Wavelength-Independent Excitation Bessel Beams for High-Resolution and Deep Focus Imaging
Abstract
1. Introduction
2. Materials and Methods
3. Fabrication and Experimental Results
3.1. Fabrication
3.2. Optical Characterization
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory. JOSA A 1987, 4, 651–654. [Google Scholar] [CrossRef]
- Novitsky, A.; Qiu, C.-W.; Wang, H. Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett. 2011, 107, 203601. [Google Scholar] [CrossRef]
- Rui, G.; Wang, X.; Cui, Y. Manipulation of metallic nanoparticle with evanescent vortex Bessel beam. Opt. Express 2015, 23, 25707–25716. [Google Scholar] [CrossRef]
- Fahrbach, F.O.; Simon, P.; Rohrbach, A. Microscopy with self-reconstructing beams. Nat. Photonics 2010, 4, 780–785. [Google Scholar] [CrossRef]
- Duocastella, M.; Arnold, C.B. Bessel and annular beams for materials processing. Laser Photonics Rev. 2012, 6, 607–621. [Google Scholar] [CrossRef]
- Rui, G.; Chen, J.; Wang, X.; Gu, B.; Cui, Y.; Zhan, Q. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields. Opt. Express 2016, 24, 23667–23676. [Google Scholar] [CrossRef]
- Landis, G.A. Charging of Devices by Microwave Power Beaming. U.S. Patent 6,967,462, 22 November 2005. [Google Scholar]
- Jerby, E.; Dikhtyar, V. Drilling into hard non-conductive materials by localized microwave radiation. In Advances in Microwave and Radio Frequency Processing; Springer: Berlin/Heidelberg, Germany, 2006; pp. 687–694. [Google Scholar]
- Costanzo, S.; Di Massa, G.; Borgia, A.; Raffo, A.; Versloot, T.; Summerer, L. Microwave Bessel beam launcher for high penetration planetary drilling operations. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–4. [Google Scholar]
- Costanzo, S.; Di Massa, G. Near-field focusing technique for enhanced through-the-wall radar. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 1716–1717. [Google Scholar]
- Mazzinghi, A.; Freni, A. Simultaneous generation of pseudo-Bessel vortex modes with a RLSA. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 1747–1750. [Google Scholar] [CrossRef]
- Salo, J.; Meltaus, J.; Noponen, E.; Westerholm, J.; Salomaa, M.M.; Lönnqvist, A.; Säily, J.; Häkli, J.; Ala-Laurinaho, J.; Räisänen, A.V. Millimetre-wave Bessel beams using computer holograms. Electron. Lett. 2001, 37, 1. [Google Scholar] [CrossRef]
- Monk, S.; Arlt, J.; Robertson, D.; Courtial, J.; Padgett, M. The generation of Bessel beams at millimetre-wave frequencies by use of an axicon. Opt. Commun. 1999, 170, 213–215. [Google Scholar] [CrossRef]
- Ettorre, M.; Grbic, A. Generation of propagating Bessel beams using leaky-wave modes. IEEE Trans. Antennas Propag. 2012, 60, 3605–3613. [Google Scholar] [CrossRef]
- Imani, M.F.; Grbic, A. Generating evanescent Bessel beams using near-field plates. IEEE Trans. Antennas Propag. 2012, 60, 3155–3164. [Google Scholar] [CrossRef]
- Blanco, D.; Gómez-Tornero, J.L.; Rajo-Iglesias, E.; Llombart, N. Holographic surface leaky-wave lenses with circularly-polarized focused near-fields—Part II: Experiments and description of frequency steering of focal length. IEEE Trans. Antennas Propag. 2013, 61, 3486–3494. [Google Scholar] [CrossRef]
- Planchon, T.A.; Gao, L.; Milkie, D.E.; Davidson, M.W.; Galbraith, J.A.; Galbraith, C.G.; Betzig, E. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 2011, 8, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Comite, D.; Fuscaldo, W.; Pavone, S.; Valerio, G.; Ettorre, M.; Albani, M.; Galli, A. Propagation of nondiffracting pulses carrying orbital angular momentum at microwave frequencies. Appl. Phys. Lett. 2017, 110, 114102. [Google Scholar] [CrossRef]
