B-Doped g-C3N4/Black TiO2 Z-Scheme Nanocomposites for Enhanced Visible-Light-Driven Photocatalytic Performance
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of Black TiO2/B-Doped g-C3N4 Heterojunction
2.3. Characterizations
2.4. Photocatalytic Degradation of Organic Pollutants
2.5. Photoelectrochemical Properties
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Iocozzia, J.; Wang, Y.; Cui, X.; Chen, Y.; Zhao, S.; Li, Z.; Lin, Z. Noble Metal–Metal Oxide Nanohybrids with Tailored Nanostructures for Efficient Solar Energy Conversion, Photocatalysis and Environmental Remediation. Energy Environ. Sci. 2017, 10, 402–434. [Google Scholar] [CrossRef]
- Meng, N.; Ren, J.; Liu, Y.; Huang, Y.; Petit, T.; Zhang, B. Engineering Oxygen-Containing and Amino Groups into Two-Dimensional Atomically-Thin Porous Polymeric Carbon Nitrogen for Enhanced Photocatalytic Hydrogen Production. Energy Environ. Sci. 2018, 11, 566–571. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.Z.; Kwong, C.W.; Davey, K.; Qiao, S.Z. 2D Phosphorene as a Water Splitting Photocatalyst: Fundamentals to Applications. Energy Environ. Sci. 2016, 9, 709–728. [Google Scholar] [CrossRef]
- Wu, C.; Xing, Z.; Yang, S.; Li, Z.; Zhou, W. Nanoreactors for Photocatalysis. Coordin. Chem. Rev. 2023, 477, 214939. [Google Scholar] [CrossRef]
- Fang, B.; Xing, Z.; Sun, D.; Li, Z.; Zhou, W. Hollow Semiconductor Photocatalysts for Solar Energy Conversion. Adv. Powder Mater. 2022, 1, 100021. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Yu, C.; Zhou, W.; Liu, H.; Liu, Y.; Dionysiou, D.D. Design and Fabrication of Microsphere Photocatalysts for Environmental Purification and Energy Conversion. Chem. Eng. J. 2016, 287, 117–129. [Google Scholar] [CrossRef]
- Pi, Y.; Li, X.; Xia, Q.; Wu, J.; Li, Y.; Xiao, J.; Li, Z. Adsorptive and Photocatalytic Removal of Persistent Organic Pollutants (POPs) in Water by Metal-Organic Frameworks (MOFs). Chem. Eng. J. 2018, 337, 351–371. [Google Scholar] [CrossRef]
- Fang, B.; Xing, Z.; Kong, W.; Li, Z.; Zhou, W. Electron Spin Polarization-Mediated Charge Separation in Pd/CoP@CoNiP Superstructures toward Optimized Photocatalytic Performance. Nano Energy 2022, 101, 107616. [Google Scholar] [CrossRef]
- Zhou, W.; Sun, F.; Pan, K.; Tian, G.; Jiang, B.; Ren, Z.; Tian, C.; Fu, H. Well-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance. Adv. Funct. Mater. 2011, 21, 1922–1930. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ghiaci, M.; Kulinich, S.A.; Wunderlich, W.; Ghaziaskar, H.S.; Koupaei, A.J. Ethyl Benzene Oxidation under Aerobic Conditions Using Cobalt Oxide Imbedded in Nitrogen-Doped Carbon Fiber Felt Wrapped by Spiral TiO2-SiO2. Appl. Catal. A-Gen. 2022, 630, 118456. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ghiaci, M.; Kulinich, S.A.; Wunderlich, W.; Monjezi, B.H.; Ghorbani, Y.; Ghaziaskar, H.S.; Javaheri Koupaei, A. Au-Pd Nanoparticles Enfolded in Coil-like TiO2 Immobilized on Carbon Fibers Felt as Recyclable Nanocatalyst for Benzene Oxidation under Mild Conditions. Appl. Surf. Sci. 2020, 506, 144644. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Huang, F. Black Titanium Dioxide (TiO2) Nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wang, S.; Yang, F.; Zhou, W. Mesoporous Black TiO2/MoS2/Cu2S Hierarchical Tandem Heterojunctions toward Optimized Photothermal-Photocatalytic Fuel Production. Chem. Eng. J. 2022, 427, 131830. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Wu, J.; Zhou, W. Recent Progress in Defective TiO2 Photocatalysts for Energy and Environmental Applications. Renew. Sustain. Energy Rev. 2022, 156, 111980. [Google Scholar] [CrossRef]
- Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J.M.; Domen, K.; Antonietti, M. A Metal-Free Polymeric Photocatalyst for Hydrogen Production from Water under Visible Light. Nat. Mater. 2009, 8, 76–80. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef]
- Fu, J.; Yu, J.; Jiang, C.; Cheng, B. G-C3N4-Based Heterostructured Photocatalysts. Adv. Energy Mater. 2018, 8, 1701503. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A.K. Graphitic Carbon Nitride (g-C3N4) Nanocomposites: A New and Exciting Generation of Visible Light Driven Photocatalysts for Environmental Pollution Remediation. Appl. Catal. B-Environ. 2016, 198, 347–377. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Ghiaci, M.; Kulinich, S.A.; Wunderlich, W.; Farrokhpour, H.; Saraji, M.; Shahvar, A. Au-Pd@g-C3N4 as an Efficient Photocatalyst for Visible-Light Oxidation of Benzene to Phenol: Experimental and Mechanistic Study. J. Phys. Chem. C 2018, 122, 27477–27485. [Google Scholar] [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. J. Phys. Chem. C 2011, 115, 7355–7363. [Google Scholar] [CrossRef]
- Zhang, Y.; Mori, T.; Ye, J.; Antonietti, M. Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation. J. Am. Chem. Soc. 2010, 132, 6294. [Google Scholar] [CrossRef]
- Liu, G.; Niu, P.; Sun, C.; Smith, S.C.; Chen, Z.; Lu, G.Q.; Cheng, H.-M. Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, L.; Wang, Y.; Li, L.; Chen, S. High Yield Synthesis of Homogeneous Boron Doping C3N4 Nanocrystals with Enhanced Photocatalytic Property. Appl. Surf. Sci. 2019, 489, 631–638. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, J.; Li, C.; Ji, W.; Yang, M.; Huang, H.; Liu, Y.; Kang, Z. Tunable Ternary (N, P, B)-Doped Porous Nanocarbons and Their Catalytic Properties for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2014, 6, 22297–22304. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Cao, J.; Zhang, Y.; Liu, L.; Xu, H.; Ye, J. Reduced TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting. J. Mater. Chem. A 2013, 1, 5766. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Kawashima, T.; Nakajima, T. Syntheses and Structures of New Graphite-like Materials of Composition BCN(H) and BC3N(H). Chem. Mater. 1996, 8, 1197–1201. [Google Scholar] [CrossRef]
- Song, L.; Ci, L.; Lu, H.; Sorokin, P.B.; Jin, C.; Ni, J.; Kvashnin, A.G.; Kvashnin, D.G.; Lou, J.; Yakobson, B.I.; et al. Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers. Nano Lett. 2010, 10, 3209–3215. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.; Dong, C.-L.; Huang, Y.-C.; Chen, J.; Xue, F.; Shen, S.; Guo, L. Boron-Doped Nitrogen-Deficient Carbon Nitride-Based Z-Scheme Heterostructures for Photocatalytic Overall Water Splitting. Nat. Energy 2021, 6, 388–397. [Google Scholar] [CrossRef]
