Infrared Photodetection from 2D/3D van der Waals Heterostructures
Abstract
:1. Introduction
2. Performance Improvement
2.1. Broadband
2.2. High-Responsivity
2.3. Fast-Response
3. New Functional Device
3.1. Two-Color Infrared Detector
3.2. Polarization Infrared Detector
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Rogalski, A. History of infrared detectors. Opto-Electron. Rev. 2012, 20, 279–308. [Google Scholar] [CrossRef]
- Ponomarenko, V.P.; Filachev, A.M. Infrared Techniques and Electro-Optics in Russia: A History 1946–2006; SPIE Press: Bellingham, WA, USA, 2007; Volume 165. [Google Scholar]
- Rogalski, A.; Adamiec, K.; Rutkowski, J. Narrow-Gap Semiconductor Photodiodes; SPIE Press: Bellingham, WA, USA, 2000; Volume 77. [Google Scholar]
- Xiao, Y.; Zhu, H.; Deng, K.; Wang, P.; Li, Q.; He, T.; Zhang, T.; Miao, J.; Li, N.; Lu, W. Progress and challenges in blocked impurity band infrared detectors for space-based astronomy. Sci. China Phys. Mech. Astron. 2022, 65, 287301. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Y.; Li, T.; Lei, M.; Li, J.; Wei, Z. Recent advances in the functional 2D photonic and optoelectronic devices. Adv. Opt. Mater. 2019, 7, 1801274. [Google Scholar] [CrossRef]
- Haastrup, S.; Strange, M.; Pandey, M.; Deilmann, T.; Schmidt, P.S.; Hinsche, N.F.; Gjerding, M.N.; Torelli, D.; Larsen, P.M.; Riis-Jensen, A.C. The Computational 2D Materials Database: High-throughput modeling and discovery of atomically thin crystals. 2D Mater. 2018, 5, 042002. [Google Scholar] [CrossRef]
- Gupta, A.; Sakthivel, T.; Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015, 73, 44–126. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, T.; Erdemir, A.; Li, Q. Tribology of two-dimensional materials: From mechanisms to modulating strategies. Mater. Today 2019, 26, 67–86. [Google Scholar] [CrossRef]
- Zhou, C.; Chai, Y. Ferroelectric-Gated Two-Dimensional-Material-Based Electron Devices. Adv. Electron. Mater. 2017, 3, 1600400. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Prim. 2021, 1, 5. [Google Scholar] [CrossRef]
- Wang, J.; Fang, H.; Wang, X.; Chen, X.; Lu, W.; Hu, W. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet—Visible to infrared. Small 2017, 13, 1700894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, W.; Yang, J. Two-dimensional van der Waals heterojunctions for functional materials and devices. J. Mater. Chem. C 2017, 5, 12289–12297. [Google Scholar] [CrossRef]
- Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef] [PubMed]
- Allain, A.; Kang, J.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, M.S.; Halevi, P.; Martinez, G.; Dobrzynski, L.; Djafari-Rouhani, B. Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 1994, 49, 2313. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Rogalski, A. Infrared Detectors; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Xu, K.; Zhou, W.; Ning, Z. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small 2020, 16, 2003397. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Joseph, G. Fundamentals of Remote Sensing; Universities Press: Hyderabad, India, 2005. [Google Scholar]
- Speakman, J.R.; Ward, S. Infrared thermography: Principles and applications. Zoology 1998, 101, 224–232. [Google Scholar]
