Viewing Aggregation-Induced Emission of Metal Nanoclusters from Design Strategies to Applications
Abstract
:1. Introduction
2. Design Strategies of AIE-Type Metal NCs
2.1. Solvent-Induced AIE
2.2. Cation-Induced AIE
2.3. Crystallization-Induced AIE
2.4. pH-Induced AIE
2.5. AIE Inheritance from Ligands
2.6. Surface Constraint-Induced AIE
2.7. Mineral-Confined AIE
2.8. MOF-Confined AIE
3. Applications of AIE-type metal NCs
3.1. Bioimaging
3.2. Biological Diagnosis and Therapy
3.3. Light-Emitting Diodes (LEDs)
3.4. Detection Assays
3.5. Circularly Polarized Luminescence (CPL)
4. Conclusions and Outlook
- -
- Composition: Except for a few structural units for the synthesis of metal NCs, most organic ligands and noble metals (e.g., Au, Ag, and their alloys) are scarce and/or expensive. To accommodate large-scale production for commercial purposes, the development of low-cost metal NC materials is necessary. For instance, the AIE properties of copper, zinc, and other transition metal NCs are also worth designing for a breakthrough, because of their similar electronic configurations (d10s1) and wide range of oxidation states.
- -
- Structure: Regarding the development of metal NCs’ structural isomers, the following issues need to be addressed urgently in the future: (i) how to synthesize and stabilize novel structural isomers; (ii) how to rationally separate and structurally identify isomers. For this, DFT calculation, SXRD, ESI-MS, UV-vis-NIR absorption spectroscopy, and thin-layer chromatography techniques would help to address this issue; (iii) accurately mapping the internal relationship between structure and AIE properties at the molecular level, which will lay the foundation for prediction, clipping, and preparation of excellent AIE metal NCs.
- -
- Property: The QY directly affects the future of metal NCs for application and commercialization. In particular, some red- and infrared-emitting metal NCs still have a large gap with commercial phosphors, which limits their application. Moreover, metal NCs easily decompose or lose their luminescent activity, exhibiting terrible thermo-stability and chemical stability under thermal and environmental stimuli. Some strategies, such as conferring strong chemical bond forces between the metal core and ligands, using MOF protection, etc., have improved stability. These measures are efficient to a certain extent but cannot solve all the problems of this issue.
- -
- Mechanism: The current development of cluster chemistry has not yet reached an unambiguous agreement on the AIE fundamentals of metal NC luminescence, such as: (i) the correlation between metal NCs’ structural characteristics and AIE behaviors; (ii) AIE concepts at the branch level in metal NCs such as aggregation-induced emission enhancement (AIEE) and clusterization-triggered emission (CTE); (iii) a clear identification of similar overlapping topics between AIE-type metal NCs and other metal counterparts. For example, the aggregation of metal nanoparticles supports the emission of adjacently located emitter moieties, which has been well-developed in systems such as cryosoret and soret colloid nano-assembly [127,128,129,130].
- -
- Applications: To explore the application potential of AIE metal NCs in related biological and medical systems, the development of water-soluble AIE metal NCs with near-infrared emission or long afterglow luminescence is still in its infancy. In addition, there is an urgent need to develop metal NC-based optoelectronics devices to serve practical applications in various sectors. Last but not least, the preparation of high-quantum yield AIE metal NCs is necessary to develop their applications in the latest technologies (such as photonic crystal-coupled emission for biosensors).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Z.K.; Jin, R.C. On the Ligand’s Role in the Fluorescence of Gold Nanoclusters. Nano Lett. 2010, 10, 2568–2573. [Google Scholar] [CrossRef]
- Yuan, X.; Yu, Y.; Yao, Q.F.; Zhang, Q.B.; Xie, J.P. Fast Synthesis of Thiolated Au25 Nanoclusters via Protection-Deprotection Method. J. Phys. Chem. Lett. 2012, 3, 2310–2314. [Google Scholar] [CrossRef]
- Wu, Z.N.; Yao, Q.F.; Zang, S.Q.; Xie, J.P. Directed Self-Assembly of Ultrasmall Metal Nanoclusters. ACS Mater. Lett. 2019, 1, 237–248. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, Z.; Wu, K.; Ning, G.H.; Li, D. Coinage-Metal-Based Cyclic Trinuclear Complexes with Metal-Metal Interactions: Theories to Experiments and Structures to Functions. Chem. Rev. 2020, 120, 9675–9742. [Google Scholar] [CrossRef]
