Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity
Abstract
:1. Introduction
1.1. Importance of 2D and Pseudo-2D Systems
1.2. Responsive, Dynamic, and Adaptive Systems
2. From Single Molecules to Complex Functional Systems
2.1. Molecular Systems
2.2. Polymer-Based Systems
2.3. Colloidal Systems
3. Adaptive 2D and Pseudo-2D Systems and Materials
3.1. Systems Responsive to the Voltage
3.2. Systems Responsive to Light
3.3. Systems Responsive to Temperature
3.4. Systems Responsive to Changes in the Chemical Environment
3.5. Other Systems
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev. 2005, 105, 1103–1170. [Google Scholar] [CrossRef] [PubMed]
- Springborg, M.; Zhou, M.; Molayem, M.; Kirtman, B. Surfaces, Shapes, and Bulk Properties of Crystals. J. Phys. Chem. C 2018, 122, 11926–11932. [Google Scholar] [CrossRef]
- Butler, S.Z.; Hollen, S.M.; Cao, L.; Cui, Y.; Gupta, J.A.; Gutiérrez, H.R.; Heinz, T.F.; Hong, S.S.; Huang, J.; Ismach, A.F.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials beyond Graphene. ACS Nano 2013, 7, 2898–2926. [Google Scholar] [CrossRef]
- Paczesny, J.; Wolska-Pietkiewicz, M.; Binkiewicz, I.; Wadowska, M.; Wróbel, Z.; Matuła, K.; Nogala, W.; Lewiński, J.; Hołyst, R. Photoactive Langmuir-Blodgett, Freely Suspended and Free Standing Films of Carboxylate Ligand-Coated ZnO Nanocrystals. ACS Appl. Mater. Interfaces 2016, 8, 13532–13541. [Google Scholar] [CrossRef] [PubMed]
- Khattari, Z.; Heinig, P.; Wurlitzer, S.; Steffen, P.; Lösche, M.; Fischer, T.M. Wetting in Asymmetric Quasi-2D Systems. Langmuir 2002, 18, 2273–2279. [Google Scholar] [CrossRef]
- Monroy, F.; Arriaga, L.R.; Langevin, D. Langmuir Polymer Films: Recent Results and New Perspectives. Phys. Chem. Chem. Phys. 2012, 14, 14450–14459. [Google Scholar] [CrossRef]
- Maestro, A.; Guzmán, E.; Chuliá, R.; Ortega, F.; Rubio, R.G.; Miller, R. Fluid to Soft-Glass Transition in a Quasi-2D System: Thermodynamic and Rheological Evidences for a Langmuir Monolayer. Phys. Chem. Chem. Phys. 2011, 13, 9534–9539. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, W. Inorganic and Organic Thin Films; Song, Y., Ed.; Wiley: Hoboken, NJ, USA, 2021; Chapters 1 and 2; ISBN 9783527344970. [Google Scholar]
- Gizynski, K.; Makuch, K.; Paczesny, J.; Zhang, Y.; Maciołek, A.; Holyst, R. Internal Energy in Compressible Poiseuille Flow. Phys. Rev. E 2021, 104, 055107. [Google Scholar] [CrossRef]
- Tretiakov, K.V.; Szleifer, I.; Grzybowski, B.A. The Rate of Energy Dissipation Determines Probabilities of Non-Equilibrium Assemblies. Angew. Chemie-Int. Ed. 2013, 52, 10304–10308. [Google Scholar] [CrossRef]
- Grzybowski, B.A.; Fitzner, K.; Paczesny, J.; Granick, S. From Dynamic Self-Assembly to Networked Chemical Systems. Chem. Soc. Rev. 2017, 46, 5647–5678. [Google Scholar] [CrossRef]
- Zhang, Y.; Litniewski, M.; Makuch, K.; Zuk, P.J.; MacIołek, A.; Hołyst, R. Continuous Nonequilibrium Transition Driven by Heat Flow. Phys. Rev. E 2021, 104, 024102. [Google Scholar] [CrossRef]
- Żuk, P.J.; Makuch, K.; Hołyst, R.; Maciołek, A. Transient Dynamics in the Outflow of Energy from a System in a Nonequilibrium Stationary State. Phys. Rev. E 2022, 105, 054133. [Google Scholar] [CrossRef]
- Lewandowski, W.; Fruhnert, M.; Mieczkowski, J.; Rockstuhl, C.; Górecka, E. Dynamically Self-Assembled Silver Nanoparticles as a Thermally Tunable Metamaterial. Nat. Commun. 2015, 6, 6590. [Google Scholar] [CrossRef] [Green Version]
- Weißenfels, M.; Gemen, J.; Klajn, R. Dissipative Self-Assembly: Fueling with Chemicals versus Light. Chem 2021, 7, 23–37. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [Green Version]
- Van Rossum, S.A.P.; Tena-Solsona, M.; Van Esch, J.H.; Eelkema, R.; Boekhoven, J. Dissipative Out-of-Equilibrium Assembly of Man-Made Supramolecular Materials. Chem. Soc. Rev. 2017, 46, 5519–5535. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Roy, S.; Jain, V.; Pillai, P.P. Nanoparticle Self-Assembly: From Design Principles to Complex Matter to Functional Materials. ACS Appl. Mater. Interfaces 2022. [Google Scholar] [CrossRef] [PubMed]
- Pace, G.; Ferri, V.; Grave, C.; Elbing, M.; Von Hänisch, C.; Zharnikov, M.; Mayor, M.; Rampi, M.A.; Samorì, P. Cooperative Light-Induced Molecular Movements of Highly Ordered Azobenzene Self-Assembled Monolayers. Proc. Natl. Acad. Sci. USA 2007, 104, 9937–9942. [Google Scholar] [CrossRef] [Green Version]
- Khayyami, A.; Karppinen, M. Reversible Photoswitching Function in Atomic/Molecular-Layer-Deposited ZnO:Azobenzene Superlattice Thin Films. Chem. Mater. 2018, 30, 5904–5911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Chen, L.; Lim, K.H.; Gonuguntla, S.; Lim, K.W.; Pranantyo, D.; Yong, W.P.; Yam, W.J.T.; Low, Z.; Teo, W.J.; et al. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. Adv. Mater. 2019, 31, 1804540. [Google Scholar] [CrossRef] [PubMed]
- Avellini, T.; Li, H.; Coskun, A.; Barin, G.; Trabolsi, A.; Basuray, A.N.; Dey, S.K.; Credi, A.; Silvi, S.; Stoddart, J.F.; et al. Photoinduced Memory Effect in a Redox Controllable Bistable Mechanical Molecular Switch. Angew. Chemie-Int. Ed. 2012, 51, 1611–1615. [Google Scholar] [CrossRef] [PubMed]
- Sorrenti, A.; Leira-Iglesias, J.; Markvoort, A.J.; De Greef, T.F.A.; Hermans, T.M. Non-Equilibrium Supramolecular Polymerization. Chem. Soc. Rev. 2017, 46, 5476–5490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merindol, R.M.; Walther, A. Materials Learning from Life: Concepts for Active, Adaptive and Autonomous Molecular Systems. Chem. Soc. Rev. 2017, 5588, 5588. [Google Scholar] [CrossRef] [PubMed]
- Leibfarth, F.A.; Mattson, K.M.; Fors, B.P.; Collins, H.A.; Hawker, C.J. External Regulation of Controlled Polymerizations. Angew. Chemie-Int. Ed. 2013, 52, 199–210. [Google Scholar] [CrossRef]
- Aubert, S.; Bezagu, M.; Spivey, A.C.; Arseniyadis, S. Spatial and Temporal Control of Chemical Processes. Nat. Rev. Chem. 2019, 3, 706–722. [Google Scholar] [CrossRef]
- Zhang, Q.; Niu, S.; Wang, L.; Lopez, J.; Chen, S.; Cai, Y.; Du, R.; Liu, Y.; Lai, J.C.; Liu, L.; et al. An Elastic Autonomous Self-Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical System. Adv. Mater. 2018, 30, 1801435. [Google Scholar] [CrossRef]
- Juluri, B.K.; Kumar, A.S.; Liu, Y.; Ye, T.; Yang, Y.-W.; Flood, A.H.; Fang, L.; Stoddart, J.F.; Weiss, P.S.; Huang, T.J. A Mechanical Actuator Driven Electrochemically by Artificial Molecular Muscles. ACS Nano 2009, 3, 291–300. [Google Scholar] [CrossRef]
- Jimenez-Molero, M.C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Chemically Induced Contraction and Stretching of a Linear Rotaxane Dimer. Chem.-A Eur. J. 2002, 8, 1456–1466. [Google Scholar] [CrossRef]
- Szaciłowski, K. Digital Information Processing in Molecular Systems. Chem. Rev. 2008, 108, 3481–3548. [Google Scholar] [CrossRef]
- Honda, K. (Ed.) Functionality of Molecular Systems; Springer: Tokyo, Japan, 1999; ISBN 978-4-431-68552-4. [Google Scholar]
- Nitschke, J.R. Systems Chemistry: Molecular Networks Come of Age. Nature 2009, 462, 736–738. [Google Scholar] [CrossRef]
- Steeno, R.; Minoia, A.; Gimenez-Lopez, M.C.; Blunt, M.O.; Champness, N.R.; Lazzaroni, R.; Mali, K.S.; De Feyter, S. Molecular Dopant Determines the Structure of a Physisorbed Self-Assembled Molecular Network. Chem. Commun. 2021, 57, 1454–1457. [Google Scholar] [CrossRef]
- Tahara, K.; Kubo, Y.; Hashimoto, S.; Ishikawa, T.; Kaneko, H.; Brown, A.; Hirsch, B.E.; De Feyter, S.; Tobe, Y. Porous Self-Assembled Molecular Networks as Templates for Chiral-Position-Controlled Chemical Functionalization of Graphitic Surfaces. J. Am. Chem. Soc. 2020, 142, 7699–7708. [Google Scholar] [CrossRef]
- Wang, C.; Furlan de Oliveira, R.; Jiang, K.; Zhao, Y.; Turetta, N.; Ma, C.; Han, B.; Zhang, H.; Tranca, D.; Zhuang, X.; et al. Boosting the Electronic and Catalytic Properties of 2D Semiconductors with Supramolecular 2D Hydrogen-Bonded Superlattices. Nat. Commun. 2022, 13, 510. [Google Scholar] [CrossRef]
- Ward, M.D. Photo-Induced Electron and Energy Transfer in Non-Covalently Bonded Supramolecular Assemblies. Chem. Soc. Rev. 1997, 26, 365–375. [Google Scholar] [CrossRef]