- Kitagawa, Y.; Hiraoka, Y.; Honda, T.; Ishikura, T.; Nakamura, H.; Kimura, T. Low-field magnetoelectric effect at room temperature. Nat. Mater. 2010, 9, 797–802. [Google Scholar] [CrossRef]
- Krishna, S.; Raghavan, S.; Von Winckel, G.; Rotella, P.; Stintz, A.; Morath, C.; Le, D.; Kennerly, S. Two color InAs/InGaAs dots-in-a-well detector with background-limited performance at 91 K. Appl. Phys. Lett. 2003, 82, 2574–2576. [Google Scholar] [CrossRef]
- Wang, J.; Han, J.; Chen, X.; Wang, X. Design strategies for two-dimensional material photodetectors to enhance device performance. InfoMat 2019, 1, 33–53. [Google Scholar] [CrossRef]
- Ahmed, S.; Yi, J. Two-dimensional transition metal dichalcogenides and their charge carrier mobilities in field-effect transistors. Nano-Micro Lett. 2017, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-D.; Chen, X.-S.; Ye, Z.-H.; Feng, A.-L.; Yin, F.; Zhang, B.; Liao, L.; Lu, W. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 4100107. [Google Scholar] [CrossRef]
- Hu, W.; Chen, X.; Ye, Z.; Lu, W. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density hydrogen plasma modification. Appl. Phys. Lett. 2011, 99, 091101. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Xia, H.; Li, Q.; Wang, F.; Zhang, L.; Li, T.; Martyniuk, P.; Rogalski, A.; Hu, W. Sensing infrared photons at room temperature: From bulk materials to atomic layers. Small 2019, 15, 1904396. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Z.; Li, D.; Chen, P.; Pi, L.; Zhou, X.; Zhai, T. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106. [Google Scholar] [CrossRef]
- Liu, C.; Guo, J.; Yu, L.; Li, J.; Zhang, M.; Li, H.; Shi, Y.; Dai, D. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light Sci. Appl. 2021, 10, 123. [Google Scholar] [CrossRef]
- Liang, S.J.; Cheng, B.; Cui, X.; Miao, F. Van der Waals heterostructures for high-performance device applications: Challenges and opportunities. Adv. Mater. 2020, 32, 1903800. [Google Scholar] [CrossRef] [Green Version]
- Nepal, N.; Wheeler, V.D.; Anderson, T.J.; Kub, F.J.; Mastro, M.A.; Myers-Ward, R.L.; Qadri, S.B.; Freitas, J.A.; Hernandez, S.C.; Nyakiti, L.O. Epitaxial growth of III–nitride/graphene heterostructures for electronic devices. Appl. Phys. Express 2013, 6, 061003. [Google Scholar] [CrossRef]
- Williams, J.O. Metal organic chemical vapor deposition (MOCVD) perspectives and prospects. Angew. Chem. Int. Ed. Engl. 1989, 28, 1110–1120. [Google Scholar] [CrossRef]
- Choy, K. Chemical vapour deposition of coatings. Prog. Mater. Sci. 2003, 48, 57–170. [Google Scholar] [CrossRef]
- Kern, W.; Schuegraf, K.K. Deposition technologies and applications: Introduction and overview. In Handbook of Thin Film Deposition Processes and Techniques; Elsevier: Amsterdam, The Netherlands, 2001; pp. 11–43. [Google Scholar]
- Liu, J.; Yin, Y.; Yu, L.; Shi, Y.; Liang, D.; Dai, D. Silicon-graphene conductive photodetector with ultra-high responsivity. Sci. Rep. 2017, 7, 40904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koma, A. Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 1999, 201, 236–241. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, Y.; Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 2019, 567, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Ram, R.; Dudley, J.; Bowers, J.; Yang, L.; Carey, K.; Rosner, S.; Nauka, K. GaAs to InP wafer fusion. J. Appl. Phys. 1995, 78, 4227–4237. [Google Scholar] [CrossRef]