- Gan, Z.; Lin, Y.; Luo, L.; Han, G.; Liu, W.; Liu, Z.; Yao, C.; Weng, L.; Liao, L.; Chen, J.; et al. Fluorescent Gold Nanoclusters with Interlocked Staples and a Fully Thiolate-Bound Kernel. Angew. Chem. Int. Ed. Engl. 2016, 55, 11567–11571. [Google Scholar] [CrossRef]
- Soldan, G.; Aljuhani, M.A.; Bootharaju, M.S.; AbdulHalim, L.G.; Parida, M.R.; Emwas, A.H.; Mohammed, O.F.; Bakr, O.M. Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield. Angew. Chem. Int. Ed. 2016, 55, 5749–5753. [Google Scholar] [CrossRef]
- Shang, L.; Xu, J.; Nienhaus, G.U. Recent Advances in Synthesizing Metal Nanocluster-based Nanocomposites for Application in Sensing, Imaging and Catalysis. Nano Today 2019, 28, 100767–100789. [Google Scholar] [CrossRef]
- Kolay, S.; Bain, D.; Maity, S.; Devi, A.; Patra, A.; Antoine, R. Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. Nanomaterials 2022, 12, 544. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.N.; Liu, J.L.; Gao, Y.; Liu, H.W.; Li, T.T.; Zou, H.Y.; Wang, Z.G.; Zhang, K.; Wang, Y.; Zhang, H.; et al. Assembly-Induced Enhancement of Cu Nanoclusters Luminescence with Mechanochromic Property. J. Am. Chem. Soc. 2015, 137, 12906–12913. [Google Scholar] [CrossRef]
- Pyo, K.; Thanthirige, V.D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. Ultrabright Luminescence from Gold Nanoclusters: Rigidifying the Au(I)-Thiolate Shell. J. Am. Chem. Soc. 2015, 137, 8244–8250. [Google Scholar] [CrossRef]
- Yu, Y.; Luo, Z.T.; Chevrier, D.M.; Leong, D.T.; Zhang, P.; Jiang, D.-e.; Xie, J.P. Identification of a Highly Luminescent Au22(SG)18 Nanocluster. J. Am. Chem. Soc. 2014, 136, 1246–1249. [Google Scholar] [CrossRef]
- Zhang, X.D.; Luo, Z.; Chen, J.; Song, S.; Yuan, X.; Shen, X.; Wang, H.; Sun, Y.; Gao, K.; Zhang, L.; et al. Ultrasmall Glutathione-Protected Gold Nanoclusters as Next Generation Radiotherapy Sensitizers with High Tumor Uptake and High Renal Clearance. Sci. Rep. 2015, 5, 8669–8675. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, H.; Tian, Z.Q.; Lu, D.L.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K.K.; Yang, P.D. Bacteria Photosensitized by Intracellular Gold Nanoclusters for Solar Fuel Production. Nat. Nanotechnol. 2018, 13, 900–905. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.N.; Liu, H.W.; Li, T.T.; Liu, J.; Yin, J.; Mohammed, O.F.; Bakr, O.M.; Liu, Y.; Yang, B.; Zhang, H. Contribution of Metal Defects in the Assembly Induced Emission of Cu Nanoclusters. J. Am. Chem. Soc. 2017, 139, 4318–4321. [Google Scholar] [CrossRef]
- Han, Z.; Dong, X.Y.; Luo, P.; Li, S.; Wang, Z.Y.; Zang, S.Q.; Mak, T.C.W. Ultrastable Atomically Precise Chiral Silver Clusters with More Than 95% Quantum Efficiency. Sci. Adv. 2020, 6, eaay0107–eaay0115. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.; Karan, N.S.; Shin, K.; Bootharaju, M.S.; Nah, S.; Chae, S.I.; Baek, W.; Lee, S.; Kim, J.; Son, Y.J.; et al. Highly Fluorescent Gold Cluster Assembly. J. Am. Chem. Soc. 2021, 143, 326–334. [Google Scholar] [CrossRef]
- Luo, Z.T.; Yuan, X.; Yu, Y.; Zhang, Q.B.; Leong, D.T.; Lee, J.Y.; Xie, J.P. From Aggregation-Induced Emission of Au(I)−Thiolate Complexes to Ultrabright Au(0)@Au(I)−Thiolate Core−Shell Nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670. [Google Scholar] [CrossRef]
- Wu, Z.N.; Yao, Q.F.; Zang, S.Q.; Xie, J.P. Aggregation-Induced Emission in Luminescent Metal Nanoclusters. Natl. Sci. Rev. 2021, 8, 208–210. [Google Scholar] [CrossRef]
- Goswami, N.; Yao, Q.; Luo, Z.; Li, J.; Chen, T.; Xie, J. Luminescent Metal Nanoclusters with Aggregation-Induced Emission. J. Phys. Chem. Lett. 2016, 7, 962–975. [Google Scholar] [CrossRef]
- Jin, Y.; Peng, Q.C.; Li, S.; Su, H.F.; Luo, P.; Yang, M.; Zhang, X.; Li, K.; Zang, S.Q.; Tang, B.Z.; et al. Aggregation-Induced Barrier to Oxygen-a new AIE Mechanism for Metal Clusters with Phosphorescence. Natl. Sci. Rev. 2022, 9, 216–224. [Google Scholar] [CrossRef]
- Luo, J.; Xie, Z.; Lam, J.W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced Emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 18, 1740–1741. [Google Scholar] [CrossRef] [PubMed]
- Leung, N.L.C.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J.W.Y.; Tang, B.Z. Restriction of Intramolecular Motions: The General Mechanism behind Aggregation-Induced Emission. Chem. Eur. J. 2014, 20, 15349–15353. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, H.; Wang, D.; Tang, B.Z. Inorganic–Organic Nanocomposites Based on Aggregation-Induced Emission Luminogens. Adv. Funct. Mater. 2020, 31, 2006952–2006969. [Google Scholar] [CrossRef]
