Reversible Hydrogen Storage Media by g-CN Monolayer Decorated with NLi4: A First-Principles Study
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
4. Hydrogen Adsorption Performance of NLi4@g-CN
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elberry, A.M.; Thakur, J.; Santasalo-Aarnio, A.; Larmi, M. Large-scale compressed hydrogen storage as part of renewable electricity storage systems. Int. J. Hydrogen Energy 2021, 46, 15671–15690. [Google Scholar] [CrossRef]
- Tarhan, C.; Çil, M.A. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 2021, 40, 102676. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Myers, A.L. Optimum conditions for adsorptive storage. Langmuir 2006, 22, 1688–1700. [Google Scholar] [CrossRef]
- Chen, X.-H.; Li, J.-W.; Wu, Q.; Tan, Y.; Yuan, S.; Gao, P.; Zhu, G.-Y. Reversible hydrogen storage for NLi4-Decorated honeycomb borophene oxide. Int. J. Hydrogen Energy 2022, 47, 19168–19174. [Google Scholar] [CrossRef]
- Hussain, T.; Mortazavi, B.; Bae, H.; Rabczuk, T.; Lee, H.; Karton, A. Enhancement in hydrogen storage capacities of light metal functionalized Boron–Graphdiyne nanosheets. Carbon 2019, 147, 199–205. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Hashmi, S.A.R.; Kim, K.-H. MXenes: Emerging 2D materials for hydrogen storage. Nano Energy 2021, 85, 105989. [Google Scholar] [CrossRef]
- Alhameedi, K.; Hussain, T.; Bae, H.; Jayatilaka, D.; Lee, H.; Karton, A. Reversible hydrogen storage properties of defect-engineered C4N nanosheets under ambient conditions. Carbon 2019, 152, 344–353. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P.; Zhu, X.; Liu, Z. A reversible hydrogen storage material of Li-decorated two-dimensional (2D) C4N monolayer: First principles calculations. Int. J. Hydrogen Energy 2021, 46, 32936–32948. [Google Scholar] [CrossRef]
- Panigrahi, P.; Kumar, A.; Karton, A.; Ahuja, R.; Hussain, T. Remarkable improvement in hydrogen storage capacities of two-dimensional carbon nitride (g-C3N4) nanosheets under selected transition metal doping. Int. J. Hydrogen Energy 2020, 45, 3035–3045. [Google Scholar] [CrossRef]
- Panigrahi, P.; Desai, M.; Talari, M.K.; Bae, H.; Lee, H.; Ahuja, R.; Hussain, T. Selective decoration of nitrogenated holey graphene (C2N) with titanium clusters for enhanced hydrogen storage application. Int. J. Hydrogen Energy 2021, 46, 7371–7380. [Google Scholar] [CrossRef]
- Varunaa, R.; Ravindran, P. Potential hydrogen storage materials from metal decorated 2D-C2N: An ab initio study. Phys. Chem. Chem. Phys. 2019, 21, 25311–25322. [Google Scholar] [CrossRef] [PubMed]
- Faye, O.; Hussain, T.; Karton, A.; Szpunar, J. Tailoring the capability of carbon nitride (C3N) nanosheets toward hydrogen storage upon light transition metal decoration. Nanotechnology 2019, 30, 075404. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Avilés, R.; Orellana, W. Hydrogen storage on cation-decorated biphenylene carbon and nitrogenated holey graphene. Int. J. Hydrogen Energy 2018, 43, 22966–22975. [Google Scholar] [CrossRef]
- Tong, M.; Zhu, W.; Li, J.; Long, Z.; Zhao, S.; Chen, G.; Lan, Y. An easy way to identify high performing covalent organic frameworks for hydrogen storage. Chem. Commun. 2020, 56, 6376–6379. [Google Scholar] [CrossRef]
- Kopac, T. Covalent Organic Frameworks-Based Nanomaterials for Hydrogen Storage. In Covalent Organic Frameworks; CRC Press: Boca Raton, FL, USA, 2023; pp. 345–360. [Google Scholar]
- Nemiwal, M.; Sharma, V.; Kumar, D. Improved designs of multifunctional covalent-organic frameworks: Hydrogen storage, methane storage, and water harvesting. Mini Rev. Org. Chem. 2021, 18, 1026–1036. [Google Scholar] [CrossRef]
- Dinca, M.; Long, J.R. Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. Angew. Chem. Int. Ed. Engl. 2008, 47, 6766–6779. [Google Scholar] [CrossRef]
- Wang, Y.; Lan, Z.; Huang, X.; Liu, H.; Guo, J. Study on catalytic effect and mechanism of MOF (MOF = ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium. Int. J. Hydrogen Energy 2019, 44, 28863–28873. [Google Scholar] [CrossRef]
- Butova, V.V.; Burachevskaya, O.A.; Podshibyakin, V.A.; Shepelenko, E.N.; Tereshchenko, A.A.; Shapovalova, S.O.; Il’in, O.I.; Bren, V.A.; Soldatov, A.V. Photoswitchable zirconium MOF for light-driven hydrogen storage. Polymers 2021, 13, 4052. [Google Scholar] [CrossRef]