- Mazzinghi, A.; Balma, M.; Devona, D.; Guarnieri, G.; Mauriello, G.; Albani, M.; Freni, A. Large depth of field pseudo-Bessel beam generation with a RLSA antenna. IEEE Trans. Antennas Propag. 2014, 62, 3911–3919. [Google Scholar] [CrossRef]
- Wang, S.; Chan, C.T. Lateral optical force on chiral particles near a surface. Nat. Commun. 2014, 5, 3307. [Google Scholar] [CrossRef] [PubMed]
- Brzobohatý, O.; Arzola, A.V.; Šiler, M.; Chvátal, L.; Jákl, P.; Simpson, S.; Zemánek, P. Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap. Opt. Express 2015, 23, 7273–7287. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhu, H.; Guo, H.; Deng, M.; Xu, T.; Gong, Z.; Li, X.; Hang, Z.H.; Wu, C.; Li, H. Hyperbolic metamaterial devices for wavefront manipulation. Laser Photonics Rev. 2019, 13, 1800081. [Google Scholar] [CrossRef]
- Sun, S.; Yang, K.-Y.; Wang, C.-M.; Juan, T.-K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Kung, W.-T.; Guo, G.-Y. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett. 2012, 12, 6223–6229. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef]
- Ni, X.; Emani, N.K.; Kildishev, A.V.; Boltasseva, A.; Shalaev, V.M. Broadband light bending with plasmonic nanoantennas. Science 2012, 335, 427. [Google Scholar] [CrossRef] [PubMed]
- Ju, Z.; Wen, J.; Shi, L.; Yu, B.; Deng, M.; Zhang, D.; Hao, W.; Wang, J.; Chen, S.; Chen, L. Ultra-Broadband High-Efficiency Airy Optical Beams Generated with All-Silicon Metasurfaces. Adv. Opt. Mater. 2021, 9, 2001284. [Google Scholar] [CrossRef]
- Wen, J.; Chen, L.; Yu, B.; Nieder, J.B.; Zhuang, S.; Zhang, D.; Lei, D. All-dielectric synthetic-phase metasurfaces generating practical airy beams. ACS Nano 2021, 15, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Chen, L.; Chen, X.; Kanwal, S.; Zhang, L.; Zhuang, S.; Zhang, D.; Lei, D. Use of Dielectric Metasurfaces to Generate Deep-Subwavelength Nondiffractive Bessel-Like Beams with Arbitrary Trajectories and Ultralarge Deflection. Laser Photonics Rev. 2021, 15, 2000487. [Google Scholar] [CrossRef]
- Yu, B.; Wen, J.; Chen, L.; Zhang, L.; Fan, Y.; Dai, B.; Kanwal, S.; Lei, D.; Zhang, D. Polarization-independent highly efficient generation of Airy optical beams with dielectric metasurfaces. Photonics Res. 2020, 8, 1148–1154. [Google Scholar] [CrossRef]
- Fan, Y.; Cluzel, B.; Petit, M.; Le Roux, X.; Lupu, A.; De Lustrac, A. 2D waveguided Bessel beam generated using integrated metasurface-based plasmonic axicon. ACS Appl. Mater. Interfaces 2020, 12, 21114–21119. [Google Scholar] [CrossRef]
- Shi, F.; Wen, J.; Lei, D. High-efficiency, large-area lattice light-sheet generation by dielectric metasurfaces. Nanophotonics 2020, 9, 4043–4051. [Google Scholar] [CrossRef]
- Song, X.; Huang, L.; Tang, C.; Li, J.; Li, X.; Liu, J.; Wang, Y.; Zentgraf, T. Selective diffraction with complex amplitude modulation by dielectric metasurfaces. Adv. Opt. Mater. 2018, 6, 1701181. [Google Scholar] [CrossRef]
- Huang, L.; Song, X.; Reineke, B.; Li, T.; Li, X.; Liu, J.; Zhang, S.; Wang, Y.; Zentgraf, T. Volumetric generation of optical vortices with metasurfaces. ACS Photonics 2017, 4, 338–346. [Google Scholar] [CrossRef]
- Chen, W.T.; Yang, K.-Y.; Wang, C.-M.; Huang, Y.-W.; Sun, G.; Chiang, I.-D.; Liao, C.Y.; Hsu, W.-L.; Lin, H.T.; Sun, S. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett. 2014, 14, 225–230. [Google Scholar] [CrossRef]