- Tersoff, J. Dislocations and strain relief in compositionally graded layers. Appl. Phys. Lett. 1993, 62, 693–695. [Google Scholar] [CrossRef]
- Mooney, P. Strain relaxation and dislocations in SiGe/Si structures. Mater. Sci. Eng. R Rep. 1996, 17, 105–146. [Google Scholar] [CrossRef]
- Qiu, Q.; Huang, Z. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Wang, P.; Jia, C.; Huang, Y.; Duan, X. Van der Waals heterostructures by design: From 1D and 2D to 3D. Matter 2021, 4, 552–581. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Wang, Z.; Gu, Y.; Ye, Y.; Chai, X.; Ye, J.; Chen, Y.; Xie, R.; Zhou, Y. Unipolar barrier photodetectors based on van der Waals heterostructures. Nat. Electron. 2021, 4, 357–363. [Google Scholar] [CrossRef]
- Gao, A.; Lai, J.; Wang, Y.; Zhu, Z.; Zeng, J.; Yu, G.; Wang, N.; Chen, W.; Cao, T.; Hu, W. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat. Nanotechnol. 2019, 14, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D.P.; Jarillo-Herrero, P.; Gorbachev, R.V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Ye, L.; Tong, L.; Wang, P.; Wang, Y.; Wang, H.; Ge, H.; Wang, Z.; Gu, Y.; Zhang, K. Van der Waals two-color infrared photodetector. Light Sci. Appl. 2022, 11, 6. [Google Scholar] [CrossRef]
- Wang, J.; Ma, F.; Sun, M. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.J.; Schulman, D.S.; Das, S. Thickness trends of electron and hole conduction and contact carrier injection in surface charge transfer doped 2D field effect transistors. ACS Nano 2020, 14, 13557–13568. [Google Scholar] [CrossRef]
- Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.; Sun, Y.; Li, X.; Borys, N.J.; Yuan, H.; Fullerton-Shirey, S.K. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 042001. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, H.; Wang, P.; Zhou, X.; Liu, C.; Zhang, Q.; Wang, F.; Huang, M.; Chen, S.; Wu, P. Controllable doping in 2D layered materials. Adv. Mater. 2021, 33, 2104942. [Google Scholar] [CrossRef]
- Zhong, F.; Ye, J.; He, T.; Zhang, L.; Wang, Z.; Li, Q.; Han, B.; Wang, P.; Wu, P.; Yu, Y. Substitutionally Doped MoSe2 for High-Performance Electronics and Optoelectronics. Small 2021, 17, 2102855. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, K.; Ye, Y. High rectification ratio metal-insulator-semiconductor tunnel diode based on single-layer MoS2. Nanotechnology 2019, 31, 075202. [Google Scholar] [CrossRef]
- Fang, H.; Chuang, S.; Chang, T.C.; Takei, K.; Takahashi, T.; Javey, A. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Kong, X.; Hu, Z.-X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyedele, A.D.; Yang, S.; Liang, L.; Puretzky, A.A.; Wang, K.; Zhang, J.; Yu, P.; Pudasaini, P.R.; Ghosh, A.W.; Liu, Z. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, S.; McEvoy, N.; Sun, Y.y.; Huang, J.; Xie, Y.; Dong, N.; Zhang, X.; Kislyakov, I.M.; Nunzi, J.M. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2. Laser Photonics Rev. 2019, 13, 1900052. [Google Scholar] [CrossRef]