- Priimagi, A.; Cavallo, G.; Forni, A.; Gorynsztejn-Leben, M.; Kaivola, M.; Metrangolo, P.; Milani, R.; Shishido, A.; Pilati, T.; Resnati, G.; et al. Halogen Bonding versus Hydrogen Bonding in Driving Self-Assembly and Performance of Light-Responsive Supramolecular Polymers. Adv. Funct. Mater 2012, 22, 2572–2579. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Chen, L.; Ding, X.; Xu, L.; Zhou, X.; Wei, P.; Liang, J.F.; Luo, S.-Z. High-Resolution Insights into the Stepwise Self-Assembly of Nanofiber from Bioactive Peptides. J. Phys. Chem. B 2017, 121, 7421–7430. [Google Scholar] [CrossRef]
- Xu, H.; Wang, J.; Han, S.; Wang, J.; Yu, D.; Zhang, H.; Xia, D.; Zhao, X.; Waigh, T.A.; Lu, J.R. Hydrophobic-Region-Induced Transitions in Self-Assembled Peptide Nanostructures. Langmuir 2009, 25, 4115–4123. [Google Scholar] [CrossRef]
- Mattia, E.; Otto, S. Supramolecular Systems Chemistry. Nat. Nanotechnol. 2015, 10, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Li, B.L.; Li, R.; Zou, H.L.; Ariga, K.; Li, N.B.; Leong, D.T. Engineered Functionalized 2D Nanoarchitectures for Stimuli-Responsive Drug Delivery. Mater. Horizons 2020, 7, 455–469. [Google Scholar] [CrossRef]
- Song, S.; Wang, L.; Su, J.; Xu, Z.; Hsu, C.H.; Hua, C.; Lyu, P.; Li, J.; Peng, X.; Kojima, T.; et al. Manifold Dynamic Non-Covalent Interactions for Steering Molecular Assembly and Cyclization. Chem. Sci. 2021, 12, 11659–11667. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Hai, Y.; Ye, H.; You, L. Adaptive Covalent Networks Enabled by Dual Reactivity: The Evolution of Reversible Covalent Bonds, Their Molecular Assemblies, and Guest Recognition. J. Org. Chem. 2020, 85, 5351–5361. [Google Scholar] [CrossRef] [PubMed]
- Rowan, S.J.; Cantrill, S.J.; Cousins, G.R.L.; Sanders, J.K.M.; Stoddart, J.F. Dynamic Covalent Chemistry. Angew. Chemie Int. Ed. 2002, 41, 898–952. [Google Scholar] [CrossRef]
- Sauvage, J.-P. From Chemical Topology to Molecular Machines (Nobel Lecture). Angew. Chemie Int. Ed. 2017, 56, 11080–11093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulin, E.; Faour, L.; Carmona-Vargas, C.C.; Giuseppone, N. From Molecular Machines to Stimuli-Responsive Materials. Adv. Mater. 2020, 32, 1906036. [Google Scholar] [CrossRef]
- Li, Y.; Liu, T.; Liu, H.; Tian, M.-Z.; Li, Y. Self-Assembly of Intramolecular Charge-Transfer Compounds into Functional Molecular Systems. Acc. Chem. Res. 2014, 47, 1186–1198. [Google Scholar] [CrossRef]
- Schultz, T.; Quenneville, J.; Levine, B.; Toniolo, A.; Martínez, T.J.; Lochbrunner, S.; Schmitt, M.; Shaffer, J.P.; Zgierski, M.Z.; Stolow, A. Mechanism and Dynamics of Azobenzene Photoisomerization. J. Am. Chem. Soc. 2003, 125, 8098–8099. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Chen, D.; Li, J.; Xu, J.; Lv, J.; Liu, H.; Li, Y. Photoisomerization of Spiropyran for Driving a Molecular Shuttle. Org. Lett. 2007, 9, 3929–3932. [Google Scholar] [CrossRef]
- Anzai, J.-I.; Osa, T. Photosensitive Artificial Membranes Based on Azobenzene and Spirobenzopyran Derivatives. Tetrahedron 1994, 50, 4039–4070. [Google Scholar] [CrossRef]
- Helmy, S.; Oh, S.; Leibfarth, F.A.; Hawker, C.J.; Read de Alaniz, J. Design and Synthesis of Donor–Acceptor Stenhouse Adducts: A Visible Light Photoswitch Derived from Furfural. J. Org. Chem. 2014, 79, 11316–11329. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Mottaleb, M.M.S.; Gomar-Nadal, E.; Surin, M.; Uji-i, H.; Mamdouh, W.; Veciana, J.; Lemaur, V.; Rovira, C.; Cornil, J.; Lazzaroni, R.; et al. Self-Assembly of Tetrathiafulvalene Derivatives at a Liquid/Solid Interface—Compositional and Constitutional Influence on Supramolecular Ordering. J. Mater. Chem. 2005, 15, 4601–4615. [Google Scholar] [CrossRef]
- Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di Natale, C. Porphyrinoids for Chemical Sensor Applications. Chem. Rev. 2017, 117, 2517–2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fameau, A.L.; Arnould, A.; Saint-Jalmes, A. Responsive Self-Assemblies Based on Fatty Acids. Curr. Opin. Colloid Interface Sci. 2014, 19, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yan, X.; Huang, F.; Niu, Z.; Gibson, H.W. Stimuli-Responsive Host-Guest Systems Based on the Recognition of Cryptands by Organic Guests. Acc. Chem. Res. 2014, 47, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Mali, K.S.; Adisoejoso, J.; Ghijsens, E.; De Cat, I.; De Feyter, S. Exploring the Complexity of Supramolecular Interactions for Patterning at the Liquid–Solid Interface. Acc. Chem. Res. 2012, 45, 1309–1320. [Google Scholar] [CrossRef]
- Morant-Giner, M.; Carbonell-Vilar, J.M.; Viciano-Chumillas, M.; Forment-Aliaga, A.; Cano, J.; Coronado, E. Functionalisation of MoS 2 2D Layers with Diarylethene Molecules. J. Mater. Chem. C 2021, 9, 10975–10984. [Google Scholar] [CrossRef]
- Apsite, I.; Salehi, S.; Ionov, L. Materials for Smart Soft Actuator Systems. Chem. Rev. 2022, 122, 1349–1415. [Google Scholar] [CrossRef]
- Gobbi, M.; Bonacchi, S.; Lian, J.X.; Vercouter, A.; Bertolazzi, S.; Zyska, B.; Timpel, M.; Tatti, R.; Olivier, Y.; Hecht, S.; et al. Collective Molecular Switching in Hybrid Superlattices for Light-Modulated Two-Dimensional Electronics. Nat. Commun. 2018, 9, 2661. [Google Scholar] [CrossRef] [Green Version]
- Cui, D.; Macleod, J.M.; Rosei, F. Probing Functional Self-Assembled Molecular Architectures with Solution/Solid Scanning Tunnelling Microscopy. Chem. Commun. 2018, 54, 10527–10539. [Google Scholar] [CrossRef] [Green Version]
- Langton, M.J. Engineering of Stimuli-Responsive Lipid-Bilayer Membranes Using Supramolecular Systems. Nat. Rev. Chem. 2020, 5, 46–61. [Google Scholar] [CrossRef]
- Verstraete, L.; De Feyter, S. 2D Self-Assembled Molecular Networks and on-Surface Reactivity under Nanoscale Lateral Confinement. Chem. Soc. Rev. 2021, 50, 5884–5897. [Google Scholar] [CrossRef]
- Ciesielski, A.; Palma, C.-A.; Bonini, M.; Samorì, P. Towards Supramolecular Engineering of Functional Nanomaterials: Pre-Programming Multi-Component 2D Self-Assembly at Solid-Liquid Interfaces. Adv. Mater. 2010, 22, 3506–3520. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Mamtora, D.; Kamath, A.; Shukla, A. Rogue One: A Plastic Story. Mar. Pollut. Bull. 2022, 177, 113509. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, M.A.; Gibson, M.I.; Klok, H.A. Synthesis of Functional Polymers by Post-Polymerization Modification. Angew. Chemie Int. Ed. 2009, 48, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Pious, C.V.; Thomas, S. Polymeric Materials—Structure, Properties, and Applications. In Printing on Polymers; Elsevier: Amsterdam, The Netherlands, 2016; pp. 21–39. [Google Scholar]
- Wesley, R.D.; Dreiss, C.A.; Cosgrove, T.; Armes, S.P.; Thompson, L.; Baines, F.L.; Billingham, N.C. Structure of a Hydrophilic-Hydrophobic Block Copolymer and Its Interactions with Salt and an Anionic Surfactant. Langmuir 2005, 21, 4856–4861. [Google Scholar] [CrossRef] [PubMed]
- Flemming, P.; Münch, A.S.; Fery, A.; Uhlmann, P. Constrained Thermoresponsive Polymers-New Insights into Fundamentals and Applications. Beilstein J. Org. Chem. 2021, 17, 2123–2163. [Google Scholar] [CrossRef]
- Wei, M.; Gao, Y.; Li, X.; Serpe, M.J. Stimuli-Responsive Polymers and Their Applications. Polym. Chem. 2016, 8, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Kaloni, T.P.; Giesbrecht, P.K.; Schreckenbach, G.; Freund, M.S. Polythiophene: From Fundamental Perspectives to Applications. Chem. Mater. 2017, 29, 10248–10283. [Google Scholar] [CrossRef]
- Lamontagne, H.R.; Lessard, B.H. Nitroxide-Mediated Polymerization: A Versatile Tool for the Engineering of Next Generation Materials. ACS Appl. Polym. Mater. 2020, 2, 5327–5344. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef]
- Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Kuwabara, J.; Tsuchida, W.; Guo, S.; Hu, Z.; Yasuda, T.; Kanbara, T. Synthesis of Conjugated Polymers via Direct C–H/C–Cl Coupling Reactions Using a Pd/Cu Binary Catalytic System. Polym. Chem. 2019, 10, 2298–2304. [Google Scholar] [CrossRef]
