Humidity Sensing Properties of (In+Nb) Doped HfO2 Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Ceramic Samples
3.2. Nanomaterial of HINO-0.005
3.3. Humidity Sensing Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, M.; Wu, Z.; Jin, X.; Lee, J.-H. A highly sensitive fet-type humidity sensor with inkjet-printed Pt-In2O3 nanoparticles at room temperature. Nanoscale Res. Lett. 2020, 15, 1–8. [Google Scholar] [CrossRef]
- Zhang, J.; Zhen, Y.; Xue, H.; Gao, X.; Wang, W.; Li, Y.; Hayat, T.; Alharbi, N.S. An urchin-like SnO2/NaNbO3 nanocomposite with stable humidity-sensing properties at room temperature. Sens. Actuators B Chem. 2019, 283, 643–650. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, C.; Cheng, X.-F.; Sun, W.-J.; He, J.-H.; Li, N.-J.; Li, H.; Chen, D.-Y.; Xu, Q.-F.; Lu, J.-M. Polysquaramides: Rapid and stable humidity sensing for breath monitoring and morse code communication. Sens. Actuators B Chem. 2020, 320, 128390. [Google Scholar] [CrossRef]
- Duan, Z.; Jiang, Y.; Zhao, Q.; Huang, Q.; Wang, S.; Zhang, Y.; Wu, Y.; Liu, B.; Zhen, Y.; Tai, H. Daily writing carbon ink: Novel application on humidity sensor with wide detection range, low detection limit and high detection resolution. Sens. Actuators B Chem. 2021, 339, 129884. [Google Scholar] [CrossRef]
- Li, L.; Xuan, X.; Chen, G.; Ma, Y.; Chen, C.; Wang, C. Hydrothermal preparation of Na0.5Bi0.5TiO3 nanospheres towards high humidity sensing response. Sens. Actuators B Chem. 2021, 347, 130584. [Google Scholar] [CrossRef]
- Yuan, M.; Zhang, Y.; Zheng, X.; Jiang, B.; Li, P.; Deng, S. Humidity sensing properties of K0.5Na0.5NbO3 powder synthesized by metal organic decomposition. Sens. Actuators B Chem. 2015, 209, 252–257. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Zhang, T.; Gong, L.; Dai, S.; Chen, Y. Humidity sensing properties of the sensor based on Bi0.5K0.5TiO3 powder. Sens. Actuators B Chem. 2010, 147, 180–184. [Google Scholar] [CrossRef]
- Ceresoli, D.; Vanderbilt, D. Structural and dielectric properties of amorphous ZrO2 and HfO2. Phys. Rev. B 2006, 74, 125108. [Google Scholar] [CrossRef] [Green Version]
- Mueller, S.; Adelmann, C.; Singh, A.; Van Elshocht, S.; Schroeder, U.; Mikolajick, T. Ferroelectricity in Gd-Doped HfO2 Thin Films. ECS J. Solid State Sci. Technol. 2012, 1, N123. [Google Scholar] [CrossRef]
- Mueller, S.; Mueller, J.; Singh, A.; Riedel, S.; Sundqvist, J.; Schroeder, U.; Mikolajick, T. Incipient Ferroelectricity in Al-Doped HfO2 Thin Films. Adv. Funct. Mater. 2012, 22, 2412–2417. [Google Scholar] [CrossRef]
- Müller, J.; Schröder, U.; Böscke, T.S.; Müller, I.; Böttger, U.; Wilde, L.; Sundqvist, J.; Lemberger, M.; Kücher, P.; Mikolajick, T.; et al. Ferroelectricity in yttrium-doped hafnium oxide. J. Apply. Phys. 2011, 110, 114113. [Google Scholar] [CrossRef] [Green Version]
- Böscke, T.S.; Teichert, S.; Bräuhaus, D.; Müller, J.; Schröder, U.; Böttger, U.; Mikolajick, T. Phase transitions in ferroelectric silicon doped hafnium oxide. Appl. Phys. Lett. 2011, 99, 112904. [Google Scholar] [CrossRef]
- Böscke, T.S.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide thin films. Appl. Phys. Lett. 2011, 99, 102903. [Google Scholar] [CrossRef]
- Cao, W.; Banerjee, K. Is negative capacitance FET a steep-slope logic switch? Nat. Commun. 2020, 11, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Zhang, Y.K.; Yang, Q.; Jiang, J.; Fan, P.; Liao, M.; Zhou, Y.C. The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle. Comput. Mater. Sci. 2019, 167, 143–150. [Google Scholar] [CrossRef]