- Zhao, D.; Xie, S.; Wang, Y.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D.W. Synthesis of large-scale few-layer PtS2 films by chemical vapor deposition. AIP Adv. 2019, 9, 025225. [Google Scholar] [CrossRef] [Green Version]
- Sakhaee-Pour, A. Elastic properties of single-layered graphene sheet. Solid State Commun. 2009, 149, 91–95. [Google Scholar] [CrossRef]
- Peng, M.; Xie, R.; Wang, Z.; Wang, P.; Wang, F.; Ge, H.; Wang, Y.; Zhong, F.; Wu, P.; Ye, J. Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 2021, 7, eabf7358. [Google Scholar] [CrossRef]
- Peng, M.; Yu, Y.; Wang, Z.; Fu, X.; Gu, Y.; Wang, Y.; Zhang, K.; Zhang, Z.; Huang, M.; Cui, Z. Room-temperature blackbody-sensitive and fast infrared photodetectors based on 2D tellurium/graphene van der Waals heterojunction. ACS Photonics 2022, 9, 1775–1782. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Zhang, T.; Long, M.; Wang, X.; Xie, R.; Ge, H.; Wang, H.; Hou, J.; Gu, Y. Fully Depleted Self-Aligned Heterosandwiched Van Der Waals Photodetectors. Adv. Mater. 2022, 34, 2203283. [Google Scholar] [CrossRef]
- Amani, M.; Regan, E.; Bullock, J.; Ahn, G.H.; Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724–11731. [Google Scholar] [CrossRef]
- Yin, Y.; Cao, R.; Guo, J.; Liu, C.; Li, J.; Feng, X.; Wang, H.; Du, W.; Qadir, A.; Zhang, H. High-speed and high-responsivity hybrid silicon/black-phosphorus waveguide photodetectors at 2 µm. Laser Photonics Rev. 2019, 13, 1900032. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Song, Y.; Ma, Y.; Chen, Q.; Zhu, Z.; Lu, P.; Wang, S. Bi2Te3 photoconductive detectors on Si. Appl. Phys. Lett. 2017, 110, 141109. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Tan, Z.; Hong, H.; Wu, J.; Yuan, H.; Liu, Y.; Chen, C.; Tan, C.; Yao, F.; Li, T. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, M.; Wang, Y.; Wang, P.; Zhou, X.; Xia, H.; Luo, C.; Huang, S.; Zhang, G.; Yan, H.; Fan, Z. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wu, P.; Wang, Z.; Luo, M.; Zhong, F.; Ge, X.; Zhang, K.; Peng, M.; Ye, Y.; Li, Q. Air-Stable Low-Symmetry Narrow-Bandgap 2D Sulfide Niobium for Polarization Photodetection. Adv. Mater. 2020, 32, 2005037. [Google Scholar] [CrossRef]
- Zhao, M.; Xia, W.; Wang, Y.; Luo, M.; Tian, Z.; Guo, Y.; Hu, W.; Xue, J. Nb2SiTe4: A stable narrow-gap two-dimensional material with ambipolar transport and mid-infrared response. ACS Nano 2019, 13, 10705–10710. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Riccardi, E.; Messelot, S.; Graef, H.; Valmorra, F.; Tignon, J.; Taniguchi, T.; Watanabe, K.; Dhillon, S.; Placais, B. Ultra-long carrier lifetime in neutral graphene-hBN van der Waals heterostructures under mid-infrared illumination. Nat. Commun. 2020, 11, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.; Xiong, H.D.; Eshun, K.; Yuan, H.; Li, Q. Phase transition, effective mass and carrier mobility of MoS2 monolayer under tensile strain. Appl. Surf. Sci. 2015, 325, 27–32. [Google Scholar] [CrossRef]
- Xiong, R.; Hu, R.; Zhang, Y.; Yang, X.; Lin, P.; Wen, C.; Sa, B.; Sun, Z. Computational discovery of PtS 2/GaSe van der Waals heterostructure for solar energy applications. Phys. Chem. Chem. Phys. 2021, 23, 20163–20173. [Google Scholar] [CrossRef]