- Suresh, D.; Goh, P.S.; Ismail, A.F.; Hilal, N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. Membranes 2021, 11, 832. [Google Scholar] [CrossRef]
- Schattling, P.; Jochum, F.D.; Theato, P. Multi-Stimuli Responsive Polymers-the All-in-One Talents. Polym. Chem. 2014, 5, 25–36. [Google Scholar] [CrossRef]
- Murad Bhayo, A.; Yang, Y.; He, X. Polymer Brushes: Synthesis, Characterization, Properties and Applications. Prog. Mater. Sci. 2022, 130, 101000. [Google Scholar] [CrossRef]
- Zoppe, J.O.; Ataman, N.C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.-A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017, 117, 1105–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Wang, Z.; Li, J.; Li, L.; Hu, W. Surface-Grafting Polymers: From Chemistry to Organic Electronics. Mater. Chem. Front. 2020, 4, 692–714. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, J.; Asahara, H.; Asoh, T.-A.; Uyama, H. Polymer Surface Oxidation by Light-Activated Chlorine Dioxide Radical for Metal–Plastics Adhesion. ACS Appl. Polym. Mater. 2019, 1, 3452–3458. [Google Scholar] [CrossRef]
- Blosch, S.E.; Scannelli, S.J.; Alaboalirat, M.; Matson, J.B. Complex Polymer Architectures Using Ring-Opening Metathesis Polymerization: Synthesis, Applications, and Practical Considerations. Macromolecules 2022, 55, 4200–4227. [Google Scholar] [CrossRef]
- Kiriy, A.; Senkovskyy, V.; Sommer, M. Kumada Catalyst-Transfer Polycondensation: Mechanism, Opportunities, and Challenges. Macromol. Rapid Commun. 2011, 32, 1503–1517. [Google Scholar] [CrossRef]
- Minko, S. Grafting on Solid Surfaces: “Grafting to” and “Grafting from” Methods. In Polymer Surfaces and Interfaces; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2008; pp. 215–234. [Google Scholar]
- Dienstmaier, J.F.; Medina, D.D.; Dogru, M.; Knochel, P.; Bein, T.; Heckl, W.M.; Lackinger, M. Isoreticular Two-Dimensional Covalent Organic Frameworks Synthesized by On-Surface Condensation of Diboronic Acids. ACS Nano 2012, 6, 7234–7242. [Google Scholar] [CrossRef]
- Patil, R.R.; Turgman-Cohen, S.; Šrogl, J.; Kiserow, D.; Genzer, J. On-Demand Degrafting and the Study of Molecular Weight and Grafting Density of Poly(Methyl Methacrylate) Brushes on Flat Silica Substrates. Langmuir 2015, 31, 2372–2381. [Google Scholar] [CrossRef]
- Colson, J.W.; Dichtel, W.R. Rationally Synthesized Two-Dimensional Polymers. Nat. Chem. 2013, 5, 453–465. [Google Scholar] [CrossRef]
- Zhuang, X.; Mai, Y.; Wu, D.; Zhang, F.; Feng, X. Two-Dimensional Soft Nanomaterials: A Fascinating World of Materials. Adv. Mater. 2015, 27, 403–427. [Google Scholar] [CrossRef]
- Boydston, A.J.; Cao, B.; Nelson, A.; Ono, R.J.; Saha, A.; Schwartz, J.J.; Thrasher, C.J. Additive Manufacturing with Stimuli-Responsive Materials. J. Mater. Chem. A 2018, 6, 20621–20645. [Google Scholar] [CrossRef]
- Shafranek, R.T.; Millik, S.C.; Smith, P.T.; Lee, C.U.; Boydston, A.J.; Nelson, A. Stimuli-Responsive Materials in Additive Manufacturing. Prog. Polym. Sci. 2019, 93, 36–67. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Daniel, D.; Grinthal, A.; Lin, K.; Aizenberg, J. Dynamic Polymer Systems with Self-Regulated Secretion for the Control of Surface Properties and Material Healing. Nat. Mater. 2015, 14, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.; Deratani, A.; Quemener, D. Self-Healing Dynamic Polymeric Systems. Isr. J. Chem. 2013, 53, 53–60. [Google Scholar] [CrossRef]
- Leith, G.A.; Martin, C.R.; Mathur, A.; Kittikhunnatham, P.; Park, K.C.; Shustova, N.B. Dynamically Controlled Electronic Behavior of Stimuli-Responsive Materials: Exploring Dimensionality and Connectivity. Adv. Energy Mater. 2022, 12, 2100441. [Google Scholar] [CrossRef]
- Tan, L.; Davis, A.C.; Cappelleri, D.J. Smart Polymers for Microscale Machines. Adv. Funct. Mater. 2021, 31, 2007125. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, Y.; Ulrich, S.; Barboiu, M.; Ramström, O. Dynamic Covalent Polymers for Biomedical Applications. Mater. Chem. Front. 2020, 4, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.Q.; Liu, J.X.; Zhang, S.S.; Chen, D.J.; Ye, Q.X.; Yuan, C.; Hao, L.S. Photo-Responsive Wormlike Micellar Systems Based on Mixed Cationic/Anionic Surfactants and Mixed Photo-Sensitive Additives. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124988. [Google Scholar] [CrossRef]
- Ren, X.; Liao, G.; Li, Z.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X.; et al. Two-Dimensional MOF and COF Nanosheets for next-Generation Optoelectronic Applications. Coord. Chem. Rev. 2021, 435, 213781. [Google Scholar] [CrossRef]
- Tsuei, M.; Tran, H.; Roh, S.; Ober, C.K.; Abbott, N.L. Using Liquid Crystals to Probe the Organization of Helical Polypeptide Brushes Induced by Solvent Pretreatment. Macromolecules 2021, 54, 7786–7795. [Google Scholar] [CrossRef]
- Uhlmann, P.; Ionov, L.; Houbenov, N.; Nitschke, M.; Grundke, K.; Motornov, M.; Minko, S.; Stamm, M. Surface Functionalization by Smart Coatings: Stimuli-Responsive Binary Polymer Brushes. Prog. Org. Coat. 2006, 55, 168–174. [Google Scholar] [CrossRef]
- Koberstein, J.T. Molecular Design of Functional Polymer Surfaces. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 2942–2956. [Google Scholar] [CrossRef]
- Guvendiren, M.; Yang, S.; Burdick, J.A. Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density. Adv. Funct. Mater. 2009, 19, 3038–3045. [Google Scholar] [CrossRef]
- Chung, J.Y.; Nolte, A.J.; Stafford, C.M. Diffusion-Controlled, Self-Organized Growth of Symmetric Wrinkling Patterns. Adv. Mater. 2009, 21, 1358–1362. [Google Scholar] [CrossRef]
- Lei, X.; Ye, D.; Chen, J.; Tang, S.; Sun, P.; Chen, L.; Lu, A.; Du, Y.; Zhang, L. Customizable Multidimensional Self-Wrinkling Structure Constructed via Modulus Gradient in Chitosan Hydrogels. Chem. Mater. 2019, 31, 10032–10039. [Google Scholar] [CrossRef]
- Bae, W.G.; Kim, H.N.; Kim, D.; Park, S.H.; Jeong, H.E.; Suh, K.Y. 25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: The Role of Hierarchy. Adv. Mater. 2014, 26, 675–700. [Google Scholar] [CrossRef]
- Hou, H.; Yin, J.; Jiang, X. Smart Patterned Surface with Dynamic Wrinkles. Acc. Chem. Res. 2019, 52, 1025–1035. [Google Scholar] [CrossRef]
- Hou, H.; Li, F.; Su, Z.; Yin, J.; Jiang, X. Light-Reversible Hierarchical Patterns by Dynamic Photo-Dimerization Induced Wrinkles. J. Mater. Chem. C 2017, 5, 8765–8773. [Google Scholar] [CrossRef]
- Hou, H.; Yin, J.; Jiang, X. Reversible Diels–Alder Reaction To Control Wrinkle Patterns: From Dynamic Chemistry to Dynamic Patterns. Adv. Mater. 2016, 28, 9126–9132. [Google Scholar] [CrossRef]
- Zeng, S.; Li, R.; Freire, S.G.; Garbellotto, V.M.M.; Huang, E.Y.; Smith, A.T.; Hu, C.; Tait, W.R.T.; Bian, Z.; Zheng, G.; et al. Moisture-Responsive Wrinkling Surfaces with Tunable Dynamics. Adv. Mater. 2017, 29, 1700828. [Google Scholar] [CrossRef] [PubMed]
- Gnesotto, F.S.; Mura, F.; Gladrow, J.; Broedersz, C.P. Broken Detailed Balance and Non-Equilibrium Dynamics in Living Systems: A Review. Rep. Prog. Phys. 2018, 81, 066601. [Google Scholar] [CrossRef] [PubMed]
- Hess, H.; Ross, J.L. Non-Equilibrium Assembly of Microtubules: From Molecules to Autonomous Chemical Robots. Chem. Soc. Rev. 2017, 46, 5570–5587. [Google Scholar] [CrossRef] [PubMed]
- Bera, D.; Qian, L.; Tseng, T.K.; Holloway, P.H. Quantum Dots and Their Multimodal Applications: A Review. Materials 2010, 3, 2260–2345. [Google Scholar] [CrossRef] [Green Version]
- Wood, V.; Bulović, V. Colloidal Quantum Dot Light-Emitting Devices. Nano Rev. 2010, 1, 5202. [Google Scholar] [CrossRef] [Green Version]
- Chan, E.M.; Levy, E.S.; Cohen, B.E. Rationally Designed Energy Transfer in Upconverting Nanoparticles. Adv. Mater. 2015, 27, 5753–5761. [Google Scholar] [CrossRef]
- Wilhelm, S. Perspectives for Upconverting Nanoparticles. ACS Nano 2017, 11, 10644–10653. [Google Scholar] [CrossRef]
- Frey, N.A.; Peng, S.; Cheng, K.; Sun, S. Magnetic Nanoparticles: Synthesis, Functionalization, and Applications in Bioimaging and Magnetic Energy Storage. Chem. Soc. Rev. 2009, 38, 2532–2542. [Google Scholar] [CrossRef] [Green Version]
- Willard, M.A.; Kurihara, L.K.; Carpenter, E.E.; Calvin, S.; Harris, V.G. Chemically Prepared Magnetic Nanoparticles. Int. Mater. Rev. 2004, 49, 125–170. [Google Scholar] [CrossRef]