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Cao, W.; Chen, P.; Lin, R.; Li, F.; Ge, B.; Song, D.; Cheng, Z.; Wang, C. Boosting energy-storage performance in lead-free ceramics via polyphase engineering in the superparaelectric state. Compos. Part B-Eng. 2023, 255, 110630. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Y.; Withers, R.L.; Frankcombe, T.J.; Norén, L.; Snashall, A.; Kitchin, M.; Smith, P.; Gong, B.; Chen, H.; et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat. Mater. 2013, 12, 821–826. [Google Scholar] [CrossRef]
- Dong, W.; Hu, W.; Frankcombe, T.J.; Chen, D.; Zhou, C.; Fu, Z.; Cândido, L.; Hai, G.; Chen, H.; Li, Y.; et al. Colossal permittivity with ultralow dielectric loss in In + Ta co-doped rutile TiO2. J. Mater. Chem. A 2017, 5, 5436–5441. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Chen, H.; Fan, J.; Wang, X.; Ma, X. Correlation between the radius of acceptor ion and the dielectric properties of co-doped TiO2 ceramics. Ceram. Int. 2019, 45, 14625–14633. [Google Scholar] [CrossRef]
- Fan, J.; Leng, S.; Cao, Z.; He, W.; Gao, Y.; Liu, J.; Li, G. Colossal permittivity of Sb and Ga co-doped rutile TiO2 ceramics. Ceram. Int. 2019, 45, 1001–1010. [Google Scholar] [CrossRef]
- Taniguchi, H.; Sato, D.; Nakano, A.; Terasaki, I. Permittivity boosting in “yellow” (Nb + In) co-doped TiO2. J. Mater. Chem. C 2020, 8, 13627–13631. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, J.; Fan, J.; Li, G.; Zhang, H. Colossal permittivity of (Gd + Nb) co-doped TiO2 ceramics induced by interface effects and defect cluster. Ceram. Int. 2021, 47, 6711–6719. [Google Scholar] [CrossRef]
- Sun, J.; Wang, S.T.; Tong, L.; Li, Q.J.; Yu, Y.; Li, Y.D.; Huang, S.G.; Guo, Y.M.; Wang, C.C. Enhanced dielectric properties in (In, Nb) co-doped BaTiO3 ceramics. Mater. Lett. 2017, 200, 51–54. [Google Scholar] [CrossRef]
- Wu, J.; Nan, C.-W.; Lin, Y.; Deng, Y. Giant Dielectric Permittivity Observed in Li and Ti Doped NiO. Phys. Rev. Lett. 2002, 89, 217601. [Google Scholar] [CrossRef]
- Tong, L.; Zhang, D.; Wang, H.; Li, Q.J.; Yu, Y.; Li, Y.D.; Huang, S.G.; Guo, Y.M.; Wang, C.C. High-temperature dielectric properties of (Al, Nb) co-doped SrTiO3 ceramics. Mater. Lett. 2016, 180, 256–259. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Zhang, X.; Qi, X.; Liu, Z.; Zhang, L.; Zhang, Y.; Wang, Y.; Sui, Y.; Song, B. Colossal dielectric permittivity in (Al + Nb) co-doped rutile SnO2 ceramics with low loss at room temperature. Appl. Phys. Lett. 2016, 109, 142903. [Google Scholar] [CrossRef]
- Wang, J.; Guo, Y.M.; Wang, S.T.; Tong, L.; Sun, J.; Zhu, G.B.; Wang, C.C. The effect of humidity on the dielectric properties of (In + Nb) co-doped SnO2 ceramics. J. Eur. Ceram. Soc. 2019, 39, 323–329. [Google Scholar] [CrossRef]
- Fei, Y.M.; Wang, Q.Q.; Sun, J.; Wang, S.T.; Li, T.Y.; Wang, J.; Wang, C.C. Colossal permittivity in (Li + Nb) co-doped Fe2O3 ceramics. Curr. Appl. Phys. 2020, 20, 866–870. [Google Scholar] [CrossRef]
- Li, T.Y.; Si, R.J.; Sun, J.; Wang, S.T.; Wang, J.; Ahmed, R.; Zhu, G.B.; Wang, C.C. Giant and controllable humidity sensitivity achieved in (Na+Nb) co-doped rutile TiO2. Sens. Actuators B Chem. 2019, 293, 151–158. [Google Scholar] [CrossRef]