- Mei, J.; Hong, Y.; Lam, J.W.; Qin, A.; Tang, Y.; Tang, B.Z. Aggregation-induced Emission: The Whole is More Brilliant than the Parts. Adv. Mater. 2014, 26, 5429–5479. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, Z.; Turley, A.T.; Wang, L.; McGonigal, P.R.; Tu, Y.; Li, Y.; Wang, Z.; Kwok, R.T.K.; Lam, J.W.Y.; et al. Aggregate Science: From Structures to Properties. Adv. Mater. 2020, 32, 2001457–2001471. [Google Scholar] [CrossRef]
- Wu, Z.; Yao, Q.; Chai, O.J.H.; Ding, N.; Xu, W.; Zang, S.; Xie, J. Unraveling the Impact of Gold(I)-Thiolate Motifs on the Aggregation-Induced Emission of Gold Nanoclusters. Angew. Chem. Int. Ed. Engl. 2020, 59, 9934–9939. [Google Scholar] [CrossRef]
- Maity, S.; Bain, D.; Patra, A. Engineering Atomically Precise Copper Nanoclusters with Aggregation Induced Emission. J. Phys. Chem. C 2019, 123, 2506–2515. [Google Scholar] [CrossRef]
- Sugiuchi, M.; Zhang, M.; Hakoishi, Y.; Shichibu, Y.; Horimoto, N.N.; Yamauchi, Y.; Ishida, Y.; Konishi, K. Aggregation-Mode-Dependent Optical Properties of Cationic Gold Clusters: Formation of Ordered Assemblies in Solution and Unique Optical Responses. J. Phys. Chem. C 2020, 124, 16209–16215. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, J.; Xie, M.; Luo, D.; Tang, W.J.; Peng, S.K.; Cheng, G.; Zhang, X.J.; Zhou, X.P.; Che, C.M.; et al. Aggregation-Enhanced Emission in a Red Cu(I) Emitter with Quantum Yield >99%. ACS Mater. Lett. 2022, 4, 1921–1928. [Google Scholar] [CrossRef]
- Wang, Z.P.; Zhu, Z.L.; Zhao, C.K.; Yao, Q.F.; Li, X.Y.; Liu, H.Y.; Du, F.L.; Yuan, X.; Xie, J.P. Silver Doping-Induced Luminescence Enhancement and Red-Shift of Gold Nanoclusters with Aggregation-Induced Emission. Chem. Asian J. 2019, 14, 765–769. [Google Scholar] [CrossRef]
- Wang, S.X.; Meng, X.M.; Das, A.; Li, T.; Song, Y.B.; Cao, T.T.; Zhu, X.Y.; Zhu, M.Z.; Jin, R.C. A 200-fold Quantum Yield Boost in the Photoluminescence of Silver-Doped AgxAu25-x Nanoclusters: The 13th Silver Atom Matters. Angew. Chem. Int. Ed. 2014, 53, 2376–2380. [Google Scholar] [CrossRef] [PubMed]
- Kuppan, B.; Maitra, U. Instant Room Temperature Synthesis of Selfassembled Emission-tunable Gold Nanoclusters: Million-fold Emission Enhancement and Fluorimetric Detection of Zn2+. Nanoscale 2017, 9, 15494–15504. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.Y.; Xiu, L.F.; Fang, X.Y.; Yang, M.R.; Noreldeen, H.A.A.; Chen, W.; Deng, H.H. Highly Efficient Luminescence from Charge-Transfer Gold Nanoclusters Enabled by Lewis Acid. J. Phys. Chem. Lett. 2022, 13, 9526–9533. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.Z.; Shen, X.Y.; Zhao, H.; Lam, J.W.Y.; Tang, L.; Lu, P.; Wang, C.L.; Liu, Y.; Wang, Z.M.; Zheng, Q.; et al. Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. J. Phys. Chem. C 2010, 114, 6090–6099. [Google Scholar] [CrossRef]
- Chen, T.; Yang, S.; Chai, J.S.; Song, Y.B.; Fan, J.Q.; Rao, B.; Sheng, H.T.; Yu, H.Z.; Zhu, M.Z. Crystallization-Induced Emission Enhancement: A Novel Fluorescent Au-Ag Bimetallic Nanocluster with Precise Atomic Structure. Sci. Adv. 2017, 3, e1700956–e1700963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatun, E.; Bodiuzzaman, M.; Sugi, K.S.; Chakraborty, P.; Paramasivam, G.; Dar, W.A.; Ahuja, T.; Antharjanam, S.; Pradeep, T. Confining an Ag10 Core in an Ag12 Shell: A Four-Electron Superatom with Enhanced Photoluminescence upon Crystallization. ACS Nano 2019, 13, 5753–5759. [Google Scholar] [CrossRef]
- Yang, M.; Chen, X.L.; Lu, C.Z. Efficiently Luminescent Copper(i) Iodide Complexes with Crystallization-Induced Emission Enhancement (CIEE). Dalton Trans. 2019, 48, 10790–10794. [Google Scholar] [CrossRef]
- Nematulloev, S.; Huang, R.W.; Yin, J.; Shkurenko, A.; Dong, C.; Ghosh, A.; Alamer, B.; Naphade, R.; Hedhili, M.N.; Maity, P.; et al. [Cu15(PPh3)6(PET)13]2+: A Copper Nanocluster with Crystallization Enhanced Photoluminescence. Small 2021, 17, e2006839–e2006844. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bain, D.; Maity, S.; Kolay, S.; Patra, A. Controlling Aggregation-Induced Emission in Bimetallic Gold–Copper Nanoclusters via Surface Motif Engineering. J. Phys. Chem. C 2022, 126, 2896–2904. [Google Scholar] [CrossRef]
- Ding, W.C.; Liu, Y.; Li, Y.J.; Shi, Q.R.; Li, H.S.; Xia, H.B.; Wang, D.Y.; Tao, X.T. Water-soluble Gold Nanoclusters with pH-dependent Fluorescence and High Colloidal Stability Over a Wide pH Range via Co-reduction of Glutathione and Citrate. RSC Adv. 2014, 4, 22651–22659. [Google Scholar] [CrossRef]