- Zhong, C.J.; Maye, M.M. Core-Shell Assembled Nanoparticles as Catalysts. Adv. Mater. 2001, 13, 1507–1511. [Google Scholar] [CrossRef]
- Mohanty, A.; Garg, N.; Jin, R. A Universal Approach to the Synthesis of Noble Metal Nanodendrites and Their Catalytic Properties. Angew. Chem. 2010, 122, 5082–5086. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface Plasmon Resonance in Gold Nanoparticles: A Review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef]
- Ammari, H.; Deng, Y.; Millien, P. Surface Plasmon Resonance of Nanoparticles and Applications in Imaging. Arch. Ration. Mech. Anal. 2016, 220, 109–153. [Google Scholar] [CrossRef]
- Rycenga, M.; Langille, M.R.; Personick, M.L.; Ozel, T.; Mirkin, C.A. Chemically Isolating Hot Spots on Concave Nanocubes. Nano Lett. 2012, 12, 6218–6222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh Chaudhuri, R.; Paria, S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef] [PubMed]
- Virkki, K.; Demir, S.; Lemmetyinen, H.; Tkachenko, N.V. Photoinduced Electron Transfer in CdSe/ZnS Quantum Dot-Fullerene Hybrids. J. Phys. Chem. C 2015, 119, 17561–17572. [Google Scholar] [CrossRef]
- Bang, J.H.; Kamat, P.V. CdSe Quantum Dot-Fullerene Hybrid Nanocomposite for Solar Energy Conversion: Electron Transfer and Photoelectrochemistry. ACS Nano 2011, 5, 9421–9427. [Google Scholar] [CrossRef]
- Zhang, X.; Fu, Q.; Duan, H.; Song, J.; Yang, H. Janus Nanoparticles: From Fabrication to (Bio)Applications. ACS Nano 2021, 15, 6147–6191. [Google Scholar] [CrossRef]
- Zhang, J.; Grzybowski, B.A.; Granick, S. Janus Particle Synthesis, Assembly, and Application. Langmuir 2017, 33, 6964–6977. [Google Scholar] [CrossRef]
- Klajn, R.; Wesson, P.J.; Bishop, K.J.M.; Grzybowski, B.A. Writing Self-Erasing Images Using Metastable Nanoparticle “Inks”. Angew. Chemie-Int. Ed. 2009, 48, 7035–7039. [Google Scholar] [CrossRef]
- Klajn, R.; Bishop, K.J.M.; Grzybowski, B.A. Light-Controlled Self-Assembly of Reversible and Irreversible Nanoparticle Suprastructures. Proc. Natl. Acad. Sci. USA 2007, 104, 10305–10309. [Google Scholar] [CrossRef] [Green Version]
- Chu, Z.; Han, Y.; Bian, T.; De, S.; Král, P.; Klajn, R. Supramolecular Control of Azobenzene Switching on Nanoparticles. J. Am. Chem. Soc. 2019, 141, 1949–1960. [Google Scholar] [CrossRef] [PubMed]
- Klajn, R. Immobilized Azobenzenes for the Construction of Photoresponsive Materials. Pure Appl. Chem. 2010, 82, 2247–2276. [Google Scholar] [CrossRef]
- Wang, M.; Wang, T.; Wang, D.; Jiang, W.; Fu, J. Acid and Light Stimuli-Responsive Mesoporous Silica Nanoparticles for Controlled Release. J. Mater. Sci. 2019, 54, 6199–6211. [Google Scholar] [CrossRef]
- Szewczyk, M.; Sobczak, G.; Sashuk, V. Photoswitchable Catalysis by a Small Swinging Molecule Confined on the Surface of a Colloidal Particle. ACS Catal. 2018, 8, 2810–2814. [Google Scholar] [CrossRef]
- Cardoso Dos Santos, M.; Algar, W.R.; Medintz, I.L.; Hildebrandt, N. Quantum Dots for Förster Resonance Energy Transfer (FRET). TrAC-Trends Anal. Chem. 2020, 125, 115819. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, X.; Yang, X.; Sun, J.; Geng, J. Recent Advances in Polymer-Based Photothermal Materials for Biological Applications. ACS Appl. Polym. Mater. 2020, 2, 4273–4288. [Google Scholar] [CrossRef]
- Pallavicini, P.; Chirico, G.; Taglietti, A. Harvesting Light To Produce Heat: Photothermal Nanoparticles for Technological Applications and Biomedical Devices. Chem.-A Eur. J. 2021, 27, 15361–15374. [Google Scholar] [CrossRef]
- Van Ravensteijn, B.G.P.; Voets, I.K.; Kegel, W.K.; Eelkema, R. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. Langmuir 2020, 36, 10639–10656. [Google Scholar] [CrossRef] [PubMed]
- Rai, V.; Singh, R.S.; Blackwood, D.J.; Zhili, D. A Review on Recent Advances in Electrochromic Devices: A Material Approach. Adv. Eng. Mater. 2020, 22, 2000082. [Google Scholar] [CrossRef]
- Shin, H.; Seo, S.; Park, C.; Na, J.; Han, M.; Kim, E. Energy Saving Electrochromic Windows from Bistable Low-HOMO Level Conjugated Polymers. Energy Environ. Sci. 2016, 9, 117–122. [Google Scholar] [CrossRef]
- Brochu, P.; Pei, Q. Dielectric Elastomers for Actuators and Artificial Muscles. In Electroactivity in Polymeric Materials; Springer US: Boston, MA, USA, 2012; Volume 9781461408, pp. 1–56. ISBN 9781461408789. [Google Scholar]
- Wang, J. Portable Electrochemical Systems. TrAC Trends Anal. Chem. 2002, 21, 226–232. [Google Scholar] [CrossRef]
- Lagadec, M.F.; Grimaud, A. Water Electrolysers with Closed and Open Electrochemical Systems. Nat. Mater. 2020, 19, 1140–1150. [Google Scholar] [CrossRef]
- Hu, Y.; Miao, K.; Zha, B.; Miao, X.; Xu, L.; Deng, W. Side Chain Position, Length and Odd/Even Effects on the 2D Self-Assembly of Mono-Substituted Anthraquinone Derivatives at the Liquid/Solid Interface. RSC Adv. 2015, 5, 93337–93346. [Google Scholar] [CrossRef]
- Hu, Y.; Miao, K.; Xu, L.; Zha, B.; Miao, X.; Deng, W. Effects of Alkyl Chain Number and Position on 2D Self-Assemblies. RSC Adv. 2017, 7, 32391–32398. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Wang, Y.; Dong, M.; Wu, J.; Miao, X.; Hu, Y.; Deng, W. Systematical Investigation of Chain Length Effect on the Melting Point of a Series of Bifunctional Anthraquinone Derivatives via X-Ray Diffraction and Scanning Tunneling Microscopy. J. Phys. Chem. C 2020, 124, 1646–1654. [Google Scholar] [CrossRef]
- Mukherjee, A.; Sakurai, T.; Seki, S.; Ghosh, S. Ultrathin Two Dimensional (2D) Supramolecular Assembly and Anisotropic Conductivity of an Amphiphilic Naphthalene-Diimide. Langmuir 2020, 36, 13096–13103. [Google Scholar] [CrossRef]
- Puebla, J.; Kim, J.; Kondou, K.; Otani, Y. Spintronic Devices for Energy-Efficient Data Storage and Energy Harvesting. Commun. Mater. 2020, 1, 24. [Google Scholar] [CrossRef]
- Barla, P.; Joshi, V.K.; Bhat, S. Spintronic Devices: A Promising Alternative to CMOS Devices. J. Comput. Electron. 2021, 20, 805–837. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, W.; Zhao, J.; Wang, Y.; Zheng, J.; Liu, J.; Hong, W.; Tian, Z.Q. The Fabrication, Characterization and Functionalization in Molecular Electronics. Int. J. Extrem. Manuf. 2022, 4, 022003. [Google Scholar] [CrossRef]
- Svatek, S.A.; Kerfoot, J.; Summerfield, A.; Nizovtsev, A.S.; Korolkov, V.V.; Taniguchi, T.; Watanabe, K.; Antolín, E.; Besley, E.; Beton, P.H. Triplet Excitation and Electroluminescence from a Supramolecular Monolayer Embedded in a Boron Nitride Tunnel Barrier. Nano Lett. 2020, 20, 278–283. [Google Scholar] [CrossRef]
- Ivanov, K.L.; Wagenpfahl, A.; Deibel, C.; Matysik, J. Spin-Chemistry Concepts for Spintronics Scientists. Beilstein J. Nanotechnol. 2017, 8, 1427–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami-Tapeh-Esmail, E.; Golshan, M.; Salami-Kalajahi, M.; Roghani-Mamaqani, H. Perylene-3,4,9,10-Tetracarboxylic Diimide and Its Derivatives: Synthesis, Properties and Bioapplications. Dye. Pigment. 2020, 180, 108488. [Google Scholar] [CrossRef]
- Cometto, F.P.; Kern, K.; Lingenfelder, M. Local Conformational Switching of Supramolecular Networks at the Solid/Liquid Interface. ACS Nano 2015, 9, 5544–5550. [Google Scholar] [CrossRef] [Green Version]
- Velpula, G.; Teyssandier, J.; De Feyter, S.; Mali, K.S. Nanoscale Control over the Mixing Behavior of Surface-Confined Bicomponent Supramolecular Networks Using an Oriented External Electric Field. ACS Nano 2017, 1, 10903–10913. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-Y.; Yang, X.-Q.; Chen, T.; Wang, D.; Wang, S.-F.; Wan, L.-J. Tri-Stable Structural Switching in 2D Molecular Assembly at the Liquid/Solid Interface Triggered by External Electric Field. ACS Nano 2019, 13, 6751–6759. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Prunet, G.; Pawula, F.; Fleury, G.; Cloutet, E.; Robinson, A.J.; Hadziioannou, G.; Pakdel, A. A Review on Conductive Polymers and Their Hybrids for Flexible and Wearable Thermoelectric Applications. Mater. Today Phys. 2021, 18, 100402. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. Conductive Nanomaterials for 2D and 3D Printed Flexible Electronics. Chem. Soc. Rev. 2019, 48, 1712–1740. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Guo, X.; Yu, G. Conductive Polymers for Stretchable Supercapacitors. Nano Res. 2019, 12, 1978–1987. [Google Scholar] [CrossRef]
