CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Experimental Section
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhu, J.Q.; Li, P.X.; Wang, X.X.; Yu, H.; Xiao, K.; Li, C.Y.; Zhang, G.Y. All-fiber Yb-doped fiber laser passively mode-locking by monolayer MoS2 saturable absorber. Opt. Commun. 2018, 413, 236–241. [Google Scholar] [CrossRef]
- Sugioka, K.; Cheng, Y. Ultrafast lasers—Reliable tools for advanced materials processing. Light Sci. Appl. 2014, 3, e149. [Google Scholar] [CrossRef] [Green Version]
- Keller, U. Recent developments in compact ultrafast lasers. Nature 2003, 424, 831–838. [Google Scholar] [CrossRef]
- Gu, T.; Petrone, N.; McMillan, J.F.; van der Zande, A.; Yu, M.; Lo, G.Q.; Kwong, D.L.; Hone, J.; Wong, C.W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics 2012, 6, 554–559. [Google Scholar] [CrossRef] [Green Version]
- Fermann, M.E.; Hartl, I. Ultrafast fibre lasers. Nat. Photonics 2013, 7, 868–874. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, K.; Zhu, Z.L.; Wang, J.; Deng, W.J.; Liang, X.D. Research and application of ultrafast laser precision manufacturing technology. Laser Infrared 2020, 50, 1419–1425. [Google Scholar] [CrossRef]
- Bao, Q.L.; Zhang, H.; Wang, Y.; Ni, Z.H.; Yan, Y.L.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers. Adv. Funct. Mater. 2009, 19, 3077–3083. [Google Scholar] [CrossRef]
- Dong, Y.C.; Chertopalov, S.; Maleski, K.; Anasori, B.; Hu, L.Y.; Bhattacharya, S.; Rao, A.M.; Gogotsi, Y.; Mochalin, V.N.; Podila, R. Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Adv. Mater. 2018, 30, 1705714. [Google Scholar] [CrossRef]
- Liu, S.X.; Huang, H.F.; Lu, J.S.; Xu, N.; Qu, J.L.; Wen, Q. Liquid-phase exfoliation of Ta2NiS5 and Its application in near-infrared mode-locked fiber lasers with evanescent field interactions and passively Q-switched bulk laser. Nanomaterials 2022, 12, 695. [Google Scholar] [CrossRef]
- Zhang, A.J.; Wang, Z.H.; Ou-Yang, H.; Lyu, W.H.; Sun, J.X.; Cheng, Y.; Fu, B. Recent progress of two-dimensional materials for ultrafast photonics. Nanomaterials 2021, 11, 1778. [Google Scholar] [CrossRef]
- Chen, L.L.; Zhang, M.; Zhou, C.; Cai, Y.; Ren, L.; Zhang, Z.G. Ultra-Low Repetition Rate SESAM-mode-locked Linear-cavity Erbium-doped Fiber Laser. In Proceedings of the 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, Shanghai, China, 20 August–3 September 2009; pp. 587–588. [Google Scholar]
- Cabasse, A.; Ortac, B.; Martel, G.; Hideur, A.; Limpere, J. Highly normal dispersion Er-doped fiber laser mode-locked with a SESAM. In Proceedings of the 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science, San Jose, CA, USA, 4–9 May 2008; pp. 1–2. [Google Scholar]
- Li, P.F.; Chen, Y.; Yang, T.S.; Wang, Z.Y.; Lin, H.; Xu, Y.H.; Li, L.; Mu, H.R.; Shivananju, B.N.; Zhang, Y.P.; et al. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces 2017, 9, 12759–12765. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Q.L.; Wang, S.H.; Zhang, H. 2D layered materials: Synthesis, nonlinear optical properties, and device applications. Laser Photonics Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Guo, X.; Wang, S.; Yan, P.G.; Wang, J.Z.; Yu, L.P.; Liu, W.J.; Zheng, Z.J.; Guo, C.Y.; Ruan, S.C. High modulation depth enabled by Mo2Ti2C3Tx MXene for Q-switched pulse generation in a mid-infrared fiber laser. Nanomaterials 2022, 12, 1343. [Google Scholar] [CrossRef]
