Nanostructured Materials and Advanced Processes for Application in Water Purification
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schweitzer, L.; Noblet, J. Water contamination and pollution. In Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 261–290. [Google Scholar]
- Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S.K.; Grace, A.N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116–1137. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J. Developments in the application of nanomaterials for water treatment and their impact on the environment. Nanomaterials 2020, 10, 1764. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Sajjadi, M.; Iravani, S.; Varma, R.S. Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. J. Hazard. Mater. 2021, 401, 123401. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Nasrollahzadeh, M.; Sajjadi, M.; Maham, M.; Luque, R.; Puente-Santiago, A.R. Benign-by-design nature-inspired nanosystems in biofuels production and catalytic applications. Renew. Sustain. Energy Rev. 2019, 112, 195–252. [Google Scholar] [CrossRef]
- Xiang, H.; Ren, G.; Zhong, Y.; Xu, D.; Zhang, Z.; Wang, X.; Yang, X. Fe3O4@C Nanoparticles Synthesized by In Situ Solid-Phase Method for Removal of Methylene Blue. Nanomaterials 2021, 11, 330. [Google Scholar] [CrossRef] [PubMed]
- Zia, M.R.; Raza, M.A.; Park, S.H.; Irfan, N.; Ahmed, R.; Park, J.E.; Mushtaq, S. Removal of Radioactive Iodine Using Silver/Iron Oxide Composite Nanoadsorbents. Nanomaterials 2021, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- Narath, S.; Koroth, S.K.; Shankar, S.S.; George, B.; Mutta, V.; Wacławek, S.; Varma, R.S. Cinnamomum tamala leaf extract stabilized zinc oxide nanoparticles: A promising photocatalyst for methylene blue degradation. Nanomaterials 2021, 11, 1558. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, D. Efficiency of wood-dust of Dalbergia sisoo as low-cost adsorbent for rhodamine-B dye removal. Nanomaterials 2021, 11, 2217. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Inam, M.A.; Lee, K.H.; Channa, A.S.; Mallah, M.A.; Wie, Y.M.; Abbasi, M.N. Synergetic Effect of Organic Flocculant and Montmorillonite Clay on the Removal of Nano-CuO by Coagulation-Flocculation-Sedimentation Process. Nanomaterials 2021, 11, 2753. [Google Scholar] [CrossRef] [PubMed]
- Balarak, D.; Mahvi, A.H.; Shahbaksh, S.; Wahab, M.A.; Abdala, A. Adsorptive removal of azithromycin antibiotic from aqueous solution by azolla filiculoides-based activated porous carbon. Nanomaterials 2021, 11, 3281. [Google Scholar] [CrossRef] [PubMed]
- Liou, T.H.; Chen, G.W.; Yang, S. Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater. Nanomaterials 2022, 12, 791. [Google Scholar] [CrossRef] [PubMed]
- Shalabayev, Z.; Baláž, M.; Khan, N.; Nurlan, Y.; Augustyniak, A.; Daneu, N.; Burkitbayev, M. Sustainable Synthesis of Cadmium Sulfide, with Applicability in Photocatalysis, Hydrogen Production, and as an Antibacterial Agent, Using Two Mechanochemical Protocols. Nanomaterials 2022, 12, 1250. [Google Scholar] [CrossRef] [PubMed]
- Peñaranda, P.A.; Noguera, M.J.; Florez, S.L.; Husserl, J.; Ornelas-Soto, N.; Cruz, J.C.; Osma, J.F. Treatment of Wastewater, Phenols and Dyes Using Novel Magnetic Torus Microreactors and Laccase Immobilized on Magnetite Nanoparticles. Nanomaterials 2022, 12, 1688. [Google Scholar] [CrossRef] [PubMed]
- Primo, J.D.O.; Horsth, D.F.; Correa, J.D.S.; Das, A.; Bittencourt, C.; Umek, P.; Anaissi, F.J. Synthesis and Characterization of Ag/ZnO Nanoparticles for Bacteria Disinfection in Water. Nanomaterials 2022, 12, 1764. [Google Scholar] [CrossRef] [PubMed]
- Magro, C.; Moura, T.; Dionísio, J.; Ribeiro, P.A.; Raposo, M.; Sério, S. Nanostructured Metal Oxide Sensors for Antibiotic Monitoring in Mineral and River Water. Nanomaterials 2022, 12, 1858. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Rodríguez, L.C.; Quintanilla-Carvajal, M.X.; Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.; Jiménez-Junca, C. Preparation and Characterization of an Electrospun Whey Protein/Polycaprolactone Nanofiber Membrane for Chromium Removal from Water. Nanomaterials 2022, 12, 2744. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.U.; Begum, N.; Rehman, Z.U.; Khan, A.U.; Tahir, K.; Tag El Din, E.S.M.; Javed, M.S. Development of Efficient and Recyclable ZnO–CuO/g–C3N4 Nanocomposite for Enhanced Adsorption of Arsenic from Wastewater. Nanomaterials 2022, 12, 3984. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, J.; Yu, Y.; Li, J.; Zhou, Z.; Li, C. Synthesis of CuO/GO-DE Catalyst and Its Catalytic Properties and Mechanism on Ciprofloxacin Degradation. Nanomaterials 2022, 12, 4305. [Google Scholar] [CrossRef] [PubMed]
- Tóth, Z.R.; Debreczeni, D.; Gyulavári, T.; Székely, I.; Todea, M.; Kovács, G.; Hernadi, K. Rapid Synthesis Method of Ag3PO4 as Reusable Photocatalytically Active Semiconductor. Nanomaterials 2023, 13, 89. [Google Scholar] [CrossRef] [PubMed]
- Giannoulia, S.; Triantaphyllidou, I.E.; Tekerlekopoulou, A.G.; Aggelopoulos, C.A. Mechanisms of Individual and Simultaneous Adsorption of Antibiotics and Dyes onto Halloysite Nanoclay and Regeneration of Saturated Adsorbent via Cold Plasma Bubbling. Nanomaterials 2023, 13, 341. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggelopoulos, C.A. Nanostructured Materials and Advanced Processes for Application in Water Purification. Nanomaterials 2023, 13, 654. https://doi.org/10.3390/nano13040654
Aggelopoulos CA. Nanostructured Materials and Advanced Processes for Application in Water Purification. Nanomaterials. 2023; 13(4):654. https://doi.org/10.3390/nano13040654
Chicago/Turabian StyleAggelopoulos, Christos A. 2023. "Nanostructured Materials and Advanced Processes for Application in Water Purification" Nanomaterials 13, no. 4: 654. https://doi.org/10.3390/nano13040654
APA StyleAggelopoulos, C. A. (2023). Nanostructured Materials and Advanced Processes for Application in Water Purification. Nanomaterials, 13(4), 654. https://doi.org/10.3390/nano13040654