- Long, T.F.; Guo, Y.J.; Lin, M.; Yuan, M.K.; Liu, Z.D.; Huang, C.Z. Optically Active Red-emitting Cu Nanoclusters Originating from Complexation and Redox Reaction between Copper(ii) and d/l-penicillamine. Nanoscale 2016, 8, 9764–9770. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Liu, W.; Tang, J.; Yang, Y.; Feng, H.; Qian, Z.; Zhou, J. Hydrophobicity-guided Self-assembled Particles of Silver Nanoclusters with Aggregation-induced Emission and Their Use in Sensing and Bioimaging. J. Mater. Chem. B 2018, 6, 3927–3933. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, Z.Y.; Zang, S.Q.; Li, D.; Mak, T.C.W. Luminescent Cyclic Trinuclear Coinage Metal Complexes with Aggregation-Induced Emission (AIE) Performance. Dalton Trans. 2019, 48, 2275–2279. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, J.; Zhang, Z.Y.; Wei, R.J.; Xie, M.; Huang, Y.L.; Ning, G.H.; Li, D. Cyclic Trinuclear Copper(I) Complex Exhibiting Aggregation-Induced Emission: A Novel Fluorescent Probe for the Selective Detection of Gold(III) Ions. Inorg. Chem. 2022, 61, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Utrera-Melero, R.; Mevellec, J.Y.; Gautier, N.; Stephant, N.; Massuyeau, F.; Perruchas, S. Aggregation-Induced Emission Properties of Copper Iodide Clusters. Chem. Asian J. 2019, 14, 3166–3172. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Wang, S.; Zhu, M. Observation of a New Type of Aggregation-Induced Emission in Nanoclusters. Chem. Sci. 2018, 9, 3062–3068. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.H.; Shi, X.Q.; Wang, F.F.; Peng, H.P.; Liu, A.L.; Xia, X.H.; Chen, W. Fabrication of Water-Soluble, Green-Emitting Gold Nanoclusters with a 65% Photoluminescence Quantum Yield via Host–Guest Recognition. Chem. Mater. 2017, 29, 1362–1369. [Google Scholar] [CrossRef]
- Yang, T.; Dai, S.; Yang, S.; Chen, L.; Liu, P.; Dong, K.; Zhou, J.; Chen, Y.; Pan, H.; Zhang, S.; et al. Interfacial Clustering-Triggered Fluorescence-Phosphorescence Dual Solvoluminescence of Metal Nanoclusters. J. Phys. Chem. Lett. 2017, 8, 3980–3985. [Google Scholar] [CrossRef]
- Fenwick, O.; Coutino-Gonzalez, E.; Grandjean, D.; Baekelant, W.; Richard, F.; Bonacchi, S.; De Vos, D.; Lievens, P.; Roeffaers, M.; Hofkens, J.; et al. Tuning the Energetics and Tailoring the Optical Properties of Silver Clusters Confined in Zeolites. Nat. Mater. 2016, 15, 1017–1022. [Google Scholar] [CrossRef]
- Quintanilla, M.; Liz-Marzan, L.M. Caged Clusters Shine Brighter. Science 2018, 361, 645–646. [Google Scholar] [CrossRef]
- Grandjean, D.; Coutiño-Gonzalez, E.; Ngo Tuan Cuong, E.F.; Baekelant, W.; Aghakhani, S.; Schlexer, P.; D’Acapito, F.; Banerjee, D.; Roeffaers, M.B.J.; Nguyen, M.T.; et al. Origin of the Bright Photoluminescence of Few-atom Silver Clusters Confined in LTA Zeolites. Science 2018, 361, 686–690. [Google Scholar] [CrossRef] [Green Version]
- Yao, D.C.; Xu, S.; Wang, Y.G.; Li, H.R. White-Emitting Phosphors with High Color-Rendering Index Based on Silver Cluster-Loaded Zeolites and Their Application to Near-UV LED-based White LEDs. Mater. Chem. Front. 2019, 3, 1080–1084. [Google Scholar] [CrossRef]
- Tian, R.; Zhang, S.T.; Li, M.W.; Zhou, Y.Q.; Lu, B.; Yan, D.P.; Wei, M.; Evans, D.G.; Duan, X. Localization of Au Nanoclusters on Layered Double Hydroxides Nanosheets: Confinement-Induced Emission Enhancement and Temperature-Responsive Luminescence. Adv. Funct. Mater. 2015, 25, 5006–5015. [Google Scholar] [CrossRef]
- Tian, R.; Yan, D.; Li, C.; Xu, S.; Liang, R.; Guo, L.; Wei, M.; Evans, D.G.; Duan, X. Surface-Confined Fluorescence Enhancement of Au Nanoclusters Anchoring to a Two-dimensional Ultrathin Nanosheet toward Bioimaging. Nanoscale 2016, 8, 9815–9821. [Google Scholar] [CrossRef]
- Ren, H.; Li, M.Z.; Fu, Y.Y.; Jin, L. Silver Nanoclusters Functionalized by Chromotropic Acid and Layered Double Hydroxides for the Turn-on Detection of Melamine. J. Mater. Chem. C 2016, 4, 6104–6109. [Google Scholar] [CrossRef]
- Yang, J.L.; Song, N.Z.; Jia, Q. Investigation of the Surface Confinement Effect of Copper Nanoclusters: Construction of an Ultrasensitive Fluorescence Turn-on Bio-enzyme Sensing Platform. Nanoscale 2019, 11, 21927–21933. [Google Scholar] [CrossRef]
- Huang, R.W.; Wei, Y.S.; Dong, X.Y.; Wu, X.H.; Du, C.X.; Zang, S.Q.; Mak, T.C.W. Hypersensitive Dual-function Luminescence Switching of a Silver-Chalcogenolate Cluster-Based Metal-Organic Framework. Nat. Chem. 2017, 9, 689–697. [Google Scholar] [CrossRef]
- Dong, X.Y.; Si, Y.; Yang, J.S.; Zhang, C.; Han, Z.; Luo, P.; Wang, Z.Y.; Zang, S.Q.; Mak, T.C.W. Ligand Engineering to Achieve Enhanced Ratiometric Oxygen Sensing in a Silver Cluster-Based Metal-Organic Framework. Nat. Commun. 2020, 11, 3678–3686. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.H.; Luo, P.; Wei, Z.; Li, Y.Y.; Huang, R.W.; Dong, X.Y.; Li, K.; Zang, S.Q.; Tang, B.Z. Guest-Triggered Aggregation-Induced Emission in Silver Chalcogenolate Cluster Metal-Organic Frameworks. Adv. Sci. 2019, 6, 1801304–1801310. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.C.; Fan, S.Y.; Yu, W.Q.; Wu, Z.L.; Cullen, D.A.; Liang, C.L.; Shi, J.Y.; Su, C.Y. Fabrication of Au25(SG)18-ZIF-8 Nanocomposites: A Facile Strategy to Position Au25(SG)18 Nanoclusters Inside and Outside ZIF-8. Adv. Mater. 2018, 30, 1704576–1704584. [Google Scholar] [CrossRef]