- Sojková, M.; Dobročka, E.; Hutar, P.; Tašková, V.; Slušná, L.P.; Stoklas, R.; Píš, I.; Bondino, F.; Munnik, F.; Hulman, M. High carrier mobility epitaxially aligned PtSe2 films grown by one-zone selenization. Appl. Surf. Sci. 2021, 538, 147936. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, R.; Yang, M.; Liu, Z.; Liu, Z. Inverse relationship between carrier mobility and bandgap in graphene. J. Chem. Phys. 2013, 138, 084701. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.G.; Cai, Y.; Zhang, Y.-W. Robust direct bandgap characteristics of one-and two-dimensional ReS2. Sci. Rep. 2015, 5, 13783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Xu, B.; Yi, L. HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility. Chin. Phys. B 2020, 29, 023102. [Google Scholar] [CrossRef]
- Mir, S.H.; Yadav, V.K.; Singh, J.K. Recent advances in the carrier mobility of two-dimensional materials: A theoretical perspective. ACS Omega 2020, 5, 14203–14211. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.F.; Rehman, S.; Akhtar, I.; Aftab, S.; Ajmal, H.M.S.; Khan, W.; Kim, D.-K.; Eom, J. High mobility ReSe2 field effect transistors: Schottky-barrier-height-dependent photoresponsivity and broadband light detection with Co decoration. 2D Mater. 2019, 7, 015010. [Google Scholar] [CrossRef]
- Liu, W.; Kang, J.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 2013, 13, 1983–1990. [Google Scholar] [CrossRef]
- Wang, L.; Jie, J.; Shao, Z.; Zhang, Q.; Zhang, X.; Wang, Y.; Sun, Z.; Lee, S.T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919. [Google Scholar] [CrossRef]
- Wu, D.; Mo, Z.; Han, Y.; Lin, P.; Shi, Z.; Chen, X.; Tian, Y.; Li, X.J.; Yuan, H.; Tsang, Y.H. Fabrication of 2D PdSe2/3D CdTe mixed-dimensional van der Waals heterojunction for broadband infrared detection. ACS Appl. Mater. Interfaces 2021, 13, 41791–41801. [Google Scholar] [CrossRef]
- Wang, P.; Liu, S.; Luo, W.; Fang, H.; Gong, F.; Guo, N.; Chen, Z.G.; Zou, J.; Huang, Y.; Zhou, X. Arrayed van Der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439. [Google Scholar] [CrossRef]
- Xu, J.; Hu, J.; Wang, R.; Li, Q.; Li, W.; Guo, Y.; Liu, F.; Ullah, Z.; Wen, L.; Liu, L. Ultra-broadband graphene-InSb heterojunction photodetector. Appl. Phys. Lett. 2017, 111, 051106. [Google Scholar] [CrossRef]
- Xiao, P.; Mao, J.; Ding, K.; Luo, W.; Hu, W.; Zhang, X.; Zhang, X.; Jie, J. Solution-processed 3D RGO–MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729. [Google Scholar] [CrossRef]
- Zhang, X.; Shao, J.; Su, Y.; Wang, L.; Wang, Y.; Wang, X.; Wu, D. In-situ prepared WSe2/Si 2D-3D vertical heterojunction for high performance self-driven photodetector. Ceram. Int. 2022, 48, 29722–29729. [Google Scholar] [CrossRef]
- Guo, H.; Xia, Y.; Yu, Y.; Zhou, R.; Niu, H.; Mao, X.; Wan, L.; Xu, J. High-speed and broadband spectral photodetectors based on β-In2Se3/Si heterojunction. Mater. Sci. Semicond. Process. 2022, 138, 106304. [Google Scholar] [CrossRef]
- Li, J.; Niu, L.; Zheng, Z.; Yan, F. Photosensitive graphene transistors. Adv. Mater. 2014, 26, 5239–5273. [Google Scholar] [CrossRef]
- Sun, Z.; Chang, H. Graphene and graphene-like two-dimensional materials in photodetection: Mechanisms and methodology. ACS Nano 2014, 8, 4133–4156. [Google Scholar] [CrossRef]
- Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323. [Google Scholar] [CrossRef] [PubMed]