- Yu, H.; Chen, F.; Li, X.; Huang, H.; Zhang, Q.; Su, S.; Wang, K.; Mao, E.; Mei, B.; Mul, G.; et al. Synergy of Ferroelectric Polarization and Oxygen Vacancy to Promote CO2 Photoreduction. Nat. Commun 2021, 12, 4594. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, H.; Sun, B.; Qiao, P.; Ren, L.; Tian, G.; Jiang, B.; Pan, K.; Zhou, W. Surface Oxygen Vacancy Defect-Promoted Electron-Hole Separation for Porous Defective ZnO Hexagonal Plates and Enhanced Solar-Driven Photocatalytic Performance. Chem. Eng. J. 2020, 379, 122295. [Google Scholar] [CrossRef]
- Yang, D.; Xu, Y.; Pan, K.; Yu, C.; Wu, J.; Li, M.; Yang, F.; Qu, Y.; Zhou, W. Engineering Surface Oxygen Vacancy of Mesoporous CeO2 Nanosheets Assembled Microspheres for Boosting Solar-Driven Photocatalytic Performance. Chin. Chem. Lett. 2022, 33, 378–384. [Google Scholar] [CrossRef]
- Zhou, W.; Li, W.; Wang, J.-Q.; Qu, Y.; Yang, Y.; Xie, Y.; Zhang, K.; Wang, L.; Fu, H.; Zhao, D. Ordered Mesoporous Black TiO2 as Highly Efficient Hydrogen Evolution Photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283. [Google Scholar] [CrossRef]
- Sinhamahapatra, A.; Jeon, J.-P.; Yu, J.-S. A New Approach to Prepare Highly Active and Stable Black Titania for Visible Light-Assisted Hydrogen Production. Energy Environ. Sci. 2015, 8, 3539–3544. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Zeng, L.; Song, W.; Qin, Z.; Zeng, D.; Xie, C. In Situ Synthesis of C-TiO2/g-C3N4 Heterojunction Nanocomposite as Highly Visible Light Active Photocatalyst Originated from Effective Interfacial Charge Transfer. Appl. Catal. B-Environ. 2017, 202, 489–499. [Google Scholar] [CrossRef]
- Kumar Ray, S.; Dhakal, D.; Gyawali, G.; Joshi, B.; Raj Koirala, A.; Wohn Lee, S. Transformation of Tetracycline in Water during Degradation by Visible Light Driven Ag Nanoparticles Decorated α-NiMoO4 Nanorods: Mechanism and Pathways. Chem. Eng. J. 2019, 373, 259–274. [Google Scholar] [CrossRef]
- Song, W.; Zhao, H.; Ye, J.; Kang, M.; Miao, S.; Li, Z. Pseudocapacitive Na+ Insertion in Ti–O–C Channels of TiO2 –C Nanofibers with High Rate and Ultrastable Performance. ACS Appl. Mater. Interfaces 2019, 11, 17416–17424. [Google Scholar] [CrossRef]
- Bao, S.; Liang, H.; Li, C.; Bai, J. The Synthesis and Enhanced Photocatalytic Activity of Heterostructure BiOCl/TiO2 Nanofibers Composite for Tetracycline Degradation in Visible Light. J. Disper. Sci. Technol. 2021, 42, 2000–2013. [Google Scholar] [CrossRef]
- Huang, X.; Guo, F.; Li, M.; Ren, H.; Shi, Y.; Chen, L. Hydrothermal Synthesis of ZnSnO3 Nanoparticles Decorated on G-C3N4 Nanosheets for Accelerated Photocatalytic Degradation of Tetracycline under the Visible-Light Irradiation. Sep. Purif. Technol. 2020, 230, 115854. [Google Scholar] [CrossRef]
- Bao, S.; Liu, H.; Liang, H.; Li, C.; Bai, J. Electrospinned Silk-Ribbon-like Carbon-Doped TiO2 Ultrathin Nanosheets for Enhanced Visible-Light Photocatalytic Activity. Colloid. Surface A 2021, 616, 126289. [Google Scholar] [CrossRef]