- Fan, C.; Lv, X.X.; Liu, F.J.; Feng, L.P.; Liu, M.; Cai, Y.Y.; Liu, H.; Wang, J.Y.; Yang, Y.L.; Wang, H. Silver Nanoclusters Encapsulated into Metal-Organic Frameworks with Enhanced Fluorescence and Specific Ion Accumulation toward the Microdot Array-Based Fluorimetric Analysis of Copper in Blood. ACS Sens. 2018, 3, 441–450. [Google Scholar] [CrossRef]
- Feng, L.P.; Liu, M.; Liu, H.; Fan, C.; Cai, Y.Y.; Chen, L.J.; Zhao, M.L.; Chu, S.; Wang, H. High-Throughput and Sensitive Fluorimetric Strategy for MicroRNAs in Blood Using Wettable Microwells Array and Silver Nanoclusters with Red Fluorescence Enhanced by Metal Organic Frameworks. ACS Appl. Mater. Interfaces 2018, 10, 23647–23656. [Google Scholar] [CrossRef]
- Cao, F.F.; Ju, E.G.; Liu, C.Q.; Li, W.; Zhang, Y.; Dong, K.; Liu, Z.; Ren, J.S.; Qu, X.G. Encapsulation of Aggregated Gold Nanoclusters in a Metal-organic Framework for Real-time Monitoring of Drug Release. Nanoscale 2017, 9, 4128–4134. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G.U. One-pot Synthesis of Near-infrared Fluorescent Gold Clusters for Cellular Fluorescence Lifetime Imaging. Small 2011, 7, 2614–2620. [Google Scholar] [CrossRef] [PubMed]
- Shang, L.; Dorlich, R.M.; Brandholt, S.; Schneider, R.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G.U. Facile Preparation of Water-Soluble Fluorescent Gold Nanoclusters for Cellular Imaging Applications. Nanoscale 2011, 3, 2009–2014. [Google Scholar] [CrossRef]
- Qiao, J.; Mu, X.Y.; Qi, L.; Deng, J.J.; Mao, L.Q. Folic Acid-Functionalized Fluorescent Gold Nanoclusters with Polymers as Linkers for Cancer Cell Imaging. Chem. Commun. 2013, 49, 8030–8032. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Li, Z.H.; Ju, E.G.; Ren, J.S.; Qu, X.G. Polycations-Functionalized Water-Soluble Gold Nanoclusters: A Potential Platform for Simultaneous Enhanced Gene Delivery and Cell Imaging. Nanoscale 2013, 5, 6154–6160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.X.; Musnier, B.; Wegner, K.D.; Henry, M.; Chovelon, B.; Desroches-Castan, A.; Fertin, A.; Resch-Genger, U.; Bailly, S.; Coll, J.L.; et al. High-Resolution Shortwave Infrared Imaging of Vascular Disorders Using Gold Nanoclusters. ACS Nano 2020, 14, 4973–4981. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, Q.; Qi, Q.; Shi, H.; Hsu, E.C.; Chen, W.; Yuan, W.; Wu, Y.; Lin, S.; Zeng, Y.; et al. Gold Nanoclusters for NIR-II Fluorescence Imaging of Bones. Small 2020, 16, e2003851–e2003860. [Google Scholar] [CrossRef] [PubMed]
- Ran, X.; Wang, Z.Z.; Pu, F.; Ju, E.G.; Ren, J.S.; Qu, X.G. Nucleic Acid-Driven Aggregation-Induced Emission of Au Nanoclusters for Visualizing Telomerase Activity in Living Cells and in Vivo. Mater. Horiz. 2021, 8, 1769–1775. [Google Scholar] [CrossRef]
- Wang, J.X.; Goswami, N.; Shu, T.; Su, L.; Zhang, X.J. pH-Responsive Aggregation-Induced Emission of Au Nanoclusters and Crystallization of the Au(i)–thiolate Shell. Mater. Chem. Front. 2018, 2, 923–928. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, G.; Li, Q.W.; Jiang, H.; Liu, C.Y.; Amatore, C.; Wang, X.M. In Vivo Self-bio-imaging of Tumors Through in Situ Biosynthesized Fluorescent Gold Nanoclusters. Sci. Rep. 2013, 3, 1157–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.Z.Y.; Xianyu, Y.L.; Wang, N.X.; Yan, Z.Y.; Liu, Y.; Zhu, K.; Hatzakis, N.S.; Jiang, X.Y. Functionalized Gold Nanoclusters Identify Highly Reactive Oxygen Species in Living Organisms. Adv. Funct. Mater. 2018, 28, 1702026–1702032. [Google Scholar] [CrossRef]
- Quan, Z.Y.; Xue, F.; Li, H.Y.; Chen, Z.P.; Wang, L.; Zhu, H.X.; Pang, C.L.; He, H. A Bioinspired Ratiometric Fluorescence Probe Based on Cellulose Nanocrystal-Stabilized Gold Nanoclusters for Live-Cell and Zebrafish Imaging of Highly Reactive Oxygen species. Chem. Eng. J. 2022, 431, 133954–133964. [Google Scholar] [CrossRef]
- Yuan, X.; Setyawati, M.I.; Tan, A.S.; Ong, C.N.; Leong, D.T.; Xie, J.P. Highly Luminescent Silver Nanoclusters with Tunable Emissions: Cyclic Reduction–Decomposition Synthesis and Antimicrobial Properties. NPG Asia Mater. 2013, 5, e39–e46. [Google Scholar] [CrossRef]
