Cross-Interference of VOCs in SnO2-Based NO Sensors
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Characterization
2.3. Gas Sensor Fabrication and Measurement
3. Results and Discussion
3.1. Structure Characterization
3.2. Selective Redefinition
3.3. Gas-Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amico, A.D.; Natale, C.D. A contribution on some basic definitions of sensors properties. IEEE Sens. J. 2001, 1, 183–190. [Google Scholar] [CrossRef]
- Lee, C.S.; Kim, K.C.; Han, S.W.; Joo, H.S.; Moon, K.J. Performance test of gas sensors measuring air pollutants of NO, NO2, SO2, CO and VOC. J. Korean Soc. Urban Environ. 2021, 21, 13–20. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, X.; Qiu, J.; Quan, W.; Qin, W.W.; Min, X.J.; Lu, S.H.; Chen, S.S.; Du, W.; Chen, X.Q. Nitric oxide detector based on WO3-1wt%In2O3-1wt%Nb2O5 with state-of-the-art selectivity and ppb-Level sensitivity. ACS Appl. Mater. Interfaces 2018, 10, 42583–42592. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.T.; Chang, S.J.; Ji, L.W.; Hsiao, Y.J.; Tang, I.T.; Lu, H.Y.; Chu, Y.L. High Sensitivity of NO gas sensors based on novel Ag-doped ZnO nanoflowers enhanced with a UV light-emitting diode. ACS Omega 2018, 3, 13798–13807. [Google Scholar] [CrossRef]
- Ananya, D. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar]
- Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B Chem. 2011, 160, 580–591. [Google Scholar] [CrossRef]
- Ng, S.; Prasek, J.; Zazpe, R.; Pytlicek, Z.; Spotz, Z.; Pereira, J.R.; Michalicka, J.; Prikryl, J.; Krbal, M.; Sopha, H.; et al. Atomic Layer Deposition of SnO2-Coated Anodic One-Dimensional TiO2 Nanotube Layers for Low Concentration NO2 Sensing. ACS Appl. Mater. Interfaces 2020, 12, 33386–33396. [Google Scholar] [CrossRef]
- Kim, J.H.; Mirzaei, A.; Kim, J.Y.; Lee, J.H.; Kim, H.W.; Hishita, S.; Kim, S.S. Enhancement of gas sensing by implantation of Sb-ions in SnO2 nanowires. Sens. Actuators B Chem. 2020, 304, 127307. [Google Scholar] [CrossRef]
- Cho, H.J.; Choi, S.J.; Kim, N.H.; Kim, I.D. Porosity controlled 3D SnO2 spheres via electrostatic spray: Selective acetone sensors. Sens. Actuators B Chem. 2020, 304, 127350. [Google Scholar] [CrossRef]
- Chen, F.; Yang, M.; Wang, X.; Song, Y.; Guo, L.L.; Xie, N.; Kou, X.Y.; Xu, X.M.; Sun, Y.F.; Lu, G.Y. Template-free synthesis of cubic-rhombohedral-In2O3 flower for ppb level acetone detection. Sens. Actuators B Chem. 2019, 290, 459–466. [Google Scholar] [CrossRef]
- Guo, L.L.; Chen, F.; Xie, N.; Kou, X.Y.; Wang, C.; Sun, Y.F.; Liu, F.M.; Liang, X.H.; Gao, Y.; Yan, X.; et al. Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuators B Chem. 2018, 272, 186–194. [Google Scholar] [CrossRef]
- Xie, J.; Wang, H.; Lin, Y.H.; Zhou, Y.; Wu, Y.P. Highly sensitive humidity sensor based on quartz crystal microbalance coated with ZnO colloid spheres. Sens. Actuators B Chem. 2013, 177, 1083–1088. [Google Scholar] [CrossRef]
- Zhang, S.S.; Li, Y.W.; Sun, G.; Zhang, B.; Wang, Y.; Cao, J.L.; Zhang, Z.Y. Synthesis of NiO-decorated ZnO porous nanosheets with improved CH4 sensing performance. Appl. Surf. Sci. 2019, 497, 143811. [Google Scholar] [CrossRef]
- Wang, M.J.; Hou, T.Y.; Shen, Z.R.; Zhao, X.D.; Ji, H.M. MOF-derived Fe2O3: Phase control and effects of phase composition on gas sensing performance. Sens. Actuators B Chem. 2019, 292, 171–179. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, G.N.; Cheng, M.; Gao, Y.; Zhao, L.J.; Li, S.; Liu, F.M.; Yan, X.; Zhang, T.; Sun, P.; et al. The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sens. Actuators B Chem. 2018, 261, 252–263. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhu, Z.Y.; Guo, T.C.; Li, H.; Xue, Q.Z. Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application. J. Hazard. Mater. 2018, 353, 290–299. [Google Scholar] [CrossRef]