- Cao, W.J.; Lin, R.J.; Chen, P.F.; Li, F.; Ge, B.H.; Song, D.S.; Zhang, J.; Cheng, Z.X.; Wang, C.C. Phase and Band Structure Engineering via Linear Additive in NBT-ST for Excellent Energy Storage Performance with Superior Thermal Stability. ACS Appl. Mater. Interfaces 2022, 14, 54051–54062. [Google Scholar] [CrossRef]
- Kim, S.; Hong, J. Ferroelectricity in ultrathin yttrium-doped hafnium oxide films prepared by chemical solution deposition based on metal chlorides and alcohol. Ceram. Int. 2017, 43, S158–S161. [Google Scholar] [CrossRef]
- Kim, S.J.; Mohan, J.; Summerfelt, S.R.; Kim, J. Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances. Jom 2019, 71, 71–246. [Google Scholar] [CrossRef]
- Zhou, D.; Müller, J.; Xu, J.; Knebel, S.; Bräuhaus, D.; Schröder, U. Insights into electrical characteristics of silicon doped hafnium oxide ferroelectric thin films. J. Appl. Phys. 2012, 100, 082905. [Google Scholar] [CrossRef]
- Park, J.Y.; Yang, K.; Lee, D.H.; Kim, S.H.; Lee, Y.; Reddy, P.R.S.; Jones, J.L.; Park, M.H. A perspective on semiconductor devices based on fluorite-structured ferroelectrics from the materials–device integration perspective. J. Appl. Phys. 2020, 128, 240904. [Google Scholar] [CrossRef]
- Schroeder, U.; Mueller, S.; Mueller, J.; Yurchuk, E.; Martin, D.; Adelmann, C.; Schloesser, T.; Van Bentum, R.; Mikolajick, T. Hafnium Oxide Based CMOS Compatible Ferroelectric Materials. ECS J. Solid State Sci. Technol. 2013, 2, N69. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, D.; Li, S.; Wang, J.; Sun, N.; Liu, F.; Zhao, X. Experimental evidence of ferroelectricity in calcium doped hafnium oxide thin films. J. Appl. Phys. 2019, 126, 154103. [Google Scholar] [CrossRef]
- Feng, Z.; Cheng, Z.; Shi, D.; Dou, S. Aging effect evolution during ferroelectric-ferroelectric phase transition: A mechanism study. AIP Adv. 2013, 3, 062105. [Google Scholar] [CrossRef]
- Li, L.; Cao, W.; Yao, J.; Liu, W.; Li, F.; Wang, C. Synergistic Piezo-Photocatalysis of BiOCl/NaNbO3 Heterojunction Piezoelectric Composite for High-Effificient Organic Pollutant Degradation. Nanomaterials 2022, 12, 353. [Google Scholar] [CrossRef]
- Sun, P.; Wu, Y.-Z.; Cai, T.-Y.; Ju, S. Effects of ferroelectric dead layer on the electron transport in ferroelectric tunneling junctions. Appl. Phys. Lett. 2011, 99, 052901. [Google Scholar] [CrossRef]
- Xu, D.-D.; Ma, R.-R.; Zhao, Y.-F.; Guan, Z.; Zhong, Q.-L.; Huang, R.; Xiang, P.-H.; Zhong, N.; Duan, C.-G. Unconventional out-of-plane domain inversion via in-plane ionic migration in a van der Waals ferroelectric. J. Mater. Chem. C 2020, 8, 6966–6971. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Y.; Liu, S.; Chen, G.; Chen, P.; Wang, J.; Cao, W.; Wang, C. Humidity Sensitivity Behavior of CH3NH3PbI3 Perovskite. Nanomaterials 2022, 12, 523. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-D.; Lai, D.-S.; Chen, M.-H.; Wu, R.-J.; Chen, F.-C. Evaluate humidity sensing properties of novel TiO2–WO3 composite material. Mater. Res. Bull. 2013, 48, 3822–3828. [Google Scholar] [CrossRef]
- Tandon, R.P.; Tripathy, M.R.; Arora, A.K.; Hotchandani, S. Gas and humidity response of iron oxide—Polypyrrole nanocomposites. Sens. Actuators B Chem. 2006, 114, 768–773. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Liu, J.-X.; Cheng, X.-F.; He, J.-H.; Li, H.; Xu, Q.-F.; Li, N.-J.; Chen, D.-Y.; Lu, J.-M. Ultrasensitive humidity sensing using one-dimensional π-d conjugated coordination polymers for breath monitoring. Sens. Actuators B Chem. 2021, 330, 129353. [Google Scholar] [CrossRef]
