Facile Construction of Porous ZnMn2O4 Hollow Micro-Rods as Advanced Anode Material for Lithium Ion Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Characterization
2.3. Electrochemical Measurements
3. Results
3.1. Morphology and Structures
3.2. Effect of PEG 400 Addition on the Hollow Rod Structure
3.3. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, S.; Zhang, Y.; Wei, G.; Zhang, W.; Yan, X.; Xia, G.; Wu, A.; Ke, C.; Zhang, J. Li2FeSiO4/C hollow nanospheres as cathode materials for lithium-ion batteries. Nano Res. 2018, 12, 357–363. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, L.; Hou, L.; Zhou, L.; Pang, G.; Lian, L. Scalable room-temperature synthesis of mesoporous nanocrystalline ZnMn2O4 with enhanced lithium storage properties for lithium-ion batteries. Eur. Chem. J. 2015, 21, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wu, H.; Xie, Y.; Lou, X. Gemischte übergangsmetalloxide: Design, synthese und energierelevante anwendungen. Angew. Chem. Int. Ed. 2014, 126, 1512–1530. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, D.; Lou, X. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748. [Google Scholar] [CrossRef]
- Kumar, P.; Berhaut, C.; Dominguez, D.; Vito, E.; Tardif, S.; Pouget, S.; Lyonnard, S.; Jouneau, P. Nano-architectured composite anode enabling long-term cycling stability for high-capacity lithium-ion batteries. Small 2020, 16, 1906812. [Google Scholar] [CrossRef] [PubMed]
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef]
- Zhong, K.; Zhang, B.; Luo, S.; Wen, W.; Li, H.; Huang, X.; Chen, L. Investigation on porous MnO microsphere anode for lithium ion batteries. J. Power Sources 2011, 196, 6802–6808. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, H.; Wang, Z.; Lou, X. Interconnected MoO2 nanocrystals with carbon nanocoating as high-capacity anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2011, 3, 4853–4857. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hu, X.; Luo, W.; Xia, F.; Huang, Y. Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv. Funct. Mater. 2013, 23, 2436–2444. [Google Scholar] [CrossRef]
- Hao, Q.; Wang, J.; Xu, C. Facile preparation of Mn3O4 octahedra and their long-term cycle life as an anode material for Li-ion batteries. J. Mater. Chem. A 2013, 2, 87–93. [Google Scholar] [CrossRef]
- Yue, J.; Gu, X.; Chen, L.; Wang, N.; Jiang, X.; Xu, H.; Yang, J.; Qian, Y. General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries. J. Mater. Chem. A 2014, 2, 17421–17426. [Google Scholar] [CrossRef]
- Li, J.; Xiong, S.; Li, X.; Qian, Y. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045–2054. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zai, J.; Tao, L.; Li, B.; Han, Q.; Yu, C.; Qian, X. MnFe2O4-graphene nanocomposites with enhanced performances as anode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 3939–3945. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xie, J.; Su, Q.; Du, G.; Zhang, S.; Cao, G.; Zhu, T.; Zhao, X. Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy 2014, 8, 84–94. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Xiao, L.; Zhang, L. Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochem. Commun. 2008, 10, 1117–1120. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, Y.; Yin, J.; Li, Q.; Zhang, L. Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J. Power Sources 2009, 194, 1089–1093. [Google Scholar] [CrossRef]
- Zhang, L.-X.; Wang, Y.-L.; Jiu, H.-F.; Qiu, H.-Y.; Wang, H.-Y. Hollow core–shell ZnMn2O4 microspheres as a high-performance anode material for lithium-ion batteries. Ceram. Int. 2015, 41, 9655–9661. [Google Scholar] [CrossRef]
- Cao, H.; Xiao, X.; Wang, X.; Liu, J.; Si, P. Morphology engineering of self-assembled porous zinc manganate hexagons for lithium ion storage. Electrochim. Acta 2020, 330, 135260. [Google Scholar] [CrossRef]