- Pelella, A.; Grillo, A.; Faella, E.; Luongo, G.; Askari, M.B.; Di Bartolomeo, A. Graphene–silicon device for visible and infrared photodetection. ACS Appl. Mater. Interfaces 2021, 13, 47895–47903. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, X.; Qiu, X.; Fu, J.; Yang, D. High-responsivity graphene/hyperdoped-silicon heterostructure infrared photodetectors. Opt. Laser Technol. 2022, 153, 108291. [Google Scholar] [CrossRef]
- Ho, V.X.; Wang, Y.; Howe, L.; Cooney, M.P.; Vinh, N.Q. Shallow Impurity States in Doped Silicon Substrates Enabling High Responsivity for Graphene Mid-Infrared Photodetectors. ACS Appl. Nano Mater. 2022, 5, 12477–12486. [Google Scholar] [CrossRef]
- Shimatani, M.; Fukushima, S.; Okuda, S.; Ogawa, S. High-performance graphene/InSb heterojunction photodetectors for high-resolution mid-infrared image sensors. Appl. Phys. Lett. 2020, 117, 173102. [Google Scholar] [CrossRef]
- Xie, C.; Wang, Y.; Zhang, Z.-X.; Wang, D.; Luo, L.-B. Graphene/semiconductor hybrid heterostructures for optoelectronic device applications. Nano Today 2018, 19, 41–83. [Google Scholar] [CrossRef]
- Luo, L.-B.; Hu, H.; Wang, X.-H.; Lu, R.; Zou, Y.-F.; Yu, Y.-Q.; Liang, F.-X. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C 2015, 3, 4723–4728. [Google Scholar] [CrossRef]
- Yang, B.; Zhao, Y.; Chen, J. High sensitivity graphene-Al2O3 passivated InGaAs near-infrared photodetector. Nanotechnology 2021, 32, 455503. [Google Scholar] [CrossRef]
- Thakur, M.K.; Gupta, A.; Fakhri, M.Y.; San Chen, R.; Wu, C.T.; Lin, K.H.; Chattopadhyay, S. Optically coupled engineered upconversion nanoparticles and graphene for a high responsivity broadband photodetector. Nanoscale 2019, 11, 9716–9725. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Liu, L.; Zang, Y.; Ying, A.; Hui, W.; Jiang, S.; Zhang, C.; Yang, T.; Chueh, Y.-L.; Li, J. Engineered tunneling layer with enhanced impact ionization for detection improvement in graphene/silicon heterojunction photodetectors. Light Sci. Appl. 2021, 10, 113. [Google Scholar] [CrossRef] [PubMed]
- Monroy, E.; Munoz, E.; Sánchez, F.; Calle, F.; Calleja, E.; Beaumont, B.; Gibart, P.; Munoz, J.; Cussó, F. High-performance GaN pn junction photodetectors for solar ultraviolet applications. Semicond. Sci. Technol. 1998, 13, 1042. [Google Scholar] [CrossRef]
- Chen, J.; Ouyang, W.; Yang, W.; He, J.H.; Fang, X. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909. [Google Scholar] [CrossRef]
- Jungnickel, V.; Forck, A.; Haustein, T.; Kruger, U.; Pohl, V.; Von Helmolt, C. Electronic tracking for wireless infrared communications. IEEE Trans. Wirel. Commun. 2003, 2, 989–999. [Google Scholar] [CrossRef]
- Di, J.; Yan, C.; Handoko, A.D.; Seh, Z.W.; Li, H.; Liu, Z. Ultrathin two-dimensional materials for photo-and electrocatalytic hydrogen evolution. Mater. Today 2018, 21, 749–770. [Google Scholar] [CrossRef]
- Wang, F.; Zou, X.; Xu, M.; Wang, H.; Wang, H.; Guo, H.; Guo, J.; Wang, P.; Peng, M.; Wang, Z. Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. 2021, 8, 2100569. [Google Scholar] [CrossRef]
