Superconductivity in Nanosystems: A Fruitful Path to New Phenomenology in Quantum Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sibanda, D.; Oyinbo, S.T.; Jen, T.-C.; Ibitoye, A.I. A Mini Review on Thin Film Superconductors. Processes 2022, 10, 1184. [Google Scholar] [CrossRef]
- Strambini, E.; Spies, M.; Ligato, N.; Ilić, S.; Rouco, M.; González-Orellana, C.; Ilyn, M.; Rogero, C.; Bergeret, F.S.; Moodera, J.S.; et al. Superconducting spintronic tunnel diode. Nat. Commun. 2022, 13, 2431. [Google Scholar] [CrossRef] [PubMed]
- Aichner, B.; Müller, B.; Karrer, M.; Misko, V.R.; Limberger, F.; Mletschnig, K.L.; Dosmailov, M.; Pedarnig, J.D.; Nori, F.; Kleiner, R.; et al. Ultradense Tailored Vortex Pinning Arrays in Superconducting YBa2Cu3O7-δ Thin Films Created by Focused He Ion Beam Irradiation for Fluxonics Applications. ACS Appl. Nano Mater. 2019, 2, 5108. [Google Scholar] [CrossRef]
- He, Q.L.; Liu, H.; He, M.; Lai, Y.H.; He, H.; Wang, G.; Law, K.T.; Lortz, R.; Wang, J.; Sou, I.K. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nat. Commun. 2014, 5, 4247. [Google Scholar] [CrossRef] [PubMed]
- Wördenweber, R.; Moshchalkov, V.; Bending, S.; Tafuri, F. (Eds.) Superconductors at the Nanoscale: From Basic Research to Applications; de Gruyter: Berlin, Germany, 2017. [Google Scholar]
- Winarsih, S.; Budiman, F.; Tanaka, H.; Adachi, T.; Koda, A.; Horibe, Y.; Kurniawan, B.; Watanabe, I.; Risdiana, R. Observation of Cu Spin Fluctuations in High-Tc Cuprate Superconductor Nanoparticles Investigated by Muon Spin Relaxation. Nanomaterials 2021, 11, 3450. [Google Scholar] [CrossRef] [PubMed]
- Vettoliere, A.; Satariano, R.; Ferraiuolo, R.; Di Palma, L.; Ahmad, H.G.; Ausanio, G.; Pepe, G.P.; Tafuri, F.; Massarotti, D.; Montemurro, D.; et al. High-Quality Ferromagnetic Josephson Junctions Based on Aluminum Electrodes. Nanomaterials 2022, 12, 4155. [Google Scholar] [CrossRef] [PubMed]
- Aichner, B.; Mletschnig, K.L.; Müller, B.; Karrer, M.; Dosmailov, M.; Pedarnig, J.D.; Kleiner, R.; Koelle, D.; Lang, W. Angular magnetic-field dependence of vortex matching in pinning lattices fabricated by focused or masked helium ion beam irradiation of superconducting YBa2Cu3O7-δ thin films. Low Temp. Phys. 2020, 46, 331. [Google Scholar] [CrossRef]
- Ivan, I.; Ionescu, A.M.; Crisan, D.N.; Andrei, A.; Galluzzi, A.; Polichetti, M.; Mosqueira, J.; Crisan, A. Pinning Potential of the Self-Assembled Artificial Pinning Centers in Nanostructured YBa2Cu3O7-x Superconducting Films. Nanomaterials 2022, 12, 1713. [Google Scholar] [CrossRef] [PubMed]
- Backmeister, L.; Aichner, B.; Karrer, M.; Wurster, K.; Kleiner, R.; Goldobin, E.; Koelle, D.; Lang, W. Ordered Bose Glass of Vortices in Superconducting YBa2Cu3O7-δ Thin Films with a Periodic Pin Lattice Created by Focused Helium Ion Irradiation. Nanomaterials 2022, 12, 3491. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.; Faina, B.; Ney, V.; Vorhauer, J.; Sterrer, A.; Ney, A.; Bonanni, A. Effect of Impurity Scattering on Percolation of Bosonic Islands and Superconductivity in Fe Implanted NbN Thin Films. Nanomaterials 2022, 12, 3105. [Google Scholar] [CrossRef] [PubMed]
- Botana, M.; Ramallo, M.V. A Scenario for the Critical Fluctuations near the Transition of Few-Bilayer Films of High-Temperature Cuprate Superconductors. Nanomaterials 2022, 12, 4368. [Google Scholar] [CrossRef] [PubMed]
- Cieplak, M.Z.; Guha, S.; Vadlamannati, S.; Giebultowicz, T.; Lindenfeld, P. Origin of the Tc depression and the role of charge transfer and dimensionality in ultrathin Y1Ba2Cu3O7-δ. Phys. Rev. B 1994, 50, 12876. [Google Scholar] [CrossRef] [PubMed]
- Viña, J.; Campá, J.A.; Carballeira, C.; Currás, S.R.; Maignan, A.; Ramallo, M.V.; Rasines, I.; Veira, J.A.; Wagner, P.; Vidal, F. Universal behavior of the in-plane paraconductivity of cuprate superconductors in the short-wavelength fluctuation regime. Phys. Rev. B 2002, 65, 212509. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramallo, M.V. Superconductivity in Nanosystems: A Fruitful Path to New Phenomenology in Quantum Materials. Nanomaterials 2023, 13, 592. https://doi.org/10.3390/nano13030592
Ramallo MV. Superconductivity in Nanosystems: A Fruitful Path to New Phenomenology in Quantum Materials. Nanomaterials. 2023; 13(3):592. https://doi.org/10.3390/nano13030592
Chicago/Turabian StyleRamallo, Manuel V. 2023. "Superconductivity in Nanosystems: A Fruitful Path to New Phenomenology in Quantum Materials" Nanomaterials 13, no. 3: 592. https://doi.org/10.3390/nano13030592
APA StyleRamallo, M. V. (2023). Superconductivity in Nanosystems: A Fruitful Path to New Phenomenology in Quantum Materials. Nanomaterials, 13(3), 592. https://doi.org/10.3390/nano13030592