- Kim, S.-W.; Lee, H.-W.; Muralidharan, P.; Seo, D.-H.; Yoon, W.-S.; Kim, D.; Kang, K. Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 2011, 4, 505–510. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Guo, C.; Tang, B.; Wang, X.; Bai, Z. Porous ZnMn2O4 nanowires as an advanced anode material for lithium ion battery. Electrochim. Acta 2015, 182, 1140–1144. [Google Scholar] [CrossRef]
- Zhou, P.; Zhong, L.; Liu, Z.; Liu, M.; Zhou, T.; Zhao, Y.; Lai, X.; Bi, J.; Gao, D. Porous ZnMn2O4 hollow microrods: Facile construction and excellent electrochemical performances for lithium ion batteries. Appl. Surf. Sci. 2022, 578, 152087. [Google Scholar] [CrossRef]
- Zeng, J.; Ren, Y.; Wang, S.; Hao, Y.; Wu, H.; Zhang, S.; Xing, Y. Hierarchical porous ZnMn2O4 microspheres assembled by nanosheets for high performance anodes of lithium ion batteries. Inorg. Chem. Front. 2017, 4, 1730–1736. [Google Scholar] [CrossRef]
- Rong, H.; Xie, G.; Cheng, S.; Zhen, Z.; Jiang, Z.; Huang, J.; Jiang, Y.; Chen, B.; Jiang, Z.-J. Hierarchical porous ZnMn2O4 microspheres architectured with sub-nanoparticles as a high performance anode for lithium ion batteries. J. Alloys Compd. 2016, 679, 231–238. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, L.; Wu, H.; Hoster, H.; Lou, X. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Adv. Mater. 2012, 24, 4609–4613. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Huang, L.; Xiu, Z.; Yin, Y.; Ma, Y.; Bi, Y.; Zheng, Z. Solvent-free synthesis and room temperature proton conductivity of new cobalt phosphite–oxalates. CrystEngComm. 2018, 20, 5544–5550. [Google Scholar] [CrossRef]
- Wang, N.; Ma, X.; Xu, H.; Chen, L.; Yue, J.; Niu, F.; Yang, J.; Qian, Y. Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 2014, 6, 193–199. [Google Scholar] [CrossRef]
- Chen, X.-F.; Qie, L.; Zhang, L.-L.; Zhang, W.-X.; Huang, Y.-H. Self-templated synthesis of hollow porous submicron ZnMn2O4 sphere as anode for lithium-ion batteries. J. Alloys Compd. 2013, 559, 5–10. [Google Scholar] [CrossRef]
- Yuan, C.; Li, J.; Hou, L.; Yang, L.; Shen, L.; Zhan, G.X. Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors. J. Mater. Chem. 2012, 22, 16084–16090. [Google Scholar] [CrossRef]
- Yuan, C.; Li, J.; Hou, L.; Lin, J.; Zhang, X.; Xiong, S. Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors. J. Mater. Chem. A 2013, 1, 11145–11151. [Google Scholar] [CrossRef]
- Chen, H.; Ding, L.-X.; Xiao, K.; Dai, S.; Wang, S.; Wang, H. Highly ordered ZnMnO3 nanotube arrays from a “self-sacrificial” ZnO template as high-performance electrodes for lithium ion batteries. J. Mater. Chem. A 2016, 4, 16318–16323. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, H.; Xuan, Y.; Wang, L.; Qian, Y. General synthesis of metal oxide hollow core–shell microspheres as anode materials for lithium-ion batteries and as adsorbents for wastewater treatment. CrystEngComm 2017, 19, 1311–1319. [Google Scholar] [CrossRef]
- Gotić, M.; Dražić, G.; Musić, G. Hydrothermal synthesis of α-Fe2O3 nanorings with the help of divalent metal cations, Mn2+, Cu2+, Zn2+ and Ni2+. J. Mol. Struct. 2001, 993, 167–176. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, D.; Zhang, Z.; Ni, S. A high performance all-vanadate-based Li-ion full cell. J. Mater. Chem. A 2021, 9, 10345–10353. [Google Scholar] [CrossRef]
- Dong, L.; Hao, J.; Liu, H.; Shi, W.; Yang, J.; Lian, J. Three-dimensional ZnMn2O4 nanoparticles/carbon cloth anodes for high-performance flexible lithium-ion batteries. ChemistrySelect 2020, 5, 2372–2378. [Google Scholar] [CrossRef]
- Sekhar, B.; Packiyalakshmi, P.; Kalaiselvi, N. Synergistic effect of flakes containing interconnected nanoparticles and conducting graphene additive to qualify ZnMn2O4 as potential lithium-battery anode. ChemElectroChem 2017, 4, 1154–1164. [Google Scholar] [CrossRef]