- Zheng, G.; Mühlenbernd, H.; Kenney, M.; Li, G.; Zentgraf, T.; Zhang, S. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 2015, 10, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Wang, Z.; Hu, G.; Liu, J.; Zhang, K.; Li, H.; Ratni, B.; Burokur, S.N.; Wu, Q.; Tan, J. Metasurface holographic image projection based on mathematical properties of Fourier transform. PhotoniX 2020, 1, 16. [Google Scholar] [CrossRef]
- Li, J.; Hu, G.; Shi, L.; He, N.; Li, D.; Shang, Q.; Zhang, Q.; Fu, H.; Zhou, L.; Xiong, W. Full-color enhanced second harmonic generation using rainbow trapping in ultrathin hyperbolic metamaterials. Nat. Commun. 2021, 12, 6425. [Google Scholar] [CrossRef] [PubMed]
- Halim, B.I.; Kanwal, S. Polarization-Insensitive Metalenses at Wavelengths in Ultraviolet Region. In Proceedings of the 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC), Virtual, 1–3 December 2021; pp. 677–681. [Google Scholar]
- Ding, X.; Monticone, F.; Zhang, K.; Zhang, L.; Gao, D.; Burokur, S.N.; De Lustrac, A.; Wu, Q.; Qiu, C.W.; Alù, A. Ultrathin Pancharatnam–Berry metasurface with maximal cross-polarization efficiency. Adv. Mater. 2015, 27, 1195–1200. [Google Scholar] [CrossRef]
- Kanwal, S.; Wen, J.; Yu, B.; Kumar, D.; Chen, X.; Kang, Y.; Bai, C.; Zhang, D. High-efficiency, broadband, near diffraction-limited, dielectric metalens in ultraviolet spectrum. Nanomaterials 2020, 10, 490. [Google Scholar] [CrossRef]
- Kanwal, S.; Wen, J.; Yu, B.; Chen, X.; Kumar, D.; Kang, Y.; Bai, C.; Ubaid, S.; Zhang, D. Polarization insensitive, broadband, near diffraction-limited metalens in ultraviolet region. Nanomaterials 2020, 10, 1439. [Google Scholar] [CrossRef]
- Wan, X.; Shen, X.; Luo, Y.; Cui, T.J. Planar bifunctional luneburg-fisheye lens made of an anisotropic metasurface. Laser Photonics Rev. 2014, 8, 757–765. [Google Scholar] [CrossRef]
- Zou, X.; Zheng, G.; Yuan, Q.; Zang, W.; Chen, R.; Li, T.; Li, L.; Wang, S.; Wang, Z.; Zhu, S. Imaging based on metalenses. PhotoniX 2020, 1, 2. [Google Scholar] [CrossRef]
- Pfeiffer, C.; Grbic, A. Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 2013, 110, 197401. [Google Scholar] [CrossRef]
- Lin, D.; Fan, P.; Hasman, E.; Brongersma, M.L. Dielectric gradient metasurface optical elements. Science 2014, 345, 298–302. [Google Scholar] [CrossRef]
- Chen, W.T.; Khorasaninejad, M.; Zhu, A.Y.; Oh, J.; Devlin, R.C.; Zaidi, A.; Capasso, F. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci. Appl. 2017, 6, e16259. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Xie, Z.; Liu, S.; Chen, X.; Tang, T.; Kanwal, S.; Zhang, D. Wavelength-Independent Excitation Bessel Beams for High-Resolution and Deep Focus Imaging. Nanomaterials 2023, 13, 508. https://doi.org/10.3390/nano13030508
Wen J, Xie Z, Liu S, Chen X, Tang T, Kanwal S, Zhang D. Wavelength-Independent Excitation Bessel Beams for High-Resolution and Deep Focus Imaging. Nanomaterials. 2023; 13(3):508. https://doi.org/10.3390/nano13030508
Chicago/Turabian StyleWen, Jing, Zhouyu Xie, Shiliang Liu, Xu Chen, Tianchen Tang, Saima Kanwal, and Dawei Zhang. 2023. "Wavelength-Independent Excitation Bessel Beams for High-Resolution and Deep Focus Imaging" Nanomaterials 13, no. 3: 508. https://doi.org/10.3390/nano13030508
APA StyleWen, J., Xie, Z., Liu, S., Chen, X., Tang, T., Kanwal, S., & Zhang, D. (2023). Wavelength-Independent Excitation Bessel Beams for High-Resolution and Deep Focus Imaging. Nanomaterials, 13(3), 508. https://doi.org/10.3390/nano13030508