- Lee, C.H.; Park, Y.; Youn, S.; Yeom, M.J.; Kum, H.S.; Chang, J.; Heo, J.; Yoo, G. Design of p-WSe2/n-Ge Heterojunctions for high-speed broadband photodetectors. Adv. Funct. Mater. 2022, 32, 2107992. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, Y.; Cui, A.; Li, Q.; He, T.; Zhang, K.; Wang, Z.; Li, Z.; Zhang, Z.; Wu, P. Fast uncooled mid-wavelength infrared photodetectors with heterostructures of van der Waals on epitaxial HgCdTe. Adv. Mater. 2022, 34, 2107772. [Google Scholar] [CrossRef]
- Abedin, M.; Bhat, I.; Gunapala, S.; Bandara, S.; Refaat, T.; Sandford, S.; Singh, U. The future of single-to multi-band detector technologies. In Future Trends in Microelectronics: Up the Nano Creek; IEEE: Piscataway, NJ, USA, 2007; p. 335. [Google Scholar]
- Hu, W.; Ye, Z.; Liao, L.; Chen, H.; Chen, L.; Ding, R.; He, L.; Chen, X.; Lu, W. 128 × 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk. Opt. Lett. 2014, 39, 5184–5187. [Google Scholar] [CrossRef] [Green Version]
- Gravrand, O.; Rothman, J.; Cervera, C.; Baier, N.; Lobre, C.; Zanatta, J.; Boulade, O.; Moreau, V.; Fieque, B. HgCdTe detectors for space and science imaging: General issues and latest achievements. J. Electron. Mater. 2016, 45, 4532–4541. [Google Scholar] [CrossRef]
- Li, C.; Cao, Q.; Wang, F.; Xiao, Y.; Li, Y.; Delaunay, J.-J.; Zhu, H. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 2018, 47, 4981–5037. [Google Scholar] [CrossRef] [PubMed]
- Youngblood, N.; Li, M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics 2017, 6, 1205–1218. [Google Scholar] [CrossRef]
- Hwang, A.; Park, M.; Park, Y.; Shim, Y.; Youn, S.; Lee, C.-H.; Jeong, H.B.; Jeong, H.Y.; Chang, J.; Lee, K. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure. Sci. Adv. 2021, 7, eabj2521. [Google Scholar] [CrossRef]
- Ye, L.; Wang, P.; Luo, W.; Gong, F.; Liao, L.; Liu, T.; Tong, L.; Zang, J.; Xu, J.; Hu, W. Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure. Nano Energy 2017, 37, 53–60. [Google Scholar] [CrossRef]
- Intaravanne, Y.; Chen, X. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles. Nanophotonics 2020, 9, 1003–1014. [Google Scholar] [CrossRef]
- Tong, L.; Huang, X.; Wang, P.; Ye, L.; Peng, M.; An, L.; Sun, Q.; Zhang, Y.; Yang, G.; Li, Z. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 2020, 11, 2308. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhao, T.; Zeng, H. 2D Material-Based Photodetectors for Infrared Imaging. Small Sci. 2022, 2, 2100051. [Google Scholar] [CrossRef]
- Zhong, J.; Yu, J.; Cao, L.; Zeng, C.; Ding, J.; Cong, C.; Liu, Z.; Liu, Y. High-performance polarization-sensitive photodetector based on a few-layered PdSe 2 nanosheet. Nano Res. 2020, 13, 1780–1786. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, X.; Chen, Y.; Guo, S.; Wu, S.; Song, C.; Huang, S.; Huang, X.; Tai, X.; Lin, T. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 2022, 8, eabn1811. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Guo, J.; Du, J.; Xia, C.; Zeng, L.; Tian, Y.; Shi, Z.; Tian, Y.; Li, X.J.; Tsang, Y.H. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Yang, M.; Sun, Y.; Han, L.; Pan, Y.; Zhao, Q.; Zheng, Z.; Huo, N.; Gao, W.; Li, J. A solution-fabricated tellurium/silicon mixed-dimensional van der Waals heterojunction for self-powered photodetectors. J. Mater. Chem. C 2022, 10, 7283–7293. [Google Scholar] [CrossRef]