- Zhou, L.L.; Fu, H.G.; Lv, T.; Wang, C.B.; Gao, H.; Li, D.Q.; Deng, L.M.; Xiong, W. Nonlinear optical characterization of 2D materials. Nanomaterials 2020, 10, 2263. [Google Scholar] [CrossRef]
- Jia, L.; Lei, T.M. Research progress on physical properties and chemical stability of two-dimensional black phosphorus. Mater. Rev. 2018, 32, 1100–1106. [Google Scholar] [CrossRef]
- He, J.S.; Tao, L.L.; Zhang, H.; Zhou, B.; Li, J.B. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 2019, 11, 2577–2593. [Google Scholar] [CrossRef]
- Bundulis, A.; Alnis, J.; Shuklov, I.A.; Kim, V.V.; Lizunova, A.A.; Mardini, A.A.; Grube, J.; Razumov, V.F.; Ganeev, R.A. Nonlinear absorption and refraction of picosecond and femtosecond pulses in HgTe quantum dot films. Nanomaterials 2021, 11, 3351. [Google Scholar] [CrossRef]
- Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic technology: The case for thin-film solar cells. Science 1999, 285, 692–698. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.J.; Ford, G.M.; Yang, W.-C.; Walker, B.C.; Stach, E.A.; Hillhouse, H.W.; Agrawal, R. Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 2010, 132, 17384–17386. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef]
- Hochbaum, A.I.; Yang, P. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527–546. [Google Scholar] [CrossRef]
- Bhaskar, S.; Visweswar Kambhampati, N.S.; Ganesh, K.M.; Srinivasan, V.; Ramamurthy, S.S. Metal-free, graphene oxide-based tunable soliton and plasmon engineering for biosensing applications. ACS Appl. Mater. Interfaces 2021, 13, 17046–17061. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.K.; Wang, Y.; Hu, H.; Zhang, H.; Li, W.J.; Lv, B.; Zhu, Z.; Guan, C.Y.; Shi, J.H. Optical properties and dynamic extrinsic chirality of structured monolayer black phosphorus. Front. Mater. 2022, 9, 826795. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Q.; Zhang, F.; Chen, L.L.; Jin, X.X.; Hu, Y.W.; Zheng, Z.; Zhang, H. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 2019, 7, 1800224. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, Y.G.; Wang, X. Ultrafast pulse generation with black phosphorus solution saturable absorber. Laser Phys. 2017, 27, 085104. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Q.; Zheng, Y.; Mao, D.; Zhao, J.L. Recent progress of pulsed fiber lasers based on transition-metal dichalcogenides and black phosphorus saturable absorbers. Nanophotonics 2020, 9, 2215–2231. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.T.; Chen, H.; Jiang, Z.K.; Yin, J.D.; Wang, J.Z.; Zhang, M.; He, T.C.; Li, J.Z.; Yan, P.G.; Ruan, S.C. Mode-locked thulium-doped fiber laser with chemical vapor deposited molybdenum ditelluride. Opt. Lett. 2018, 43, 1998–2001. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, X.L.; Lei, J.J.; Ma, M.Y.; Wang, C.; Ge, Y.Q.; Wei, Z.Y. Recent advances in mode-locked fiber lasers based on two-dimensional materials. Nanophotonics 2020, 9, 2315–2340. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Wang, H.Y.; Huang, H.; Xiao, Q.L.; Xu, Y.H.; Guo, Z.; Xie, H.H.; Shao, J.D.; Sun, Z.B.; Han, W.J.; et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 2016, 55, 5003–5007. [Google Scholar] [CrossRef]