- Shi, Y.; Peng, L.; Ding, Y.; Zhao, Y.; Yu, G. Nanostructured Conductive Polymers for Advanced Energy Storage. Chem. Soc. Rev. 2015, 44, 6684–6696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research Progress on Conducting Polymer Based Supercapacitor Electrode Materials. Nano Energy 2017, 36, 268–285. [Google Scholar] [CrossRef]
- Strover, L.; Roux, C.; Malmström, J.; Pei, Y.; Williams, D.E.; Travas-Sejdic, J. Switchable Surfaces of Electroactive Polymer Brushes Grafted from Polythiophene ATRP-Macroinitiator. Synth. Met. 2012, 162, 381–390. [Google Scholar] [CrossRef]
- Malmström, J.; Nieuwoudt, M.K.; Strover, L.T.; Hackett, A.; Laita, O.; Brimble, M.A.; Williams, D.E.; Travas-Sejdic, J. Grafting from Poly(3,4-Ethylenedioxythiophene): A Simple Route to Versatile Electrically Addressable Surfaces. Macromolecules 2013, 46, 4955–4965. [Google Scholar] [CrossRef]
- Hackett, A.J.; Malmström, J.; Molino, P.J.; Gautrot, J.E.; Zhang, H.; Higgins, M.J.; Wallace, G.G.; Williams, D.E.; Travas-Sejdic, J. Conductive Surfaces with Dynamic Switching in Response to Temperature and Salt. J. Mater. Chem. B 2015, 3, 9285–9294. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Travas-Sedjic, J.; Williams, D.E. Electrochemical Switching of Conformation of Random Polyampholyte Brushes Grafted onto Polypyrrole. Langmuir 2012, 28, 13241–13248. [Google Scholar] [CrossRef]
- Tsai, Y.-T.; Choi, C.-H.; Gao, N.; Yang, E.-H. Tunable Wetting Mechanism of Polypyrrole Surfaces and Low-Voltage Droplet Manipulation via Redox. Langmuir 2011, 27, 4249–4256. [Google Scholar] [CrossRef]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent Organic Frameworks: Design, Synthesis, and Functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Y.; Eginligil, M.; Wang, L.; Liu, J.; Huang, W. Two-Dimensional Conjugated Microporous Polymer Films: Fabrication Strategies and Potential Applications. Polym. Chem. 2021, 12, 807–821. [Google Scholar] [CrossRef]
- Lindemann, P.; Tsotsalas, M.; Shishatskiy, S.; Abetz, V.; Krolla-Sidenstein, P.; Azucena, C.; Monnereau, L.; Beyer, A.; Gölzhäuser, A.; Mugnaini, V.; et al. Preparation of Freestanding Conjugated Microporous Polymer Nanomembranes for Gas Separation. Chem. Mater. 2014, 26, 7189–7193. [Google Scholar] [CrossRef]
- Shao, P.; Yao, R.; Li, G.; Zhang, M.; Yuan, S.; Wang, X.; Zhu, Y.; Zhang, X.; Zhang, L.; Feng, X.; et al. Molecular-Sieving Membrane by Partitioning the Channels in Ultrafiltration Membrane by In Situ Polymerization. Angew. Chem. Int. Ed. 2020, 59, 4401–4405. [Google Scholar] [CrossRef]
- Wang, D.-G.; Qiu, T.; Guo, W.; Liang, Z.; Tabassum, H.; Xia, D.; Zou, R. Covalent Organic Framework-Based Materials for Energy Applications. Energy Environ. Sci. 2021, 14, 688–728. [Google Scholar] [CrossRef]
- Wu, S.; Li, Z.; Li, M.-Q.; Diao, Y.; Lin, F.; Liu, T.; Zhang, J.; Tieu, P.; Gao, W.; Qi, F.; et al. 2D Metal–Organic Framework for Stable Perovskite Solar Cells with Minimized Lead Leakage. Nat. Nanotechnol. 2020, 15, 934–940. [Google Scholar] [CrossRef]
- Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T. A Photoconductive Thienothiophene-Based Covalent Organic Framework Showing Charge Transfer Towards Included Fullerene. Angew. Chem. Int. Ed. 2013, 52, 2920–2924. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Dong, J.; Bai, Y.; Gao, W.; Shang, S.; Wang, X.; Kuang, J.; Du, C.; Zou, Y.; et al. Two-Dimensional Covalent Organic Framework Films Prepared on Various Substrates through Vapor Induced Conversion. Nat. Commun. 2022, 13, 1411. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yang, L.; Li, M.; Kuang, L.; Song, Y.; Wang, L. Covalent Organic Frameworks for Fluorescent Sensing: Recent Developments and Future Challenges. Coord. Chem. Rev. 2021, 440, 213957. [Google Scholar] [CrossRef]
- Bildirir, H.; Osken, I.; Ozturk, T.; Thomas, A. Reversible Doping of a Dithienothiophene-Based Conjugated Microporous Polymer. Chem.-A Eur. J. 2015, 21, 9306–9311. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Li, X.; Feng, T.; Cai, S.; Chen, T.; Zhu, C.; Zhang, J.; Wang, D.; Liu, Y. Resistive Switching Memory Performance of Two-Dimensional Polyimide Covalent Organic Framework Films. ACS Appl. Mater. Interfaces 2020, 12, 51837–51845. [Google Scholar] [CrossRef]
- Polev, K.; Visyn, V.; Adamkiewicz, W.; Sobolev, Y.; Grzybowski, B.A. Stimuli-Responsive Granular Crystals Assembled by Dipolar and Multipolar Interactions. Soft Matter. 2021, 17, 8595–8604. [Google Scholar] [CrossRef] [PubMed]
- Montelongo, Y.; Sikdar, D.; Ma, Y.; McIntosh, A.J.S.; Velleman, L.; Kucernak, A.R.; Edel, J.B.; Kornyshev, A.A. Electrotunable Nanoplasmonic Liquid Mirror. Nat. Mater. 2017, 16, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Yin, Y.; Song, C.; Liu, Z.; Wang, X.; Wu, Y.; Zhang, J.; Zhao, J.; Tang, M.; Liu, J. Two-Dimensional Triphenylamine-Based Polymers for Ultrastable Volatile Memory with Ultrahigh on/off Ratio. Polymer 2021, 230, 124076. [Google Scholar] [CrossRef]
- Ma, F.; Wang, S.; Smith, L.; Wu, N. Two-Dimensional Assembly of Symmetric Colloidal Dimers under Electric Fields. Adv. Funct. Mater. 2012, 22, 4334–4343. [Google Scholar] [CrossRef]
- Edwards, T.D.; Bevan, M.A. Controlling Colloidal Particles with Electric Fields. Langmuir 2014, 30, 10793–10803. [Google Scholar] [CrossRef]
- Grzelczak, M.; Liz-Marzán, L.M.; Klajn, R. Stimuli-Responsive Self-Assembly of Nanoparticles. Chem. Soc. Rev. 2019, 48, 1342–1361. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Qu, H.; Dong, T.; Rong, M.; Yang, L.; Liu, H. A Reversible Light-Responsive Assembly System Based on Host–Guest Interaction for Controlled Release. New J. Chem. 2018, 42, 6532–6537. [Google Scholar] [CrossRef]
- Bian, Q.; Chen, S.; Xing, Y.; Yuan, D.; Lv, L.; Wang, G. Host-Guest Self-Assembly toward Reversible Visible-Light-Responsive Switching for Bacterial Adhesion. Acta Biomater. 2018, 76, 39–45. [Google Scholar] [CrossRef]
- Vialetto, J.; Rudiuk, S.; Morel, M.; Baigl, D. Photothermally Reconfigurable Colloidal Crystals at a Fluid Interface, a Generic Approach for Optically Tunable Lattice Properties. J. Am. Chem. Soc. 2021, 143, 11535–11543. [Google Scholar] [CrossRef]
- Borges, J.; Rodrigues, L.C.; Reis, R.L.; Mano, J.F. Layer-by-Layer Assembly of Light-Responsive Polymeric Multilayer Systems. Adv. Funct. Mater. 2014, 24, 5624–5648. [Google Scholar] [CrossRef]
- Mandal, A.K.; Gangopadhyay, M.; Das, A. Photo-Responsive Pseudorotaxanes and Assemblies. Chem. Soc. Rev. 2015, 44, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shah, P.K.; Culver, H.R.; David, S.N.; Stansbury, J.W.; Yin, X.; Bowman, C.N. Photo-Responsive Liposomes Composed of Spiropyran-Containing Triazole-Phosphatidylcholine: Investigation of Merocyanine-Stacking Effects on Liposome–Fiber Assembly-Transition. Soft Matter 2019, 15, 3740–3750. [Google Scholar] [CrossRef]
- Niehues, M.; Engel, S.; Ravoo, B.J. Photo-Responsive Self-Assembly of Plasmonic Magnetic Janus Nanoparticles. Langmuir 2021, 37, 11123–11130. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, O.; Gohy, J.F. Photo-Responsive Polymers: Synthesis and Applications. Polym. Chem. 2016, 8, 52–73. [Google Scholar] [CrossRef]
- Chen, S.; Costil, R.; Leung, F.K.-C.; Feringa, B.L. Self-Assembly of Photoresponsive Molecular Amphiphiles in Aqueous Media. Angew. Chem. 2021, 133, 11708–11731. [Google Scholar] [CrossRef]
- Blasco, E.; Schmidt, B.V.K.J.; Barner-Kowollik, C.; Piñol, M.; Oriol, L. A Novel Photoresponsive Azobenzene-Containing Miktoarm Star Polymer: Self-Assembly and Photoresponse Properties. Macromolecules 2014, 47, 3693–3700. [Google Scholar] [CrossRef]
