrossRef] [PubMed]
- de Quilettes, D.W.; Vorpahl, S.M.; Stranks, S.D.; Nagaoka, H.; Eperon, G.E.; Ziffer, M.E.; Snaith, H.J.; Ginger, D.S. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.S.; Ho-Baillie, A.; Huang, S.; Woo, S.H.; Heo, Y.; Seidel, J.; Huang, F.; Cheng, Y.B.; Green, M.A. Benefit of Grain Boundaries in Organic–Inorganic Halide Planar Perovskite Solar Cells. J. Phys. Chem. Lett. 2015, 6, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Bencan, A.; Drazic, G.; Ursic, H.; Makarovic, M.; Komelj, M.; Rojac, T. Domain-wall pinning and defect ordering in BiFeO3 probed on the atomic and nanoscale. Nat. Commun. 2020, 11, 1762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, Z.; Rappe, A.M. Recent Progress in the Theory of Bulk Photovoltaic Effect. arXiv 2022, arXiv:2206.00602. [Google Scholar] [CrossRef]
- Asnin, V.M.; Bakun, A.A.; Danishevskii, A.M.; Ivchenko, E.L.; Pikus, G.E.; Rogachev, A.A. Observation of a photo-emf that depends on the sign of the circular polarization of the light. ZhETF Pisma Redaktsiiu 1978, 28, 80–84. [Google Scholar]
- Fridkin, V.M. Parity nonconservation and bulk photovoltaic effect in a crystal without symmetry center. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2013, 60, 1551–1555. [Google Scholar] [CrossRef]
- Dai, Z.; Schankler, A.M.; Gao, L.; Tan, L.Z.; Rappe, A.M. Phonon-Assisted Ballistic Current from First-Principles Calculations. Phys. Rev. Lett. 2021, 126. [Google Scholar] [CrossRef]
- Yin, L.; Mi, W. Progress in BiFeO3-based heterostructures: Materials, properties and applications. Nanoscale 2020, 12, 477–523. [Google Scholar] [CrossRef]
- Nakamura, M.; Horiuchi, S.; Kagawa, F.; Ogawa, N.; Kurumaji, T.; Tokura, Y.; Kawasaki, M. Shift current photovoltaic effect in a ferroelectric charge-transfer complex. Nat. Commun. 2017, 8, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, N.; Sotome, M.; Kaneko, Y.; Ogino, M.; Tokura, Y. Shift current in the ferroelectric semiconductor SbSI. Phys. Rev. B 2017, 96, 241203. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Holder, T.; Ishizuka, H.; de Juan, F.; Nagaosa, N.; Felser, C.; Yan, B. Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun. 2019, 10, 3783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wu, P.; Chen, L.; Wang, J. Systematic variations in structural and electronic properties of BiFeO3 by A-site substitution. Appl. Phys. Lett. 2010, 96, 012905. [Google Scholar] [CrossRef]
- Yang, S.Y.; Seidel, J.; Byrnes, S.J.; Shafer, P.; Yang, C.H.; Rossell, M.D.; Yu, P.; Chu, Y.H.; Scott, J.F.; Ager, J.W.; et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Addison, Z.; Mele, E.J.; Rappe, A.M. Intrinsic Fermi-surface contribution to the bulk photovoltaic effect. Phys. Rev. Res. 2021, 3, l042032. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Ma, G.; Gong, B.; Deng, C.; Zhang, M.; Guo, K.; Cui, R.; Wu, Y.; Lv, M.; Wang, X. Bulk Photovoltaic Current Mechanisms in All-Inorganic Perovskite Multiferroic Materials. Nanomaterials 2023, 13, 429. https://doi.org/10.3390/nano13030429
Chen J, Ma G, Gong B, Deng C, Zhang M, Guo K, Cui R, Wu Y, Lv M, Wang X. Bulk Photovoltaic Current Mechanisms in All-Inorganic Perovskite Multiferroic Materials. Nanomaterials. 2023; 13(3):429. https://doi.org/10.3390/nano13030429
Chicago/Turabian StyleChen, Jiazheng, Guobin Ma, Boxiang Gong, Chaoyong Deng, Min Zhang, Kaixin Guo, Ruirui Cui, Yunkai Wu, Menglan Lv, and Xu Wang. 2023. "Bulk Photovoltaic Current Mechanisms in All-Inorganic Perovskite Multiferroic Materials" Nanomaterials 13, no. 3: 429. https://doi.org/10.3390/nano13030429
APA StyleChen, J., Ma, G., Gong, B., Deng, C., Zhang, M., Guo, K., Cui, R., Wu, Y., Lv, M., & Wang, X. (2023). Bulk Photovoltaic Current Mechanisms in All-Inorganic Perovskite Multiferroic Materials. Nanomaterials, 13(3), 429. https://doi.org/10.3390/nano13030429