- Wood, J.D.; Wells, S.A.; Jariwala, D.; Chen, K.-S.; Cho, E.; Sangwan, V.K.; Liu, X.L.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970. [Google Scholar] [CrossRef] [Green Version]
- Ziletti, A.; Carvalho, A.; Campbell, D.K.; Coker, D.F.; Castro Neto, A.H. Oxygen defects in phosphorene. Phys. Rev. Lett. 2015, 114, 046801. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.K.; Sun, Z.J.; Zhang, B.W.; Yan, Q.F. Unveiling the degradation chemistry of fibrous red phosphorus under ambient conditions. ACS Appl. Mater. Interfaces 2022, 14, 9925–9932. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.J.R.; Abdelwahab, I.; Chu, L.Q.; Poh, S.M.; Liu, Y.P.; Lu, J.; Chen, W.; Loh, K.P. Quasi-monolayer black phosphorus with high mobility and air stability. Adv. Mater. 2018, 30, 1704619. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Zemlyanov, D.Y.; Milligan, C.A.; Du, Y.C.; Yang, L.M.; Wu, Y.Q.; Ye, P.D. Surface chemistry of black phosphorus under a controlled oxidative environment. Nanotechnology 2016, 27, 434002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.Z.; Wu, H.; Ren, T.Q.; Yan, S.C.; Chen, T.H.; Shi, Y. Developments in stability and passivation strategies for black phosphorus. Nano Res. 2021, 14, 4386–4397. [Google Scholar] [CrossRef]
- Pei, J.J.; Gai, X.; Yang, J.; Wang, X.B.; Yu, Z.F.; Choi, D.-Y.; Luther-Davies, B.; Lu, Y.R. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 2016, 7, 10450. [Google Scholar] [CrossRef] [Green Version]
- Neal, S.N.; O’Neal, K.R.; Haglund, A.V.; Mandrus, D.G.; Bechtel, H.A.; Carr, G.L.; Haule, K.; Vanderbilt, D.; Kim, H.-S.; Musfeldt, J.L. Exploring few and single layer CrPS4 with near-field infrared spectroscopy. 2D Mater. 2021, 8, 035020. [Google Scholar] [CrossRef]
- Synnatschke, K.; Shao, S.Q.; van Dinter, J.; Hofstetter, Y.J.; Kelly, D.J.; Grieger, S.; Haigh, S.J.; Vaynzof, Y.; Bensch, W.; Backes, C. Liquid exfoliation of Ni2P2S6: Structural characterization, size-dependent properties, and degradation. Chem. Mater. 2019, 31, 9127–9139. [Google Scholar] [CrossRef]
- Sibley, S.P.; Francisa, A.H.; Lifshitzb, E.; Clkmen, R. Magnetic resonance studies of intercalated, twodimensional transition metal chalcogenophosphate. Colloids Surf. A Physicochem. Eng. Asp. 1994, 82, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Budniak, A.K.; Killilea, N.A.; Zelewski, S.J.; Sytnyk, M.; Kauffmann, Y.; Amouyal, Y.; Kudrawiec, R.; Heiss, W.; Lifshitz, E. Exfoliated CrPS4 with promising photoconductivity. Small 2020, 16, 1905924. [Google Scholar] [CrossRef]
- Calder, S.; Haglund, A.V.; Liu, Y.; Pajerowski, D.M.; Cao, H.B.; Williams, T.J.; Garlea, V.O.; Mandrus, D. Magnetic structure and exchange interactions in the layered semiconductor CrPS4. Phys. Rev. B 2020, 102, 024408. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Jin, G.; Jo, M.-H.; Lee, C.G.; Ryu, S.M. Crossover between photochemical and photothermal oxidations of atomically thin magnetic semiconductor CrPS4. Nano Lett. 2019, 19, 4043–4051. [Google Scholar] [CrossRef]
- Peng, Y.X.; Ding, S.L.; Cheng, M.; Hu, Q.F.; Yang, J.; Wang, F.G.; Xue, M.Z.; Liu, Z.; Lin, Z.C.; Avdeev, M.; et al. Magnetic structure and metamagnetic transitions in the van der Waals antiferromagnet CrPS4. Adv. Mater. 2020, 32, 2001200. [Google Scholar] [CrossRef]