- Zhao, R.; Hu, J.; Niu, C.; Li, Y.; Hu, M.; Liu, R.; Li, S. A Smart Nanoreactor with Photo-Responsive Molecular Switches for Controlling Catalytic Reactions. J. Mater. Chem. C 2016, 4, 4748–4755. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, B.; Han, D.; Chen, R.; Qiu, F.; Wu, J.; Jiang, H. Photo-Responsive Reversible Assembly of Gold Nanoparticles Coated with Pillar[5]Arenes. Chem. Commun. 2015, 51, 3124–3126. [Google Scholar] [CrossRef]
- Bing Zheng, Y.; Krishna Pathem, B.; Nathan Hohman, J.; Thomas, J.C.; Kim, M.; Weiss, P.S.; Zheng, Y.B.; Pathem, B.K.; Hohman, J.N.; Thomas, J.C.; et al. Photoresponsive Molecules in Well-Defined Nanoscale Environments. Adv. Mater. 2013, 25, 302–312. [Google Scholar] [CrossRef]
- Chen, J.; Leung, F.K.C.; Stuart, M.C.A.; Kajitani, T.; Fukushima, T.; Van Der Giessen, E.; Feringa, B.L. Artificial Muscle-like Function from Hierarchical Supramolecular Assembly of Photoresponsive Molecular Motors. Nat. Chem. 2017, 10, 132–138. [Google Scholar] [CrossRef]
- Hou, J.; Mondal, A.; Long, G.; de Haan, L.; Zhao, W.; Zhou, G.; Liu, D.; Broer, D.J.; Chen, J.; Feringa, B.L. Photo-Responsive Helical Motion by Light-Driven Molecular Motors in a Liquid-Crystal Network. Angew. Chem. Int. Ed. 2021, 60, 8251–8257. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.-T.; Hu, Y.-X.; Hu, Z.; Zhang, Q.; Chen, S.-Y.; Chen, M.; Yu, J.-J.; Yin, G.-Q.; Sun, H.; Xu, L.; et al. Visible-Light-Driven Rotation of Molecular Motors in Discrete Supramolecular Metallacycles. J. Am. Chem. Soc. 2021, 143, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Kaner, P.; Hu, X.; Thomas, S.W.; Asatekin, A. Self-Cleaning Membranes from Comb-Shaped Copolymers with Photoresponsive Side Groups. ACS Appl. Mater. Interfaces 2017, 9, 13619–13631. [Google Scholar] [CrossRef] [PubMed]
- Marín San Román, P.P.; Sijbesma, R.P. Photo-Responsive Water Filtration Membranes Based on Polymerizable Columnar Liquid Crystals with Azo Moieties. Adv. Mater. Interfaces 2022, 9, 2200341. [Google Scholar] [CrossRef]
- Dorel, R.; Feringa, B.L. Stereodivergent Anion Binding Catalysis with Molecular Motors. Angew. Chem. Int. Ed. 2020, 59, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Lan, R.; Shen, C.; Zhang, Z.; Wang, Z.; Bao, J.; Wang, Z.; Zhang, L.; Hu, W.; Yu, Z.; et al. Remotely Controlling Drug Release by Light-Responsive Cholesteric Liquid Crystal Microcapsules Triggered by Molecular Motors. ACS Appl. Mater. Interfaces 2021, 13, 59221–59230. [Google Scholar] [CrossRef]
- Pan, M.; Liao, W.-M.; Yin, S.-Y.; Sun, S.-S.; Su, C.-Y. Single-Phase White-Light-Emitting and Photoluminescent Color-Tuning Coordination Assemblies. Chem. Rev. 2018, 118, 8889–8935. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, Y.-M.; Xu, X.; Zhang, L.; Yu, Q.; Zhao, Q.; Zhao, C.; Liu, Y.; Liu, G.; Zhang, Y.; et al. Controllable Photoluminescence Behaviors of Amphiphilic Porphyrin Supramolecular Assembly Mediated by Cyclodextrins. Adv. Opt. Mater. 2017, 5, 1700770. [Google Scholar] [CrossRef]
- Beljonne, D.; Heller, C.M.; Campbell, I.H.; Laurich, B.K.; Smith, D.L.; Bradley, D.D.C.; Müllen, K.; BrØdas, J.L.; Phys, C.; Christian Weber, B.; et al. A Light-Driven Switch Based on Photochromic Dihydroindolizines. J. Am. Chem. Soc 1998, 10, 161. [Google Scholar] [CrossRef]
- Kashima, I.; Okubo, M.; Qno, Y.; Itoi, M.; Kida, N.; Hikita, M.; Enomoto, M.; Kojima, N. Ferromagnetism and Its Photo-Induced Effect in 2D Iron Mixed-Valence Complex Coupled with Photochromic Spiropyran. Synth. Met. 2005, 155, 703–706. [Google Scholar] [CrossRef]
- Tian, T.; Qian, T.; Sui, X.; Yu, Q.; Liu, Y.; Liu, X.; Chen, Y.; Wang, Y.-X.; Hu, W. Aggregation-Dependent Photoreactive Hemicyanine Assembly as a Photobactericide. ACS Appl. Mater. Interfaces 2020, 12, 22552–22559. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B.; et al. Covalently Bonded Single-Molecule Junctions with Stable and Reversible Photoswitched Conductivity. Science 2016, 352, 1443–1445. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Ma, W.; Xie, M.; Sun, R. Photoswitchable Ion-Conducting Supramolecular Hydrogel Showing Adverse Photoconductivity Triggered by Anion Exchange. ACS Appl. Polym. Mater. 2021, 3, 4563–4571. [Google Scholar] [CrossRef]
- Zhang, Y.; Ng, M.; Hong, E.Y.H.; Chan, A.K.W.; Wu, N.M.W.; Chan, M.H.Y.; Wu, L.; Yam, V.W.W. Synthesis and Photoswitchable Amphiphilicity and Self-Assembly Properties of Photochromic Spiropyran Derivatives. J. Mater. Chem. C 2020, 8, 13676–13685. [Google Scholar] [CrossRef]
- Suda, M.; Kato, R.; Yamamoto, H.M. Light-Induced Superconductivity Using a Photoactive Electric Double Layer. Science 2015, 347, 743–746. [Google Scholar] [CrossRef]
- Salinas, M.; Halik, M. Photoactive Self-Assembled Monolayers for Optically Switchable Organic Thin-Film Transistors. Appl. Phys. Lett. 2013, 102, 203301. [Google Scholar] [CrossRef] [Green Version]
- Brill, A.R.; Kafri, A.; Mohapatra, P.K.; Ismach, A.; de Ruiter, G.; Koren, E. Modulating the Optoelectronic Properties of MoS 2 by Highly Oriented Dipole-Generating Monolayers. ACS Appl. Mater. Interfaces 2021, 13, 32590–32597. [Google Scholar] [CrossRef]
- Sierocki, P.; Maas, H.; Dragut, P.; Richardt, G.; Vögtle, F.; De Cola, L.; Brouwer, F.A.M.; Zink, J.I. Photoisomerization of Azobenzene Derivatives in Nanostructured Silica. J. Phys. Chem. B 2006, 110, 24390–24398. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Pan, Y.; Zhang, S.; Chen, Y.; Yu, H.; Yang, Y.; Mo, L.; Sun, Z.; Li, L.; Yang, H. Fluorescent Azobenzene-Containing Compounds: From Structure to Mechanism. Crystals 2021, 11, 840. [Google Scholar] [CrossRef]
- Yang, Y.; Han, Q.; Pei, Y.; Yu, S.; Huang, Z.; Jin, L.Y. Stimuli-Responsive Supramolecular Chirality Switching and Nanoassembly Constructed by n-Shaped Amphiphilic Molecules in Aqueous Solution. Langmuir 2021, 37, 1215–1224. [Google Scholar] [CrossRef]
- Bléger, D.; Ciesielski, A.; Samorì, P.; Hecht, S. Photoswitching Vertically Oriented Azobenzene Self-Assembled Monolayers at the Solid–Liquid Interface. Chem.-A Eur. J. 2010, 16, 14256–14260. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Han, R.; Zhang, X.; Li, H.; Cao, H.; Chen, Y.; Wang, D.; Yang, Z.; He, W. Cholesteric Liquid Crystal Films with Adjustable Wavelength Band and Reflectance by Using Wash-out/Refill Technique and Light-Responsive Compounds. Liq. Cryst. 2022, 49, 1763–1773. [Google Scholar] [CrossRef]
- Kalachyova, Y.; Guselnikova, O.; Hnatowicz, V.; Postnikov, P.; Švorčík, V.; Lyutakov, O. Flexible Conductive Polymer Film Grafted with Azo-Moieties and Patterned by Light Illumination with Anisotropic Conductivity. Polymers 2019, 11, 1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.; Sun, Y.; Yuan, H.; Zhang, J.; Liu, G.; Sun, J. Harnessing Dynamic Wrinkling Surfaces for Smart Displays. Nano Lett. 2020, 20, 4129–4135. [Google Scholar] [CrossRef]
- Yin, J.; Lu, C. Hierarchical Surface Wrinkles Directed by Wrinkled Templates. Soft Matter 2012, 8, 6528–6534. [Google Scholar] [CrossRef]
- Izawa, H.; Yonemura, T.; Nakamura, Y.; Toyoshima, Y.; Kawakami, M.; Saimoto, H.; Ifuku, S. Hierarchical Surface Wrinkles and Bumps Generated on Chitosan Films Having Double-Skin Layers Comprising Topmost Carrageenan Layers and Polyion Complex Layers. Carbohydr. Polym. 2022, 284, 119224. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, Y.; Li, L.; Liu, E.; Zong, C.; Zhao, J.; Xie, J.; Xu, F.; König, T.A.F.; Grenzer Saphiannikova, M.; et al. All-Optical Reversible Azo-Based Wrinkling Patterns with High Aspect Ratio and Polarization-Independent Orientation for Light-Responsive Soft Photonics. ACS Appl. Mater. Interfaces 2019, 11, 25595–25604. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, L.; Hua, J.; Li, J.; Ma, X.; Qiao, W.; Yin, J.; Jiang, X. Dynamic Surface Wrinkles for In Situ Light-Driven Dynamic Gratings. ACS Appl. Mater. Interfaces 2022, 14, 16949–16957. [Google Scholar] [CrossRef]
- Li, F.; Hou, H.; Yin, J.; Jiang, X. Near-Infrared Light–Responsive Dynamic Wrinkle Patterns. Sci. Adv. 2018, 4, eaar5762. [Google Scholar] [CrossRef] [Green Version]
- Alrahili, M. Light to Heat Conversion Efficiency of Single-Walled Carbon Nanotubes. J. Taibah Univ. Sci. 2022, 16, 923–932. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, G.; Bai, J.; Ma, X.; Yin, J.; Wang, Q.; Jiang, X. Realizing Dynamic Diffraction Gratings Based on Light-Direct Writing of Responsive 2D Ordered Patterns. ACS Mater. Lett. 2020, 2, 1135–1141. [Google Scholar] [CrossRef]