- Geng, R.; Yin, J.; Zhou, J.; Jiao, T.; Feng, Y.; Zhang, L.; Chen, Y.; Bai, Z.; Peng, Q. In Situ Construction of Ag/TiO2/g-C3N4 Heterojunction Nanocomposite Based on Hierarchical Co-Assembly with Sustainable Hydrogen Evolution. Nanomaterials 2020, 10, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Liu, M.; Wu, C.; Gao, J.; Li, M.; Xing, Z.; Li, Z.; Zhou, W. Hollow Nanoboxes Cu2-xS@ZnIn2S4 Core-Shell S-Scheme Heterojunction with Broad-Spectrum Response and Enhanced Photothermal-Photocatalytic Performance. Small 2022, 18, 2202544. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zhou, W.; Li, H.; Ren, L.; Qiao, P.; Li, W.; Fu, H. Synthesis of Particulate Hierarchical Tandem Heterojunctions toward Optimized Photocatalytic Hydrogen Production. Adv. Mater. 2018, 30, 1804282. [Google Scholar] [CrossRef]
- Chen, P.; Wang, F.; Chen, Z.-F.; Zhang, Q.; Su, Y.; Shen, L.; Yao, K.; Liu, Y.; Cai, Z.; Lv, W.; et al. Study on the Photocatalytic Mechanism and Detoxicity of Gemfibrozil by a Sunlight-Driven TiO2/Carbon Dots Photocatalyst: The Significant Roles of Reactive Oxygen Species. Appl. Catal. B-Environ. 2017, 204, 250–259. [Google Scholar] [CrossRef]
- Huang, H.; He, Y.; Li, X.; Li, M.; Zeng, C.; Dong, F.; Du, X.; Zhang, T.; Zhang, Y. Bi2O2(OH)(NO3) as a Desirable [Bi2O2]2+ Layered Photocatalyst: Strong Intrinsic Polarity, Rational Band Structure and {001} Active Facets Co-Beneficial for Robust Photooxidation Capability. J. Mater. Chem. A 2015, 3, 24547–24556. [Google Scholar] [CrossRef]
Photocatalyst | Light Source | Dosage of Catalyst (g L−1) | TC Concentration (mg L−1) | Reaction Time (min) | Rate (min−1) | Reference (year) |
---|---|---|---|---|---|---|
C nanodots/WO3 | 150 W XL (λ > 420 nm) | 0.5 | 20 | 150 | 0.0067 | [36] (2017) |
Ag/a-NiMoO4 nanorods | 150 W XL (λ > 400 nm) | 1.429 | 20 | 180 | 0.0093 | [37] (2019) |
C-TiO2 nanocomposites | visible-light | 0.2 | 10 | 160 | 0.0126 | [38] (2019) |
BiOCl/TiO2 C nanofibers | 300 W XL (λ > 420 nm) | 0.5 | 20 | 180 | 0.0085 | [39] (2020) |
ZnSnO3/g-C3N4 | 300 W XL (λ > 420 nm) | 0.25 | 10 | 120 | 0.0131 | [40] (2020) |
C-doped 0.5-UNST | 300 W XL (λ > 420 nm) | 0.5 | 20 | 120 | 0.0134 | [41] (2021) |
BCBT | 300 W XL (λ > 420 nm) | 0.2 | 10 | 30 (60%) | 0.0271 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, K.; Fan, L.; Jiang, Y.; Yue, Y.; Jia, H. B-Doped g-C3N4/Black TiO2 Z-Scheme Nanocomposites for Enhanced Visible-Light-Driven Photocatalytic Performance. Nanomaterials 2023, 13, 518. https://doi.org/10.3390/nano13030518
Wang Y, Xu K, Fan L, Jiang Y, Yue Y, Jia H. B-Doped g-C3N4/Black TiO2 Z-Scheme Nanocomposites for Enhanced Visible-Light-Driven Photocatalytic Performance. Nanomaterials. 2023; 13(3):518. https://doi.org/10.3390/nano13030518
Chicago/Turabian StyleWang, Yuwei, Kelin Xu, Liquan Fan, Yongwang Jiang, Ying Yue, and Hongge Jia. 2023. "B-Doped g-C3N4/Black TiO2 Z-Scheme Nanocomposites for Enhanced Visible-Light-Driven Photocatalytic Performance" Nanomaterials 13, no. 3: 518. https://doi.org/10.3390/nano13030518
APA StyleWang, Y., Xu, K., Fan, L., Jiang, Y., Yue, Y., & Jia, H. (2023). B-Doped g-C3N4/Black TiO2 Z-Scheme Nanocomposites for Enhanced Visible-Light-Driven Photocatalytic Performance. Nanomaterials, 13(3), 518. https://doi.org/10.3390/nano13030518