- Lee, J.; Ko, T.Y.; Kim, J.H.; Bark, H.; Kang, B.; Jung, S.-G.; Park, T.; Lee, Z.; Ryu, S.; Lee, C. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 2017, 11, 10935–10944. [Google Scholar] [CrossRef]
- Son, J.; Son, S.; Park, P.; Kim, M.; Tao, Z.; Oh, J.; Lee, T.; Lee, S.; Kim, J.; Zhang, K.X.; et al. Air-stable and layer-dependent ferromagnetism in atomically thin van der Waals CrPS4. ACS Nano 2021, 15, 16904–16912. [Google Scholar] [CrossRef] [PubMed]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Deng, J.; Guo, J.; Hosono, H.; Ying, T.; Chen, X. Two-dimensional bipolar ferromagnetic semiconductors from layered antiferromagnets. Phys. Rev. Mater. 2021, 5, 034005. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. HighScore Suite; Cambridge University Press: Cambridge, UK, 2014; Volume 29, pp. S13–S18. [Google Scholar]
- Diehl, R.; Carpentier, C.-D. The crystal structure of chromium thiophosphate, CrPS4. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 1977, B33, 1399–1404. [Google Scholar] [CrossRef] [Green Version]
- Andrianov, A.; Kim, A.; Muraviov, S.; Sysoliatin, A. Wavelength-tunable few-cycle optical pulses directly from an all-fiber Er-doped laser setup. Opt. Lett. 2009, 34, 3193–3195. [Google Scholar] [CrossRef]
- Chi, C.; Lee, J.; Koo, J.; Han Lee, J. All-normal-dispersion dissipative-soliton fiber laser at 1.06 µm using a bulk-structured Bi2Te3 topological insulator-deposited side-polished fiber. Laser Phys. 2014, 24, 105106. [Google Scholar] [CrossRef]
- Zhao, L.M.; Tang, D.Y.; Zhang, H.; Wu, X.; Bao, Q.L.; Loh, K.P. Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer graphene. Opt. Lett. 2010, 35, 3622–3624. [Google Scholar] [CrossRef]
- Liu, S.X.; Lu, J.S.; Huang, H.F.; Xu, N.; Qu, J.L.; Wen, Q. Ultrafast photonics applications based on evanescent field interactions with 2D molybdenum carbide (Mo2C). J. Mater. Chem. C 2021, 9, 6187–6192. [Google Scholar] [CrossRef]
- Mao, D.; Zhang, S.L.; Wang, Y.D.; Gan, X.T.; Zhang, W.D.; Mei, T.; Wang, Y.G.; Wang, Y.S.; Zeng, H.B.; Zhao, J.L. WS2 saturable absorber for dissipative soliton mode locking at 1.06 and 1.55 microm. Opt. Express 2015, 23, 27509–27519. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.Z.; Meng, L.; Nan, G.Z.; Fang, J.X.; Ping, L.A.; Jun, Z.H.; Feng, Y.X.; Cheng, X.W.; Han, Z. Microfiber-based few-layer black phosphorus saturable absorber for ultra-fast fiber laser. Opt. Express 2015, 23, 20030–20039. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 1994, 6, 8245–8257. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Cover. Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Huang, S.S.; Wang, Y.G.; Guang, Y.P.; Zhang, G.L.; Zhao, J.Q.; Li, H.Q.; Lin, R.Y.; Cao, G.Z.; Duan, J.A. Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Appl. Phys. B 2014, 116, 939–946. [Google Scholar] [CrossRef]
- Al-Masoodi, A.H.H.; Yasin, M.; Ahmed, M.H.M.; Latiff, A.A.; Arof, H.; Harun, S.W. Mode-locked ytterbium-doped fiber laser using mechanically exfoliated black phosphorus as saturable absorber. Optik 2017, 147, 52–58. [Google Scholar] [CrossRef]
- Song, H.; Wang, Q.; Zhang, Y.; Li, L. Mode-locked ytterbium-doped all-fiber lasers based on few-layer black phosphorus saturable absorbers. Opt. Commun. 2017, 394, 157–160. [Google Scholar] [CrossRef]