- Wang, M.D.; Li, Y.Y.; Yao, B.H.; Zhai, K.H.; Lia, Z.J.; Yao, H.C. Synthesis of three-dimensionally ordered macro/mesoporous C-doped WO3 materials: Effect of template sizes on gas sensing properties. Sens. Actuators B Chem. 2019, 288, 656–666. [Google Scholar] [CrossRef]
- Gao, Q.; Zeng, W.; Miao, R. Synthesis of multifarious hierarchical flower-like NiO and their gas-sensing properties. J. Mater. Sci. Mater. Electron. 2016, 27, 9410–9416. [Google Scholar] [CrossRef]
- Urso, M.; Leonardi, S.G.; Neri, G.; Petralia, S.; Conoci, S.; Priolo, F.; Mirabella, S. Room temperature detection and modelling of sub-ppm NO2 by low-cost nanoporous NiO film. Sens. Actuators B Chem. 2020, 305, 127481. [Google Scholar] [CrossRef]
- Morrison, S.R. Selectivity in semiconductor gas sensors. Sens. Actuators 1987, 12, 425–440. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.M.; Wang, S.T.; Tong, L.; Sun, J.; Zhu, G.B.; Wang, C.C. The effect of humidity on the dielectric properties of (In + Nb) co-doped SnO2 ceramics. J. Eur. Ceram. Soc. 2019, 39, 323–329. [Google Scholar] [CrossRef]
- Ma, Z.H.; Yu, R.T.; Song, J.M. Facile synthesis of Pr-doped In2O3 nanoparticles and their high gas sensing performance for ethanol. Sens. Actuators B Chem. 2020, 305, 127377. [Google Scholar] [CrossRef]
- Nam, B.; Ko, T.K.; Hyun, S.K.; Lee, C. Sensitivities of a 6:4 (by molar ratio) ZnO/WO3 composite nanoparticle sensor to reducing and oxidizing gases. Appl. Surf. Sci. 2020, 504, 144104. [Google Scholar] [CrossRef]
- Anajafi, Z.; Naseri, M.; Neri, G. Acetone sensing behavior of p-SmFeO3/n-ZnO nanocomposite synthesized by thermal treatment method. Sens. Actuators B Chem. 2020, 304, 127252. [Google Scholar] [CrossRef]
- Wu, C.H.; Zhu, Z.; Chang, H.M.; Jiang, Z.X.; Hsieh, C.Y.; Wu, R.J. Pt@NiO core-shell nanostructure for a hydrogen gas sensor. J. Alloy. Compd. 2020, 814, 151815. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, X.N.; Cao, J.L. Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J. Hazard Mater. 2020, 381, 120944. [Google Scholar] [CrossRef]
- Wang, C.; Cui, X.B.; Liu, J.Y.; Zhou, X.; Cheng, X.Y.; Sun, P.; Hu, X.L.; Li, X.W.; Zheng, J.; Lu, G.Y. Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers. ACS Sens. 2016, 1, 131–136. [Google Scholar] [CrossRef]
- Kou, X.Y.; Xie, N.; Chen, F.; Wang, T.S.; Guo, L.L.; Wang, C.; Wang, Q.J.; Ma, J.; Sun, Y.F.; Zhang, H.; et al. Superior acetone gas sensor based on electrospun SnO2 nanofifibers by Rh doping. Sens. Actuators B Chem. 2018, 256, 861–869. [Google Scholar] [CrossRef]
- Zeng, W.W.; Liu, Y.Z.; Mei, J.; Tang, C.Y.; Luo, K.; Li, S.M.; Zhan, H.R. Hierarchical SnO2-Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sens. Actuators B Chem. 2019, 301, 127010. [Google Scholar] [CrossRef]
- Koo, A.; Yoo, R.; Woo, S.P.; Lee, H.S.; Lee, W. Enhanced acetone-sensing properties of Pt-decorated Al-doped ZnO nanoparticles. Sens. Actuators B Chem. 2019, 280, 109–119. [Google Scholar] [CrossRef]
- Tao, L.; Rao, Z.X.; Zhang, S.P.; Cai, S.Z.; Xie, C.S. The irreversible R-T curves of metal oxide gas sensor under programmed temperature cycle. Sens. Actuators B Chem. 2016, 235, 481–491. [Google Scholar]