- Hussain, T.; Hankel, M.; Searles, D.J. Computational evaluation of lithium-functionalized carbon nitride (g-C6N8) monolayer as an efficient hydrogen storage material. J. Phys. Chem. C 2016, 120, 25180–25188. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, W.; Yildirim, T. Hydrogen storage in a prototypical zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2007, 129, 5314–5315. [Google Scholar] [CrossRef]
- Niemann, M.U.; Srinivasan, S.S.; Phani, A.R.; Kumar, A.; Goswami, D.Y.; Stefanakos, E.K. Nanomaterials for Hydrogen Storage Applications: A Review. J. Nanomater. 2008, 2008, 950967. [Google Scholar] [CrossRef]
- Han, S.A.; Sohn, A.; Kim, S.-W. Recent advanced in energy harvesting and storage applications with two-dimensional layered materials. FlatChem 2017, 6, 37–47. [Google Scholar] [CrossRef]
- Liu, J.; Cao, H.; Jiang, B.; Xue, Y.; Fu, L. Newborn 2D materials for flexible energy conversion and storage. Sci. China Mater. 2016, 59, 459–474. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Aslam, M.; Zhang, Y.; Wang, R.; Ouyang, Z.; Gou, Z.; Zhang, H. Recent advances in two-dimensional materials and their nanocomposites in sustainable energy conversion applications. Nanoscale 2019, 11, 21622–21678. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-D.; Yu, S.; Zhao, W.-H.; Li, S.-F.; Duan, X.-M. A potential material for hydrogen storage: A Li decorated graphitic-CN monolayer. Phys. Chem. Chem. Phys. 2018, 20, 13473–13477. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X.S. Electric field enhanced hydrogen storage on polarizable materials substrates. Proc. Natl. Acad. Sci. USA 2010, 107, 2801–2806. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Li, J.-w.; Zhang, J.; Wang, G. Computational exploration of magnesium-decorated carbon nitride (g-C3N4) monolayer as advanced energy storage materials. Int. J. Hydrogen Energy 2021, 46, 21739–21747. [Google Scholar] [CrossRef]
- Song, N.; Wang, Y.; Sun, Q.; Jia, Y. First-principles study of hydrogen storage on Ti (Sc)-decorated boron-carbon-nitride sheet. Appl. Surf. Sci. 2012, 263, 182–186. [Google Scholar] [CrossRef]
- Habibi, P.; Vlugt, T.J.H.; Dey, P.; Moultos, O.A. Reversible Hydrogen Storage in Metal-Decorated Honeycomb Borophene Oxide. ACS Appl. Mater. Interfaces 2021, 13, 43233–43240. [Google Scholar] [CrossRef]
- Wang, Y.S.; Wang, F.; Li, M.; Xu, B.; Sun, Q.; Jia, Y. Theoretical prediction of hydrogen storage on Li decorated planar boron sheets. Appl. Surf. Sci. 2012, 258, 8874–8879. [Google Scholar] [CrossRef]
- Bull, D.J.; Sorbie, N.; Baldissin, G.; Moser, D.; Telling, M.T.; Smith, R.I.; Gregory, D.H.; Ross, D.K. In situ powder neutron diffraction study of non-stoichiometric phase formation during the hydrogenation of Li3N. Faraday Discuss. 2011, 151, 163–270; discussion 285–295. [Google Scholar] [CrossRef]
- Qi, H.; Wang, X.; Chen, H. Superalkali NLi4 decorated graphene: A promising hydrogen storage material with high reversible capacity at ambient temperature. Int. J. Hydrogen Energy 2021, 46, 23254–23262. [Google Scholar] [CrossRef]
- Yartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, V.E.; Ares, J.R.; Baricco, M.; Bourgeois, N.; Buckley, C.E.; Bellosta von Colbe, J.M.; et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Zhang, F.; Yang, W. Ti-decorated graphitic-C3N4 monolayer: A promising material for hydrogen storage. Appl. Surf. Sci. 2016, 386, 247–254. [Google Scholar] [CrossRef]
- Beheshti, E.; Nojeh, A.; Servati, P. A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon 2011, 49, 1561–1567. [Google Scholar] [CrossRef]
- Gao, P.; Li, J.-w.; Wang, G. Computational evaluation of superalkali-decorated graphene nanoribbon as advanced hydrogen storage materials. Int. J. Hydrogen Energy 2021, 46, 24510–24516. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P. Hydrogen storage on superalkali NLi4 decorated β12-borophene: A first principles insights. Int. J. Hydrogen Energy 2022, 47, 14637–14645. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Liu, P.-P.; Luo, Z.-H. Superalkali NLi4 cluster decorated γ-graphyne as a promising hydrogen storage material: A density functional theory simulation. FlatChem 2022, 36, 100429. [Google Scholar] [CrossRef]