- Vialetto, J.; Anyfantakis, M.; Rudiuk, S.; Morel, M.; Baigl, D. Photoswitchable Dissipative Two-Dimensional Colloidal Crystals. Angew. Chem. -Int. Ed. 2019, 58, 9145–9149. [Google Scholar] [CrossRef] [PubMed]
- Anyfantakis, M.; Baigl, D. Dynamic Photocontrol of the Coffee-Ring Effect with Optically Tunable Particle Stickiness. Angew. Chem. Int. Ed. 2014, 53, 14077–14081. [Google Scholar] [CrossRef] [PubMed]
- Bończak, B.; Fiałkowski, M. Donor–Acceptor Stenhouse Adducts for Stimuli-Responsive Self-Assembly of Gold Nanoparticles into Semiconducting Thin Films. J. Phys. Chem. C 2022, 126, 7096–7106. [Google Scholar] [CrossRef]
- Krajczewski, J.; Ambroziak, R.; Kudelski, A. Photo-Assembly of Plasmonic Nanoparticles: Methods and Applications. RSC Adv. 2021, 11, 2575–2595. [Google Scholar] [CrossRef]
- Lin, Z.; Gao, C.; Chen, M.; Lin, X.; He, Q. Collective Motion and Dynamic Self-Assembly of Colloid Motors. Curr. Opin. Colloid Interface Sci. 2018, 35, 51–58. [Google Scholar] [CrossRef]
- Ibele, M.E.; Lammert, P.E.; Crespi, V.H.; Sen, A. Emergent, Collective Oscillations of Self-Mobile Particles and Patterned Surfaces under Redox Conditions. ACS Nano 2010, 4, 4845–4851. [Google Scholar] [CrossRef]
- Ibele, M.; Mallouk, T.E.; Sen, A. Schooling Behavior of Light-Powered Autonomous Micromotors in Water. Angew. Chem. Int. Ed. 2009, 48, 3308–3312. [Google Scholar] [CrossRef]
- Hong, Y.; Diaz, M.; Córdova-Figueroa, U.M.; Sen, A. Light-Driven Titanium-Dioxide-Based Reversible Microfireworks and Micromotor/Micropump Systems. Adv. Funct. Mater. 2010, 20, 1568–1576. [Google Scholar] [CrossRef]
- Palacci, J.; Sacanna, S.; Steinberg, A.P.; Pine, D.J.; Chaikin, P.M. Living Crystals of Light-Activated Colloidal Surfers. Science 2013, 339, 936–940. [Google Scholar] [CrossRef]
- Singh, D.P.; Choudhury, U.; Fischer, P.; Mark, A.G. Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures. Adv. Mater. 2017, 29, 1701328. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Si, T.; Wu, Z.; Gao, C.; Lin, X.; He, Q. Light-Activated Active Colloid Ribbons. Angew. Chem. Int. Ed. 2017, 56, 13517–13520. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Mou, F.; Xu, L.; Wang, S.; Guan, J.; Feng, Z.; Wang, Q.; Kong, L.; Li, W.; Wang, J.; et al. Light-Steered Isotropic Semiconductor Micromotors. Adv. Mater. 2017, 29, 1603374. [Google Scholar] [CrossRef]
- Roy, D.; Brooks, W.L.A.; Sumerlin, B.S. New Directions in Thermoresponsive Polymers. Chem. Soc. Rev. 2013, 42, 7214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xing, R.-J.; Wang, W.-Z.; Deng, Y.-X.; Qu, D.-H.; Tian, H. Dynamic Adaptive Two-Dimensional Supramolecular Assemblies for On-Demand Filtration. iScience 2019, 19, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Bagiński, M.; Tupikowska, M.; González-Rubio, G.; Wójcik, M.; Lewandowski, W. Shaping Liquid Crystals with Gold Nanoparticles: Helical Assemblies with Tunable and Hierarchical Structures Via Thin-Film Cooperative Interactions. Adv. Mater. 2020, 32, 1904581. [Google Scholar] [CrossRef]
- de Loos, T.W. Polymer Thermodynamics-Liquid Polymer Containing Mixtures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; ISBN 9783527310142. [Google Scholar]
- Hou, W.; Liu, Y.; Zhao, H. Surface Nanostructures Based on Assemblies of Polymer Brushes. Chempluschem 2020, 85, 998–1007. [Google Scholar] [CrossRef]
- Mokhtarinia, K.; Masaeli, E. Transiently Thermally Responsive Surfaces: Concepts for Cell Sheet Engineering. Eur. Polym. J. 2020, 141, 110076. [Google Scholar] [CrossRef]
- Sponchioni, M.; Capasso Palmiero, U.; Moscatelli, D. Thermo-Responsive Polymers: Applications of Smart Materials in Drug Delivery and Tissue Engineering. Mater. Sci. Eng. C 2019, 102, 589–605. [Google Scholar] [CrossRef]
- Vasileiadis, T.; Marchesi D’Alvise, T.; Saak, C.M.; Pochylski, M.; Harvey, S.; Synatschke, C.V.; Gapinski, J.; Fytas, G.; Backus, E.H.G.; Weil, T.; et al. Fast Light-Driven Motion of Polydopamine Nanomembranes. Nano Lett. 2022, 22, 578–585. [Google Scholar] [CrossRef]
- Liu, F.; Urban, M.W. Recent Advances and Challenges in Designing Stimuli-Responsive Polymers. Prog. Polym. Sci. 2010, 35, 3–23. [Google Scholar] [CrossRef]
- Nagase, K. Thermoresponsive Interfaces Obtained Using Poly(N-Isopropylacrylamide)-Based Copolymer for Bioseparation and Tissue Engineering Applications. Adv. Colloid Interface Sci. 2021, 295, 102487. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Matsunaga, Y.T. Thermo-Responsive Polymers and Their Application as Smart Biomaterials. J. Mater. Chem. B 2017, 5, 4307–4321. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Kanno, T.; Takahashi, H.; Kikuchi, A.; Yamato, M.; Okano, T. Terminal Cationization of Poly(N-Isopropylacrylamide) Brush Surfaces Facilitates Efficient Thermoresponsive Control of Cell Adhesion and Detachment. Sci. Technol. Adv. Mater. 2021, 22, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lu, X.; Qiao, Z.; Song, L.; Cheng, Q.; Zhang, J.; Zhang, A.; Huang, Y.; Chen, T. PH and Temperature Dual-Responsive Plasmonic Switches of Gold Nanoparticle Monolayer Film for Multiple Anticounterfeiting. Langmuir 2018, 34, 13047–13056. [Google Scholar] [CrossRef]
- Rezende, C.A.; Shan, J.; Lee, L.T.; Zalczer, G.; Tenhu, H. Tuning the Structure of Thermosensitive Gold Nanoparticle Monolayers. J. Phys. Chem. B 2009, 113, 9786–9794. [Google Scholar] [CrossRef]
- Shan, J.; Chen, J.; Nuopponen, M.; Viitala, T.; Jiang, H.; Peltonen, J.; Kauppinen, E.; Tenhu, H. Optical Properties of Thermally Responsive Amphiphilic Gold Nanoparticles Protected with Polymers. Langmuir 2006, 22, 794–801. [Google Scholar] [CrossRef]
- Stefaniu, C.; Chanana, M.; Ahrens, H.; Wang, D.; Brezesinski, G.; Möhwald, H. Conformational Induced Behaviour of Copolymer-Capped Magnetite Nanoparticles at the Air/Water Interface. Soft Matter 2011, 7, 4267–4275. [Google Scholar] [CrossRef]
- Stefaniu, C.; Brezesinski, G.; Möhwald, H. Polymer-Capped Magnetite Nanoparticles Change the 2D Structure of DPPC Model Membranes. Soft Matter 2012, 8, 7952–7959. [Google Scholar] [CrossRef]
- Stefaniu, C.; Chanana, M.; Wang, D.; Novikov, D.V.; Brezesinski, G.; Möhwald, H. Langmuir and Gibbs Magnetite NP Layers at the Air/Water Interface. Langmuir 2011, 27, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Stefaniu, C.; Chanana, M.; Wang, D.; Brezesinski, G.; Möhwald, H. Stimuli-Responsive Magnetite Nanoparticle Monolayers. J. Phys. Chem. C 2011, 115, 5478–5484. [Google Scholar] [CrossRef]
- Liu, M.; Wan, X.; Yang, M.; Wang, Z.; Bao, H.; Dai, B.; Liu, H.; Wang, S. Thermo-Responsive Jamming of Nanoparticle Dense Suspensions towards Macroscopic Liquid-Solid Switchable Materials. Angew. Chemie Int. Ed. 2021, 61, e202114602. [Google Scholar] [CrossRef]
- Gao, W.; Chan, J.M.; Farokhzad, O.C. PH-Responsive Nanoparticles for Drug Delivery. Mol. Pharm. 2010, 7, 1913–1920. [Google Scholar] [CrossRef] [PubMed]
- Jacquelín, D.K.; Pérez, M.A.; Euti, E.M.; Arisnabarreta, N.; Cometto, F.P.; Paredes-Olivera, P.; Patrito, E.M. A PH-Sensitive Supramolecular Switch Based on Mixed Carboxylic Acid Terminated Self-Assembled Monolayers on Au(111). Langmuir 2016, 32, 947–953. [Google Scholar] [CrossRef]
- Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of Environment-Sensitive Supramolecular Assemblies for Intracellular Drug Delivery: Polymeric Micelles That Are Responsive to Intracellular PH Change. Angew. Chemie 2003, 115, 4788–4791. [Google Scholar] [CrossRef]
- Xue, M.; Findenegg, G.H. Lysozyme as a PH-Responsive Valve for the Controlled Release of Guest Molecules from Mesoporous Silica. Langmuir 2012, 28, 17578–17584. [Google Scholar] [CrossRef]
- Zhou, S.L.; Matsumoto, S.; Tian, H.D.; Yamane, H.; Ojida, A.; Kiyonaka, S.; Hamachi, I. PH-Responsive Shrinkage/Swelling of a Supramolecular Hydrogel Composed of Two Small Amphiphilic Molecules. Chem.-A Eur. J. 2005, 11, 1130–1136. [Google Scholar] [CrossRef]