- Jiang, X.T.; Liu, S.X.; Liang, W.Y.; Luo, S.j.; He, Z.L.; Ge, Y.Q.; Wang, H.D.; Cao, R.; Zhang, F.; Wen, Q.; et al. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser Photonics Rev. 2018, 12. [Google Scholar] [CrossRef]
- Samikannu, S.; Sivaraj, S. Dissipative soliton generation in an all-normal dispersion ytterbium-doped fiber laser using few-layer molybdenum diselenide as a saturable absorber. Optical Eng. 2016, 55. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.K.; Jiang, G.B.; Xu, C.W.; Zhao, C.J.; Xiang, Y.J.; Chen, Y.; Wen, S.C.; Zhang, H. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 2014, 4, 6346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Lu, S.B.; Zheng, J.; Du, J.; Wen, S.C.; Tang, D.Y.; Loh, K.P. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Optics Express 2014, 22, 7249–7260. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Lee, J.; Lee, Y.T.; Choi, W.-K.; Lee, J.H.; Song, Y.-W. Black phosphorus saturable absorber for ultrafast mode-locked pulse laser via evanescent field interaction. Ann. Phys. 2015, 527, 770–776. [Google Scholar] [CrossRef]
- Jhon, Y.I.; Koo, J.; Anasori, B.; Seo, M.; Lee, J.H.; Gogotsi, Y.; Jhon, Y.M. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef]
- Aiub, E.J.; Steinberg, D.; Thoroh de Souza, E.A.; Saito, L.A.M. 200-fs mode-locked Erbium-doped fiber laser by using mechanically exfoliated MoS2 saturable absorber onto D-shaped optical fiber. Optics Express 2017, 25, 10546–10552. [Google Scholar] [CrossRef]
- Khazaeinezhad, R.; Kassani, S.H.; Jeong, H.; Nazari, T.; Yeom, D.-I.; Oh, K. Mode-locked all-fiber lasers at both anomalous and normal dispersion regimes based on spin-coated MoS2 nano-Sheets on a side-polished fiber. IEEE Photonics J. 2015, 7, 1–9. [Google Scholar] [CrossRef]
- Long, H.; Liu, S.X.; Wen, Q.; Yuan, H.Y.; Tang, C.Y.; Qu, J.L.; Ma, S.N.; Qarony, W.; Zeng, L.H.; Tsang, Y.H. In2Se3 nanosheets with broadband saturable absorption used for near-infrared femtosecond laser mode locking. Nanotechnology 2019, 30, 465704. [Google Scholar] [CrossRef] [PubMed]
Gain Fiber | Experimental Conditions (mW)/Days | Pulse Width | Output Power (mW) | Pulse Energy (nJ) | Peak Power (W) | Center WaveLength (nm) | Slope Efficiency (%) |
---|---|---|---|---|---|---|---|
Yb | 300/1 | 298 ps | 10.63 | 1.174 | 3.94 | 1036.1 | 4.9 |
300/40 | 400 ps | 8 | 0.876 | 2.144 | 1036.1 | 3.6 | |
Er | 270/1 | 500 fs | 6.1 | 0.893 | 1786 | 1531.6 | 2.2 |
270/40 | 594 fs | 7.02 | 0.961 | 1617.8 | 1531.4 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhang, Y.; Leng, X.; Jing, Q.; Wen, Q. CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications. Nanomaterials 2023, 13, 1128. https://doi.org/10.3390/nano13061128
Zhang W, Zhang Y, Leng X, Jing Q, Wen Q. CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications. Nanomaterials. 2023; 13(6):1128. https://doi.org/10.3390/nano13061128
Chicago/Turabian StyleZhang, Wenyao, Yu Zhang, Xudong Leng, Qun Jing, and Qiao Wen. 2023. "CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications" Nanomaterials 13, no. 6: 1128. https://doi.org/10.3390/nano13061128
APA StyleZhang, W., Zhang, Y., Leng, X., Jing, Q., & Wen, Q. (2023). CrPS4 Nanoflakes as Stable Direct-Band-Gap 2D Materials for Ultrafast Pulse Laser Applications. Nanomaterials, 13(6), 1128. https://doi.org/10.3390/nano13061128