- Yuan, X.; Setyawati, M.I.; Leong, D.T.; Xie, J.P. Ultrasmall Ag+-Rich Nanoclusters as Highly Efficient Nanoreservoirs for Bacterial Killing. Nano Res. 2013, 7, 301–307. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Setyawati, M.I.; Lim, T.P.; Leong, D.T.; Xie, J.P. Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin. ACS Nano 2016, 10, 7934–7942. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Setyawati, M.I.; Leong, D.T.; Xie, J.P. Antimicrobial Gold Nanoclusters. ACS Nano 2017, 11, 6904–6910. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Setyawati, M.I.; Leong, D.T.; Xie, J.P. Antimicrobial Silver Nanomaterials. Coord. Chem. Rev. 2018, 357, 1–17. [Google Scholar] [CrossRef]
- Chang, T.K.; Cheng, T.M.; Chu, H.L.; Tan, S.H.; Kuo, J.C.; Hsu, P.H.; Su, C.Y.; Chen, H.M.; Lee, C.M.; Kuo, T.R. Metabolic Mechanism Investigation of Antibacterial Active Cysteine-Conjugated Gold Nanoclusters in Escherichia Coli. ACS Sustain. Chem. Eng. 2019, 7, 15479–15486. [Google Scholar] [CrossRef]
- Zheng, K.; Setyawati, M.I.; Leong, D.T.; Xie, J.P. Surface Ligand Chemistry of Gold Nanoclusters Determines Their Antimicrobial Ability. Chem. Mater. 2018, 30, 2800–2808. [Google Scholar] [CrossRef]
- Goswami, N.; Luo, Z.T.; Yuan, X.; Leong, D.T.; Xie, J.P. Engineering Gold-Based Radiosensitizers for Cancer Radiotherapy. Mater. Horiz. 2017, 4, 817–831. [Google Scholar] [CrossRef]
- Zhang, X.D.; Wu, D.; Shen, X.; Liu, P.X.; Fan, F.Y.; Fan, S.J. In Vivo Renal Clearance, Biodistribution, Toxicity of Gold Nanoclusters. Biomaterials 2012, 33, 4628–4638. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Chen, J.; Luo, Z.T.; Wu, D.; Shen, X.; Song, S.S.; Sun, Y.M.; Liu, P.X.; Zhao, J.; Huo, S.S.; et al. Enhanced Tumor Accumulation of Sub-2 nm Gold Nanoclusters for Cancer Radiation Therapy. Adv. Healthc. Mater. 2014, 3, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Luo, Z.T.; Chen, J.; Shen, X.; Song, S.S.; Sun, Y.M.; Fan, S.J.; Fan, F.Y.; Leong, D.T.; Xie, J.P. Ultrasmall Au10-12(SG)10-12 Nanomolecules for High Tumor Specificity and Cancer Radiotherapy. Adv. Mater. 2014, 26, 4565–4568. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.T.; Yang, G.; Mo, S.J.; Wang, Z.Y.; Li, B.J.; Ma, W.; Guo, Y.X.; Chen, X.; Zhao, X.; Liu, J.Q.; et al. Atomically Precise Gold-Levonorgestrel Nanocluster as a Radiosensitizer for Enhanced Cancer Therapy. ACS Nano 2019, 13, 8320–8328. [Google Scholar] [CrossRef]
- Liu, C.P.; Wu, T.H.; Liu, C.Y.; Chen, K.C.; Chen, Y.X.; Chen, G.S.; Lin, S.Y. Self-Supplying O2 through the Catalase-Like Activity of Gold Nanoclusters for Photodynamic Therapy against Hypoxic Cancer Cells. Small 2017, 13, 1700278–1700286. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, J.W.; Yang, Z.J.; Zhang, L.; Dong, Z.L.; Liu, Z. NIR-II Light Activated Photodynamic Therapy with Protein-Capped Gold Nanoclusters. Nano Res. 2018, 11, 5657–5669. [Google Scholar] [CrossRef]
- Gao, G.B.; Chen, R.; He, M.; Li, J.; Li, J.; Wang, L.Y.; Sun, T.L. Gold Nanoclusters for Parkinson’s Disease Treatment. Biomaterials 2019, 194, 36–46. [Google Scholar] [CrossRef]
- Dang, P.P.; Liu, D.J.; Li, G.G.; Al Kheraif, A.A.; Lin, J. Recent Advances in Bismuth Ion-Doped Phosphor Materials: Structure Design, Tunable Photoluminescence Properties, and Application in White LEDs. Adv. Opt. Mater. 2020, 8, 1901993–1902025. [Google Scholar] [CrossRef]
- Xia, Z.G.; Meijerink, A. Ce3+-Doped Garnet Phosphors: Composition Modification, Luminescence Properties and Applications. Chem. Soc. Rev. 2017, 46, 275–299. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.F.; Feng, S.Q.; Kong, Z.H.; Huang, X.; Peng, L.; Wang, J.; Wong, W.-Y.; Zhou, Z.; Xia, M. Bi3+ Occupancy Rearrangement in K2-xAxMgGeO4 Phosphor to Achieve Ultra-broad-band White Emission Based on Alkali Metal Substitution Engineering. Appl. Surf. Sci. 2021, 563, 150252–150262. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, H.F.; Huang, X.; She, Y.L.; Zhong, Y.; Wang, J.; Liu, M.; Li, W.; Xia, M. Anti-thermal-quenching, Color-tunable and Ultra-narrow-band Cyan Green-emitting Phosphor for W-LEDs with Enhanced Color Rendering. Chem. Eng. J. 2022, 433, 134079–134089. [Google Scholar] [CrossRef]
- Huang, H.Y.; Cai, K.B.; Talite, M.J.; Chou, W.C.; Chen, P.W.; Yuan, C.T. Coordination-Induced Emission Enhancement in Gold-Nanoclusters with Solid-State Quantum Yields up to 40% for Eco-friendly, Low-reabsorption Nano-phosphors. Sci. Rep. 2019, 9, 4053–4063. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.Z.; Wang, J.J.; Ma, T.; Yin, Y.C.; Song, K.H.; Li, Z.D.; Zhou, M.M.; Jin, S.; Zhuang, T.; Fan, F.J.; et al. Biomimetic Non-Classical Crystallization Drives Hierarchical Structuring of Efficient Circularly Polarized Phosphors. Nat. Commun. 2022, 13, 3339–3349. [Google Scholar] [CrossRef]