- Zhao, Z.; Tian, G.; Sarapulova, A.; Trouillet, V.; Fu, Q.; Geckle, U.; Ehrenberg, H.; Dsoke, S. Elucidating the energy storage mechanism of ZnMn2O4 as promising anode for Li-ion batteries. J. Mater. Chem. A 2018, 6, 19381. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, S.; Zhang, Q.; Shi, Z.; Zhang, L.; Zhan, S.; Chen, G. Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. J. Mater. Chem. 2011, 21, 11987–11995. [Google Scholar] [CrossRef]
- Zhong, M.; Yang, D.; Xie, C.; Zhang, Z.; Zhou, Z.; Bu, X. Yolk-shell MnO@ZnMn2O4/N-C nanorods derived from alpha-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 2016, 12, 5564–5571. [Google Scholar] [CrossRef]
- Dang, W.; Wang, F.; Ding, Y.; Feng, C.; Guo, Z. Synthesis and electrochemical properties of ZnMn2O4 microspheres for lithium-ion battery application. J. Alloys Compd. 2017, 690, 72–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zaman, F.; Zhao, Z.; Sun, X.; Zhang, J.; Hou, L.; Yuan, C. Hollow mesoporous hetero-ZnO/ZnMnO3 microspheres, template-free formation process and enhanced lithium storage capability towards Li-ion batteries as a competitive anode. J. Mater. Chem. A 2019, 7, 3264–3277. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J.; Hao, C.; Ci, L. Focusing on the Subsequent Coulombic Efficiencies of SiOx: Initial high-temperature charge after over-capacity prelithiation for high-efficiency SiOx-based full-cell battery. ACS Appl. Mater. Interfaces 2022, 14, 14284–14292. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, H.; Kim, Y.; Kimi, W. Fabrication of free-standing ZnMn2O4 mesoscale tubular arrays for lithium-ion anodes with highly reversible lithium storage properties. ACS Appl. Mater. Interfaces 2013, 5, 11321–11328. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, H.; Wang, R.; Xu, P.; Tong, Y.; Lu, Q.; Gao, F. Delicate control of multishelled Zn-Mn-O hollow microspheres as a high-performance anode for lithium-ion batteries. Langmuir 2018, 34, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Qiu, H.; Zhang, M.; Fang, Z.; Zhao, X.; Wang, L.; Chen, G.; Wei, Y.; Yue, H.; Wang, C.; et al. A unique 2D-on-3D architecture developed from ZnMn2O4 and CMK-3 with excellent performance for lithium ion batteries. Carbon 2017, 123, 717–725. [Google Scholar] [CrossRef]
- Gao, Q.; Yuan, Z.; Dong, L.; Wang, G.; Yu, X. Reduced graphene oxide wrapped ZnMn2O4/carbon nanofibers for long-life lithium-ion batteries. Electrochim. Acta 2018, 270, 417–425. [Google Scholar] [CrossRef]
- Song, R.; Song, H.; Zhou, J.; Chen, X.; Wu, B.; Yang, H. Hierarchical porous carbon nanosheets and their favorable high-rate performance in lithium ion batteries. J. Mater. Chem. 2012, 22, 12369–12374. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; He, S.; Du, G.; Yu, X.; Liu, J.; Gao, Q.; Hu, R.; Zhu, M. Mesoporous Mo2C/N-doped carbon heteronanowires as high-rate and long-life anode materials for Li-ion batteries. J. Mater. Chem A 2016, 4, 10842–10849. [Google Scholar] [CrossRef]
- Zhang, K.; Park, M.; Zhou, L.; Lee, G.; Shin, J.; Hu, Z.; Chou, S.; Chen, J.; Kang, Y. Cobalt-Doped FeS2 Nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew Chem. Int. Ed. Engl. 2016, 55, 12822–12826. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Liu, J.; Ouyang, L.; Hu, R.; Wang, H.; Yang, L.; Zhu, M. A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707573. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, S.; Zhang, Y.; Hou, L.; Yuan, C. Facile Construction of Porous ZnMn2O4 Hollow Micro-Rods as Advanced Anode Material for Lithium Ion Batteries. Nanomaterials 2023, 13, 512. https://doi.org/10.3390/nano13030512
Wang Y, Xu S, Zhang Y, Hou L, Yuan C. Facile Construction of Porous ZnMn2O4 Hollow Micro-Rods as Advanced Anode Material for Lithium Ion Batteries. Nanomaterials. 2023; 13(3):512. https://doi.org/10.3390/nano13030512
Chicago/Turabian StyleWang, Yuyan, Senyang Xu, Yamin Zhang, Linrui Hou, and Changzhou Yuan. 2023. "Facile Construction of Porous ZnMn2O4 Hollow Micro-Rods as Advanced Anode Material for Lithium Ion Batteries" Nanomaterials 13, no. 3: 512. https://doi.org/10.3390/nano13030512