- Ocakoglu, K.; Okur, S. Humidity sensing properties of novel ruthenium polypyridyl complex. Sens. Actuators B Chem. 2010, 151, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Liu, Y.; Li, X.; Lu, G.; You, L.; Liang, X.; Liu, F.; Zhang, T.; Du, Y. Highly sensitive humidity sensor based on high surface area mesoporous LaFeO3 prepared by a nanocasting route. Sens. Actuators B Chem. 2013, 181, 802–809. [Google Scholar] [CrossRef]
- Manikandan, V.; Petrila, I.; Vigneselvan, S.; Dharmavarapu, R.; Juodkazis, S.; Kavita, S.; Chandrasekaran, J. Efficient humidity-sensitive electrical response of annealed lithium substituted nickel ferrite (Li–NiFe2O4) nanoparticles under ideal, real and corrosive environments. J. Mater. Sci. Mater. Electron. 2018, 29, 18660–18667. [Google Scholar] [CrossRef]
- Saha, D.R.; Nandi, A.K.; Chakravorty, D. Enhancement of ionic conductivity in Li2O–SiO2 glass in nanodimensions grown within pellets of ZnO nanorods and magnetodielectric properties of these nanocomposites. J. Non-Cryst. Solids 2013, 376, 12–17. [Google Scholar] [CrossRef]
- Si, R.; Xie, X.; Li, T.; Zheng, J.; Cheng, C.; Huang, S.; Wang, C. TiO2/(K,Na)NbO3 Nanocomposite for Boosting Humidity-Sensing Performances. ACS Sens. 2020, 5, 1345–1353. [Google Scholar] [CrossRef]
- Lin, W.-D.; Liao, C.-T.; Chang, T.-C.; Chen, S.-H.; Wu, R.-J. Humidity sensing properties of novel graphene/TiO2 composites by sol–gel process. Sens. Actuators B Chem. 2015, 209, 555–561. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Zhu, G.; Li, B.; Gou, J.; Cheng, X. Synthesis of PbS/TiO2 nano-tubes photoelectrode and its enhanced visible light driven photocatalytic performance and mechanism for purification of 4-chlorobenzoic acid. Sep. Purif. Technol. 2019, 227, 115697. [Google Scholar] [CrossRef]
- Anappara, A.A.; Rajeshkumar, S.; Mukundan, P.; Warrier, P.R.S.; Ghosh, S.; Warrier, K.G.K. Impedance spectroscopic studies of sol–gel derived subcritically dried silica aerogels. Acta Mater. 2004, 52, 369–375. [Google Scholar] [CrossRef]
Element | Weight % | Atomic % |
---|---|---|
O | 20.60 | 73.93 |
Nb | 1.63 | 1.01 |
In | 0.21 | 0.11 |
Hf | 77.56 | 24.96 |
RH (%) | Impedance (MΩ) | S (Zd/Zh) |
---|---|---|
11 | 158.3 | 1 |
33 | 53.262 | 2.972 |
54 | 8.654 | 18.285 |
75 | 0.705 | 224.711 |
85 | 0.192 | 824.283 |
94 | 0.044 | 3612.880 |
RH (%) | Zads (Ω) | Zdes (Ω) | Hysteresis Values (%) |
---|---|---|---|
11 | 1.583 × 108 | 1.428 × 108 | 0.351 |
33 | 5.326 × 107 | 3.599 × 107 | 2.25 |
54 | 8.654 × 106 | 4.217 × 106 | 4.71 |
75 | 7.046 × 105 | 2.992 × 105 | 6.79 |
85 | 1.921 × 105 | 1.023 × 105 | 5.46 |
94 | 4.382 × 104 | 4.382 × 104 | ---- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.; Wang, J.; Cao, W.; Li, L.; Luo, M.; Wang, C. Humidity Sensing Properties of (In+Nb) Doped HfO2 Ceramics. Nanomaterials 2023, 13, 951. https://doi.org/10.3390/nano13050951
Yao J, Wang J, Cao W, Li L, Luo M, Wang C. Humidity Sensing Properties of (In+Nb) Doped HfO2 Ceramics. Nanomaterials. 2023; 13(5):951. https://doi.org/10.3390/nano13050951
Chicago/Turabian StyleYao, Jiahao, Jingsong Wang, Wenjun Cao, Li Li, Mingxiang Luo, and Chunchang Wang. 2023. "Humidity Sensing Properties of (In+Nb) Doped HfO2 Ceramics" Nanomaterials 13, no. 5: 951. https://doi.org/10.3390/nano13050951
APA StyleYao, J., Wang, J., Cao, W., Li, L., Luo, M., & Wang, C. (2023). Humidity Sensing Properties of (In+Nb) Doped HfO2 Ceramics. Nanomaterials, 13(5), 951. https://doi.org/10.3390/nano13050951