- Han, Z.; Zhao, X.L.; Peng, P.; Li, S.; Zhang, C.; Cao, M.; Li, K.; Wang, Z.Y.; Zang, S.Q. Intercluster Aurophilicity-Driven Aggregation Lighting Circularly Polarized Luminescence of Chiral Gold Clusters. Nano Res. 2020, 13, 3248–3252. [Google Scholar] [CrossRef]
- Kennes, K.; Martin, C.; Baekelant, W.; Coutino-Gonzalez, E.; Fron, E.; Roeffaers, M.B.J.; Hofkens, J.; Van der Auweraer, M. Silver Zeolite Composite-Based LEDs: Origin of Electroluminescence and Charge Transport. ACS Appl. Mater. Interfaces 2019, 11, 12179–12183. [Google Scholar] [CrossRef]
- Xie, J.P.; Zheng, Y.G.; Ying, J.Y. Highly Selective and Ultrasensitive Detection of Hg2+ Based on Fluorescence Quenching of Au Nanoclusters by Hg2+-Au+ Interactions. Chem. Commun. 2010, 46, 961–963. [Google Scholar] [CrossRef]
- Wei, H.; Wang, Z.D.; Yang, L.M.; Tian, S.L.; Hou, C.J.; Lu, Y. Lysozyme-Stabilized Gold Fluorescent Cluster: Synthesis and Application as Hg2+ sensor. Analyst 2010, 135, 1406–1410. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Jiang, H.; Wang, X.M. Cytidine-Stabilized Gold Nanocluster as a Fluorescence Turn-On and Turn-Off Probe for Dual Functional Detection of Ag+ and Hg2+. Anal. Chim. Acta 2015, 870, 1–7. [Google Scholar] [CrossRef]
- Hofmann, C.M.; Essner, J.B.; Baker, G.A.; Baker, S.N. Protein-Templated Gold Nanoclusters Sequestered within Sol-Gel Thin Films for the Selective and Ratiometric Luminescence Recognition of Hg2+. Nanoscale 2014, 6, 5425–5431. [Google Scholar] [CrossRef] [PubMed]
- Babaee, E.; Barati, A.; Gholivand, M.B.; Taherpour, A.A.; Zolfaghar, N.; Shamsipur, M. Determination of Hg2+ and Cu2+ Ions by Dual-Emissive Ag/Au Nanocluster/Carbon Dots Nanohybrids: Switching the Selectivity by pH Adjustment. J. Hazard. Mater. 2019, 367, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Bian, R.X.; Wu, X.T.; Chai, F.; Li, L.; Zhang, L.Y.; Wang, T.T.; Wang, C.G.; Su, Z.M. Facile Preparation of Fluorescent Au Nanoclusters-Based Test Papers for Recyclable Detection of Hg2+ and Pb2+. Sens. Actuators B 2017, 241, 592–600. [Google Scholar] [CrossRef]
- Huang, H.; Li, H.; Feng, J.J.; Wang, A.J. One-Step Green Synthesis of Fluorescent Bimetallic Au/Ag Nanoclusters for Temperature Sensing and in Vitro Detection of Fe3+. Sens. Actuators B 2016, 223, 550–556. [Google Scholar] [CrossRef]
- Das, N.K.; Ghosh, S.; Priya, A.; Datta, S.; Mukherjee, S. Luminescent Copper Nanoclusters as a Specific Cell-Imaging Probe and a Selective Metal Ion Sensor. J. Phys. Chem. C 2015, 119, 24657–24664. [Google Scholar] [CrossRef]
- Chang, H.C.; Ho, J.A. Gold Nanocluster-Assisted Fluorescent Detection for Hydrogen Peroxide and Cholesterol Based on the Inner Filter Effect of Gold Nanoparticles. Anal. Chem. 2015, 87, 10362–10367. [Google Scholar] [CrossRef]
- Yang, K.C.; Wang, S.S.; Wang, Y.; Miao, H.Y.; Yang, X.M. Dual-Channel Probe of Carbon Dots Cooperating with Gold Nanoclusters Employed for Assaying Multiple Targets. Biosens. Bioelectron. 2017, 91, 566–573. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, S.N.; Huang, H.W.; Zhang, L.Y.; Wang, L.Q.; Liu, F.; Chen, J.P.; Zeng, Y.L.; Chu, P.K. Colorimetric and Ultra-Sensitive Fluorescence Resonance Energy Transfer Determination of H2O2 and Glucose by Multi-Functional Au Nanoclusters. Analyst 2014, 139, 1498–1503. [Google Scholar] [CrossRef]
- Bai, X.; Xu, S.Y.; Wang, L.Y. Full-Range pH Stable Au-Clusters in Nanogel for Confinement-Enhanced Emission and Improved Sulfide Sensing in Living Cells. Anal. Chem. 2018, 90, 3270–3275. [Google Scholar] [CrossRef]
- Niu, W.J.; Shan, D.; Zhu, R.H.; Deng, S.Y.; Cosnier, S.G.; Zhang, X.J. Dumbbell-Shaped Carbon Quantum Dots/AuNCs Nanohybrid as an Efficient Ratiometric Fluorescent Probe for Sensing Cadmium (II) ions and L-ascorbic Acid. Carbon 2016, 96, 1034–1042. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Zhou, F.; Kim, P.; Xia, Y. Protein-protected Au clusters as a new class of nanoscale biosensor for label-free fluorescence detection of proteases. Small 2012, 8, 3769–3773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.Y.; Chen, L.Y.; Ou, C.M.; Huang, C.C.; Wei, S.C.; Chang, H.T. Synthesis of fluorescent gold nanodot-liposome hybrids for detection of phospholipase C and its inhibitor. Anal. Chem. 2013, 85, 8834–8840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.W.; Li, M.; Chen, C.F. Recent Advances in Circularly Polarized Electroluminescence Based on Organic Light-Emitting Diodes. Chem. Soc. Rev. 2020, 49, 1331–1343. [Google Scholar] [CrossRef] [PubMed]
- Richardson, F.S.; Riehl, J.P. Circularly Polarized Luminescence Spectroscopy. Chem. Rev. 1977, 77, 773–792. [Google Scholar] [CrossRef]