- Wu, P.; He, T.; Zhu, H.; Wang, Y.; Li, Q.; Wang, Z.; Fu, X.; Wang, F.; Wang, P.; Shan, C. Next-generation machine vision systems incorporating two-dimensional materials: Progress and perspectives. InfoMat 2022, 4, e12275. [Google Scholar] [CrossRef]
- Kim, C.R.; Yoon, M.-A.R.; Jang, B.S.R. A review on transfer process of two-dimensional materials. Tribol. Lubr. 2020, 36, 1–10. [Google Scholar]
- Zhang, Y.; Yao, Y.; Sendeku, M.G.; Yin, L.; Zhan, X.; Wang, F.; Wang, Z.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694. [Google Scholar] [CrossRef]
- Liu, C.-W.; Dai, J.-J.; Wu, S.-K.; Diep, N.-Q.; Huynh, S.-H.; Mai, T.-T.; Wen, H.-C.; Yuan, C.-T.; Chou, W.-C.; Shen, J.-L. Substrate-induced strain in 2D layered GaSe materials grown by molecular beam epitaxy. Sci. Rep. 2020, 10, 12972. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, H.-B.-R. Atomic layer deposition on 2D materials. Chem. Mater. 2017, 29, 3809–3826. [Google Scholar] [CrossRef]
- Hao, W.; Marichy, C.; Journet, C. Atomic layer deposition of stable 2D materials. 2D Mater. 2018, 6, 012001. [Google Scholar] [CrossRef]
- Zhou, J.; Xin, K.; Zhao, X.; Li, D.; Wei, Z.; Xia, J. Recent progress in optoelectronic applications of hybrid 2D/3D silicon-based heterostructures. Sci. China Mater. 2022, 65, 876–895. [Google Scholar] [CrossRef]
- Schranghamer, T.F.; Sharma, M.; Singh, R.; Das, S. Review and comparison of layer transfer methods for two-dimensional materials for emerging applications. Chem. Soc. Rev. 2021, 50, 11032–11054. [Google Scholar] [CrossRef] [PubMed]
2D/3D Infrared Detectors | 3D Materials | 2D Materials | |
---|---|---|---|
Performance improvement | Broadband | Strong absorption: Si, Ge, InGaAs, HgCdTe, InAsSb, InSb | Narrow bandgap: PdSe2, PtSe2 |
High-responsivity | Minority carriers with long lifespan: InSb(77 K), HgCdTe(77 K) | Photogating: graphene, MoS2, In2Se3 | |
Fast-response | Strong absorption: Si, Ge, InGaAs, HgCdTe, InAsSb, InSb | High carrier mobility: graphene, BP | |
New functional device | Two-color infrared detector | Ingenious and reasonable energy band design | |
Polarization infrared detector | Strong absorption: Si, Ge, InGaAs, HgCdTe, InAsSb, InSb | Anisotropy: BP, PdSe2, ReSe2, ReS2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Zhong, F.; Li, Q.; Weng, J.; Li, J.; Lu, H.; Wu, H.; Liu, S.; Wang, J.; Deng, K.; et al. Infrared Photodetection from 2D/3D van der Waals Heterostructures. Nanomaterials 2023, 13, 1169. https://doi.org/10.3390/nano13071169
Tang Q, Zhong F, Li Q, Weng J, Li J, Lu H, Wu H, Liu S, Wang J, Deng K, et al. Infrared Photodetection from 2D/3D van der Waals Heterostructures. Nanomaterials. 2023; 13(7):1169. https://doi.org/10.3390/nano13071169
Chicago/Turabian StyleTang, Qianying, Fang Zhong, Qing Li, Jialu Weng, Junzhe Li, Hangyu Lu, Haitao Wu, Shuning Liu, Jiacheng Wang, Ke Deng, and et al. 2023. "Infrared Photodetection from 2D/3D van der Waals Heterostructures" Nanomaterials 13, no. 7: 1169. https://doi.org/10.3390/nano13071169
APA StyleTang, Q., Zhong, F., Li, Q., Weng, J., Li, J., Lu, H., Wu, H., Liu, S., Wang, J., Deng, K., Xiao, Y., Wang, Z., & He, T. (2023). Infrared Photodetection from 2D/3D van der Waals Heterostructures. Nanomaterials, 13(7), 1169. https://doi.org/10.3390/nano13071169