- Wang, X.; Qi, H.; Ma, L.; Chen, H. Superalkali NLi4 anchored on BN sheets for reversible hydrogen storage. Appl. Phys. Lett. 2021, 118, 093902. [Google Scholar] [CrossRef]
- Tan, L.; Nie, C.; Ao, Z.; Sun, H.; An, T.; Wang, S. Novel two-dimensional crystalline carbon nitrides beyond gC3N4: Structure and applications. J. Mater. Chem. A 2021, 9, 17–33. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, S.; Tomanec, O.; Petr, M.; Zhu Chen, J.; Miller, J.T.; Varma, R.S.; Gawande, M.B.; Zbořil, R. Carbon Nitride-Based Ruthenium Single Atom Photocatalyst for CO2 Reduction to Methanol. Small 2021, 17, 2006478. [Google Scholar] [CrossRef] [PubMed]
- Darkwah, W.K.; Ao, Y. Mini Review on the Structure and Properties (Photocatalysis), and Preparation Techniques of Graphitic Carbon Nitride Nano-Based Particle, and Its Applications. Nanoscale Res. Lett. 2018, 13, 388. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Tripathy, N.; Khosla, A.; Khan, M.; Mishra, P.; Ansari, W.A.; Syed, M.A.; Hahn, Y.-B. Review—Recent Advances in Nanostructured Graphitic Carbon Nitride as a Sensing Material for Heavy Metal Ions. J. Electrochem. Soc. 2020, 167, 037519. [Google Scholar] [CrossRef]
- Besharat, F.; Ahmadpoor, F.; Nezafat, Z.; Nasrollahzadeh, M.; Manwar, N.R.; Fornasiero, P.; Gawande, M.B. Advances in Carbon Nitride-Based Materials and Their Electrocatalytic Applications. ACS Catal. 2022, 12, 5605–5660. [Google Scholar] [CrossRef]
- Li, J.; Cao, C.; Hao, J.; Qiu, H.; Xu, Y.; Zhu, H. Self-assembled one-dimensional carbon nitride architectures. Diam. Relat. Mater. 2006, 15, 1593–1600. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.-w.; Dou, X.; Gao, P. Computational evaluation of Mg-decorated g-CN as clean energy gas storage media. Int. J. Hydrogen Energy 2021, 46, 35130–35136. [Google Scholar] [CrossRef]
- Gao, P.; Chen, X.; Li, J.; Wang, Y.; Liao, Y.; Liao, S.; Zhu, G.; Tan, Y.; Zhai, F. Computational evaluation of Al-decorated g-CN nanostructures as high-performance hydrogen-storage media. Nanomaterials 2022, 12, 2580. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Sanville, E.; Kenny, S.D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Z.; Yang, J. Two-Dimensional Stoichiometric Boron Oxides as a Versatile Platform for Electronic Structure Engineering. J. Phys. Chem. L 2017, 8, 4347–4353. [Google Scholar] [CrossRef] [PubMed]
- Tavhare, P.; Titus, E.; Chaudhari, A. Boron substitution effect on adsorption of H2 molecules on organometallic complexes. Int. J. Hydrogen Energy 2019, 44, 345–353. [Google Scholar] [CrossRef]
Systems | Ead (eV) | RH-H Length (A) | HSC (wt%) | Td (k) |
---|---|---|---|---|
1NLi4@g-CN 1H2 | −0.237 | 0.76 | 0.30 | 303 |
1NLi4@g-CN 8H2 | −0.177 | 0.76 | 2.42 | 227 |
1NLi4@g-CN 9H2 | −0.170 | 0.76 | 2.70 | 217 |
2NLi4@g-CN 18H2 | −0.155 | 0.76 | 5.10 | 198 |
3NLi4@g-CN 27H2 | −0.152 | 0.76 | 7.30 | 194 |
4NLi4@g-CN 36H2 | −0.155 | 0.76 | 9.20 | 198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Hou, W.; Zhai, F.; Cheng, J.; Yuan, S.; Li, Y.; Wang, N.; Zhang, L.; Ren, J. Reversible Hydrogen Storage Media by g-CN Monolayer Decorated with NLi4: A First-Principles Study. Nanomaterials 2023, 13, 647. https://doi.org/10.3390/nano13040647
Chen X, Hou W, Zhai F, Cheng J, Yuan S, Li Y, Wang N, Zhang L, Ren J. Reversible Hydrogen Storage Media by g-CN Monolayer Decorated with NLi4: A First-Principles Study. Nanomaterials. 2023; 13(4):647. https://doi.org/10.3390/nano13040647
Chicago/Turabian StyleChen, Xihao, Wenjie Hou, Fuqiang Zhai, Jiang Cheng, Shuang Yuan, Yihan Li, Ning Wang, Liang Zhang, and Jie Ren. 2023. "Reversible Hydrogen Storage Media by g-CN Monolayer Decorated with NLi4: A First-Principles Study" Nanomaterials 13, no. 4: 647. https://doi.org/10.3390/nano13040647
APA StyleChen, X., Hou, W., Zhai, F., Cheng, J., Yuan, S., Li, Y., Wang, N., Zhang, L., & Ren, J. (2023). Reversible Hydrogen Storage Media by g-CN Monolayer Decorated with NLi4: A First-Principles Study. Nanomaterials, 13(4), 647. https://doi.org/10.3390/nano13040647