- Riehl, J.P.; Richardson, F.S. Circularly Polarized Luminescence Spectroscopy. Chem. Rev. 1986, 86, 1–16. [Google Scholar] [CrossRef]
- Kwok, R.T.; Leung, C.W.; Lam, J.W.; Tang, B.Z. Biosensing by Luminogens with Aggregation-Induced Emission Characteristics. Chem. Soc. Rev. 2015, 44, 4228–4238. [Google Scholar] [CrossRef]
- Gong, Z.L.; Zhu, X.F.; Zhou, Z.H.; Zhang, S.W.; Yang, D.; Zhao, B.; Zhang, Y.P.; Deng, J.P.; Cheng, Y.X.; Zheng, Y.X.; et al. Frontiers in Circularly Polarized Luminescence: Molecular Design, Self-assembly, Nanomaterials, and Applications. Sci. China Chem. 2021, 64, 2060–2104. [Google Scholar] [CrossRef]
- Roose, J.; Tang, B.Z.; Wong, K.S. Circularly-Polarized Luminescence (CPL) from Chiral AIE Molecules and Macrostructures. Small 2016, 12, 6495–6512. [Google Scholar] [CrossRef]
- Yang, J.; Fang, M.M.; Li, Z. Organic Luminescent Materials: The Concentration on Aggregates from Aggregation-Induced Emission. Aggregate 2020, 1, 6–18. [Google Scholar] [CrossRef]
- Wang, J.J.; Mao, X.; Yang, J.N.; Yin, Y.C.; Yao, J.S.; Feng, L.Z.; Zhu, F.; Ma, C.; Yang, C.; Zou, G.; et al. Bright and Near-Unity Polarized Light Emission Enabled by Highly Luminescent Cu2I2-Dimer Cluster-Based Hybrid Materials. Nano Lett. 2021, 21, 4115–4121. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhou, H.T.; Yang, J.N.; Feng, L.Z.; Yao, J.S.; Song, K.H.; Zhou, M.M.; Jin, S.; Zhang, G.; Yao, H.B. Chiral Phosphine-Copper Iodide Hybrid Cluster Assemblies for Circularly Polarized Luminescence. J. Am. Chem. Soc. 2021, 143, 10860–10864. [Google Scholar] [CrossRef] [PubMed]
- Ge, F.; Li, B.H.; Cheng, P.; Li, G.; Ren, Z.; Xu, J.; Bu, X.H. Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angew. Chem. Int. Ed. 2022, 61, e202115024–e202115030. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.X.; Liu, C.P.; Zhao, Y.F.; Li, S.C.; Yu, Y.L.; Lv, J.Q.; Chen, L.; Jiang, F.L.; Hong, M.C. White-Light Emission and Circularly Polarized Luminescence from a Chiral Copper(I) Coordination Polymer through Symmetry-Breaking Crystallization. Angew. Chem. Int. Ed. Engl. 2022, 61, e202201590–e202201595. [Google Scholar]
- Yao, L.; Niu, G.D.; Li, J.Z.; Gao, L.; Luo, X.F.; Xia, B.; Liu, Y.H.; Du, P.P.; Li, D.H.; Chen, C.; et al. Circularly Polarized Luminescence from Chiral Tetranuclear Copper(I) Iodide Clusters. J. Phys. Chem. Lett. 2020, 11, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.J.; Yan, Z.P.; Li, S.; Su, H.F.; Li, K.; Zheng, Y.X.; Zang, S.Q. Photoresponsive Propeller-like Chiral AIE Copper(I) Clusters. Angew. Chem. Int. Ed. 2020, 59, 5336–5340. [Google Scholar] [CrossRef]
- Zhang, M.M.; Dong, X.Y.; Wang, Z.Y.; Li, H.Y.; Li, S.J.; Zhao, X.; Zang, S.Q. AIE Triggers the Circularly Polarized Luminescence of Atomically Precise Enantiomeric Copper(I) Alkynyl Clusters. Angew. Chem. Int. Ed. Engl. 2020, 59, 10052–10058. [Google Scholar] [CrossRef]
- Bhaskar, S.; Das, P.; Moronshing, M.; Rai, A.; Subramaniam, C.; Bhaktha, S.B.N.; Ramamurthy, S.S. Photoplasmonic Assembly of Dielectric-metal, Nd2O3-Gold Soret Nanointerfaces for Dequenching the Luminophore Emission. Nanophotonics 2021, 10, 3417–3431. [Google Scholar] [CrossRef]
- Bhaskar, S.; Jha, P.; Subramaniam, C.; Ramamurthy, S.S. Multifunctional Hybrid Soret Nanoarchitectures for Mobile Phone-based Picomolar Cu2+ ion Sensing and Dye Degradation Applications. Phys. E 2021, 132, 114764–114771. [Google Scholar] [CrossRef]
- Rai, A.; Bhaskar, S.; Ganesh, K.M.; Ramamurthy, S.S. Hottest Hotspots from the Coldest Cold: Welcome to Nano 4.0. ACS Appl. Nano Mater. 2022, 5, 12245–12264. [Google Scholar] [CrossRef]
- Li, H.; Hu, X.; Hong, W.; Cai, F.; Tang, Q.; Zhao, B.; Zhang, D.; Cheng, P. Photonic Crystal Coupled Plasmonic Nanoparticle Array for Resonant Enhancement of Light Harvesting and Power Conversion. Phys. Chem. Chem. Phys. 2012, 14, 14334–14339. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Zhu, H.; Wu, Z. Viewing Aggregation-Induced Emission of Metal Nanoclusters from Design Strategies to Applications. Nanomaterials 2023, 13, 470. https://doi.org/10.3390/nano13030470
Li T, Zhu H, Wu Z. Viewing Aggregation-Induced Emission of Metal Nanoclusters from Design Strategies to Applications. Nanomaterials. 2023; 13(3):470. https://doi.org/10.3390/nano13030470
Chicago/Turabian StyleLi, Tingting, Haifeng Zhu, and Zhennan Wu. 2023. "Viewing Aggregation-Induced Emission of Metal Nanoclusters from Design Strategies to Applications" Nanomaterials 13, no. 3: 470. https://doi.org/10.3390/nano13030470
APA StyleLi, T., Zhu, H., & Wu, Z. (2023). Viewing Aggregation-Induced Emission of Metal Nanoclusters from Design Strategies to Applications. Nanomaterials, 13(3), 470. https://doi.org/10.3390/nano13030470