- Wang, J.C.; Gao, S.; Zhang, C.L.; Zhang, Q.Y.; Li, Z.Y.; Zhang, S.P. A high throughput platform screening of ppb-level sensitive materials for hazardous gases. Sens. Actuators B Chem. 2018, 276, 189–203. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction model of metal oxide gas sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Tomoda, M.; Okano, S.; Itagaki, Y.; Aono, H.; Sadaoka, Y. Air quality prediction by using semiconducting gas sensor with newly fabricated SmFeO3 film. Sens. Actuators B Chem. 2004, 97, 190–197. [Google Scholar] [CrossRef]
- Cao, P.; Yang, Z.; Navale, S.T.; Han, S.; Liu, X.; Liu, W.; Lu, Y.; Stadler, F.J.; Zhu, D. Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens. Actuators B Chem. 2019, 298, 7126850. [Google Scholar] [CrossRef]
- Romppainen, P.; Torvela, H.; Vaananen, J.; Leppavuori, S. Effect of CH4, SO2 and NO on the CO response of a SnO2-based thick film gas sensor in combustion gases. Sens. Actuators 1985, 8, 271–279. [Google Scholar] [CrossRef]
- Tamaki, J.; Nagaishi, M.; Teraoka, Y.; Miura, N.; Yamazoe, N. Adsorption behavior of CO and interfering gases on SnO2. Surf. Sci. 1989, 221, 183–196. [Google Scholar] [CrossRef]
- Torvela, H.; Huusko, J.; Lantto, V. Reduction of the interference caused by NO and SO2 in the CO response of Pd-catalysed SnO2 combustion gas sensors. Sens. Actuators B Chem. 1991, 4, 479–484. [Google Scholar] [CrossRef]
- Hosoya, Y.; Itagaki, Y.; Aono, H.; Sadaoka, Y. Ozone detection in air using SmFeO3 gas sensor. Sens Actuators B Chem. 2005, 108, 198–201. [Google Scholar] [CrossRef]
- Du, H.Y.; Wang, J.; Su, M.Y.; Yao, P.J.; Zheng, Y.G.; Yu, N.S. Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process. Sens. Actuators B Chem. 2019, 166–167, 746–752. [Google Scholar] [CrossRef]
- Li, G.J.; Cheng, Z.X.; Xiang, Q.; Yan, L.M.; Wang, X.H.; Xu, J.Q. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B Chem. 2019, 283, 590–601. [Google Scholar] [CrossRef]
- Shen, J.L.; Li, F.; Yin, B.; Sun, L.; Chen, C.; Wen, S.P.; Chen, Y.; Ruan, S.P. Enhanced ethyl acetate sensing performance of Al-doped In2O3 microcubes. Sens. Actuators B Chem. 2017, 253, 461–469. [Google Scholar] [CrossRef]
- Li, F.; Ruan, S.P.; Zhang, N.; Yin, Y.Y.; Guo, S.J.; Chen, Y.; Zhang, H.F.; Li, C.N. Synthesis and characterization of Cr-doped WO3 nanofibers for conductometric sensors with high xylene sensitivity. Sens. Actuators B Chem. 2018, 265, 355–364. [Google Scholar] [CrossRef]
- Luo, P.X.; Xie, M.; Luo, J.T.; Kan, H.; Wei, Q.P. Nitric oxide sensors using nanospiral ZnO thin film deposited by GLAD for application to exhaled human breath. RSC Adv. 2020, 10, 14877–14884. [Google Scholar] [CrossRef]
- Xu, Y.S.; Zheng, W.; Liu, X.H.; Zhang, L.Q.; Zheng, L.L.; Yang, C.; Pinna, N.; Zhang, J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater. Horiz. 2020, 7, 1519–1527. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, R.; Li, Y.; Tian, J.; Tan, C.; Chen, S.; Lei, M.; Xie, F.; Guo, X.; Zhang, S. Cross-Interference of VOCs in SnO2-Based NO Sensors. Nanomaterials 2023, 13, 908. https://doi.org/10.3390/nano13050908
Si R, Li Y, Tian J, Tan C, Chen S, Lei M, Xie F, Guo X, Zhang S. Cross-Interference of VOCs in SnO2-Based NO Sensors. Nanomaterials. 2023; 13(5):908. https://doi.org/10.3390/nano13050908
Chicago/Turabian StyleSi, Renjun, Yan Li, Jie Tian, Changshu Tan, Shaofeng Chen, Ming Lei, Feng Xie, Xin Guo, and Shunping Zhang. 2023. "Cross-Interference of VOCs in SnO2-Based NO Sensors" Nanomaterials 13, no. 5: 908. https://doi.org/10.3390/nano13050908
APA StyleSi, R., Li, Y., Tian, J., Tan, C., Chen, S., Lei, M., Xie, F., Guo, X., & Zhang, S. (2023). Cross-Interference of VOCs in SnO2-Based NO Sensors. Nanomaterials, 13(5), 908. https://doi.org/10.3390/nano13050908