- Tokarev, I.; Gopishetty, V.; Zhou, J.; Pita, M.; Motornov, M.; Katz, E.; Minko, S. Stimuli-Responsive Hydrogel Membranes Coupled with Biocatalytic Processes. ACS Appl. Mater. Interfaces 2009, 1, 532–536. [Google Scholar] [CrossRef]
- Kong, W.; Guo, S.; Wu, S.; Liu, X.; Zhang, Y. Redox-Controllable Interfacial Properties of Zwitterionic Surfactant Featuring Selenium Atoms. Langmuir 2016, 32, 9846–9853. [Google Scholar] [CrossRef]
- Song, M.; Lin, X.; Peng, Z.; Xu, S.; Jin, L.; Zheng, X.; Luo, H. Materials and Methods of Biosensor Interfaces With Stability. Front. Mater. 2021, 7, 438. [Google Scholar] [CrossRef]
- Mohammed, F.S.; Wuttigul, S.; Kitchens, C.L. Dynamic Surface Properties of Amino-Terminated Self-Assembled Monolayers Incorporating Reversible CO2 Chemistry. Ind. Eng. Chem. Res. 2011, 50, 8034–8041. [Google Scholar] [CrossRef]
- Lu, Y.; Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Pang, W.; Zhang, H.; Zhang, D.; Duan, X. Detection of Volatile Organic Compounds Using Microfabricated Resonator Array Functionalized with Supramolecular Monolayers. ACS Appl. Mater. Interfaces 2015, 7, 17893–17903. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Kim, Y.; Wang, Y.; Wang, H.; Kim, J.; Liu, X.; Lee, M. Homochiral Porous Nanosheets for Enantiomer Sieving. Nat. Mater. 2018, 17, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zhang, J.; Ma, Y.; Han, Y.; Li, J.; Zhu, M. Spiropyran-Incorporated Honeycomb Porous Films with Reversible Multistimuli-Responsive Properties. J. Mater. Chem. C 2022, 10, 7154–7166. [Google Scholar] [CrossRef]
- Dou, Y.; Jin, M.; Zhou, G.; Shui, L. Breath Figure Method for Construction of Honeycomb Films. Membranes 2015, 5, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, A.; Goudarzi, S.; Asghari, M.A.; Pichiah, S.; Selopal, G.S.; Rosei, F.; Wang, Z.M.; Zarrin, H. Review of Hybrid 1D/2D Photocatalysts for Light-Harvesting Applications. ACS Appl. Nano Mater. 2021, 4, 11323–11352. [Google Scholar] [CrossRef]
- Li, Y.; Xia, C.; Tian, R.; Zhao, L.; Hou, J.; Wang, J.; Luo, Q.; Xu, J.; Wang, L.; Hou, C.; et al. “On/Off” Switchable Sequential Light-Harvesting Systems Based on Controllable Protein Nanosheets for Regulation of Photocatalysis. ACS Nano 2022, 16, 8012–8021. [Google Scholar] [CrossRef]
- Yan, Y.; Ding, H. Ph-Responsive Nanoparticles for Cancer Immunotherapy: A Brief Review. Nanomaterials 2020, 10, 1613. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, T.; Chen, W.; Li, Y.; Wang, B. Recent Advances of Two-Dimensional Materials in Smart Drug Delivery Nano-Systems. Bioact. Mater. 2020, 5, 1071–1086. [Google Scholar] [CrossRef]
- Sashuk, V.; Hołyst, R.; Wojciechowski, T.; Fiałkowski, M. Close-Packed Monolayers of Charged Janus-Type Nanoparticles at the Air-Water Interface. J. Colloid Interface Sci. 2012, 375, 180–186. [Google Scholar] [CrossRef]
- Qin, S.; Kang, J.; Yong, X. Structure and Dynamics of Stimuli-Responsive Nanoparticle Monolayers at Fluid Interfaces. Langmuir 2018, 34, 5581–5591. [Google Scholar] [CrossRef]
- Klajn, R.; Stoddart, J.F.; Grzybowski, B.A. Nanoparticles Functionalised with Reversible Molecular and Supramolecular Switches. Chem. Soc. Rev. 2010, 39, 2203–2237. [Google Scholar] [CrossRef]
- Manna, R.K.; Laskar, A.; Shklyaev, O.E.; Balazs, A.C. Harnessing the Power of Chemically Active Sheets in Solution. Nat. Rev. Phys. 2022, 4, 125–137. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Mair, L.; Ahmed, S.; Huang, T.J.; Mallouk, T.E. Acoustic Propulsion of Nanorod Motors inside Living Cells. Angew. Chemie-Int. Ed. 2014, 53, 3201–3204. [Google Scholar] [CrossRef]
- Li, Z.; Yang, F.; Yin, Y. Smart Materials by Nanoscale Magnetic Assembly. Adv. Funct. Mater. 2020, 30, 1903467. [Google Scholar] [CrossRef]
- Grzybowski, B.A.; Stone, H.A.; Whitesides, G.M. Dynamic Self-Assembly of Magnetized, Millimetre-Sized Objects Rotating at a Liquid–Air Interface. Nature 2000, 405, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, L.; Wang, B.; Yu, E.; Yu, J.; Zhang, L. Collective Behavior of Reconfigurable Magnetic Droplets via Dynamic Self-Assembly. ACS Appl. Mater. Interfaces 2019, 11, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Kokot, G.; Piet, D.; Whitesides, G.M.; Aranson, I.S.; Snezhko, A. Emergence of Reconfigurable Wires and Spinners via Dynamic Self-Assembly. Sci. Rep. 2015, 5, 9528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snezhko, A. Non-Equilibrium Magnetic Colloidal Dispersions at Liquid-Air Interfaces: Dynamic Patterns, Magnetic Order and Self-Assembled Swimmers. J. Phys. Condens. Matter 2011, 23, 153101. [Google Scholar] [CrossRef]
- Pauer, C.; du Roure, O.; Heuvingh, J.; Liedl, T.; Tavacoli, J. Programmable Design and Performance of Modular Magnetic Microswimmers. Adv. Mater. 2021, 33, 2006237. [Google Scholar] [CrossRef]
- Kokot, G.; Kolmakov, G.V.; Aranson, I.S.; Snezhko, A. Dynamic Self-Assembly and Self-Organized Transport of Magnetic Micro-Swimmers. Sci. Rep. 2017, 7, 14726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snezhko, A.; Aranson, I.S. Magnetic Manipulation of Self-Assembled Colloidal Asters. Nat. Mater. 2011, 10, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Wasylczyk, P.; Wiersma, D.S.; Priimagi, A. Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials. Adv. Mater. 2018, 30, 1703554. [Google Scholar] [CrossRef] [PubMed]
- Pavel, I.-A.; Salinas, G.; Perro, A.; Kuhn, A. Autonomous Chemotactic Light-Emitting Swimmers with Trajectories of Increasing Complexity. Adv. Intell. Syst. 2021, 3, 2000217. [Google Scholar] [CrossRef]
- Salinas, G.; Dauphin, A.L.; Colin, C.; Villani, E.; Arbault, S.; Bouffier, L.; Kuhn, A. Chemo- and Magnetotaxis of Self-Propelled Light-Emitting Chemo-electronic Swimmers. Angew. Chem. Int. Ed. 2020, 59, 7508–7513. [Google Scholar] [CrossRef] [PubMed]
- Kichatov, B.; Korshunov, A.; Sudakov, V.; Golubkov, A.; Gubernov, V.; Kiverin, A. Motion of a Chemically Reactive Bimetal Motor in a Magnetic Field. Phys. Chem. Chem. Phys. 2022, 24, 19693–19696. [Google Scholar] [CrossRef]
- Arnaboldi, S.; Salinas, G.; Karajić, A.; Garrigue, P.; Benincori, T.; Bonetti, G.; Cirilli, R.; Bichon, S.; Gounel, S.; Mano, N.; et al. Direct Dynamic Read-out of Molecular Chirality with Autonomous Enzyme-Driven Swimmers. Nat. Chem. 2021, 13, 1241–1247. [Google Scholar] [CrossRef]
- Melde, K.; Mark, A.G.; Qiu, T.; Fischer, P. Holograms for Acoustics. Nature 2016, 537, 518–522. [Google Scholar] [CrossRef]
- Ding, X.; Lin, S.C.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.K.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-Chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves. Proc. Natl. Acad. Sci. USA 2012, 109, 11105–11109. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Yang, S.; Huang, P.H.; Wang, Z.; Zhang, P.; Gu, Y.; Bachman, H.; Chen, C.; Wu, M.; Xie, Y.; et al. Wave Number–Spiral Acoustic Tweezers for Dynamic and Reconfigurable Manipulation of Particles and Cells. Sci. Adv. 2019, 5, eaau6062. [Google Scholar] [CrossRef] [Green Version]
- Ozcelik, A.; Rufo, J.; Guo, F.; Gu, Y.; Li, P.; Lata, J.; Huang, T.J. Acoustic Tweezers for the Life Sciences. Nat. Methods 2018, 15, 1021–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, L.; Cai, F.; Li, F.; Zhou, W.; Niu, L.; Zheng, H. Acoustic Tweezers. J. Phys. D. Appl. Phys. 2019, 52, 273001. [Google Scholar] [CrossRef]
- Sashuk, V.; Winkler, K.; Żywociński, A.; Wojciechowski, T.; Górecka, E.; Fiałkowski, M. Nanoparticles in a Capillary Trap: Dynamic Self-Assembly at Fluid Interfaces. ACS Nano 2013, 7, 8833–8839. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zbonikowski, R.; Mente, P.; Bończak, B.; Paczesny, J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. Nanomaterials 2023, 13, 855. https://doi.org/10.3390/nano13050855
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. Nanomaterials. 2023; 13(5):855. https://doi.org/10.3390/nano13050855
Chicago/Turabian StyleZbonikowski, Rafał, Pumza Mente, Bartłomiej Bończak, and Jan Paczesny. 2023. "Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity" Nanomaterials 13, no. 5: 855. https://doi.org/10.3390/nano13050855