Electrospun Nanofibers Hybrid Wrinkled Micropyramidal Architectures for Elastic Self-Powered Tactile and Motion Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of PAAm/PVP/CaCl2 Conductive Hydrogels
2.2. Fabrication of the Single-Side/Double-Side Elastic Thin Films with Wrinkled Micropyramid Arrays
2.3. Fabrication of the Self-Powered Piezoelectric Sensors
2.4. Characterization and Methods
3. Results
Human Motion Detection
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hassan, M.; Abbas, G.; Li, N.; Afzal, A.; Haider, Z.; Ahmed, S.; Xu, X.; Pan, C.; Peng, Z. Significance of flexible substrates for wearable and implantable devices: Recent advances and perspectives. Adv. Mater. Technol. 2021, 7, 2100773. [Google Scholar] [CrossRef]
- Xu, X.; He, C.; Luo, F.; Wang, H.; Peng, Z. Transparent, conductive hydrogels with high mechanical strength and toughness. Polymers 2021, 13, 2004. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Du, W.; Feng, Y.; Li, S.; Wang, W.; Zhang, X.; Yu, A.; Wan, L.; Zhai, J. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy 2021, 86, 106058. [Google Scholar] [CrossRef]
- Heng, W.; Solomon, S.; Gao, W. Flexible Electronics and devices as human-machine interfaces for medical robotics. Adv. Mater. 2022, 34, 2107902. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, Y.; Cai, S.; Han, Z.; Liu, X.; Wang, F.; Cao, Y.; Wang, Z.; Li, H.; Chen, Y.; et al. Flexible hybrid electronics for digital healthcare. Adv. Mater. 2020, 32, 1902062. [Google Scholar] [CrossRef]
- Cacucciolo, V.; Shintake, J.; Kuwajima, Y.; Maeda, S.; Floreano, D.; Shea, H. Stretchable pumps for soft machines. Nature 2019, 572, 516–519. [Google Scholar] [CrossRef]
- Peng, X.; Dong, K.; Ye, C.; Jiang, Y.; Zhai, S.; Cheng, R.; Liu, D.; Gao, X.; Wang, J.; Wang, Z.L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, M.; Wu, R.; Patil, A.; Gong, H.; Zhu, S.; Wang, T.; Zhang, Y.; Shen, S.; Dong, K.; et al. Continuous and scalable manufacture of hybridized nano-micro triboelectric yarns for energy harvesting and signal sensing. ACS Nano 2020, 14, 4716–4726. [Google Scholar] [CrossRef]
- Hinchet, R.; Yoon, H.-J.; Ryu, H.; Kim, M.-K.; Choi, E.-K.; Kim, D.-S.; Kim, S.-W. Transcutaneous Ultrasound Energy Harvesting Using Capacitive Triboelectric Technology. Science 2019, 365, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Liu, D.; Ford, M.J.; Majidi, C. Ultrastretchable, wearable triboelectric nanogenerator based on sedimented liquid metal elastomer composite. Adv. Mater. Technol. 2020, 5, 200754. [Google Scholar] [CrossRef]
- Dickey, M.D. Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 29, 1606425. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Chen, B.; Yang, Y. Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. ACS Appl. Energy Mater. 2018, 1, 4269–4276. [Google Scholar] [CrossRef]
- Yang, P.; Wang, P.; Diao, D. Graphene nanosheets enhanced triboelectric output performances of PTFE films. ACS Appl. Electron. Mater. 2022, 4, 2839–2850. [Google Scholar] [CrossRef]
- Ding, X.; Cao, H.; Zhang, X.; Li, M.; Liu, Y. Large scale triboelectric nanogenerator and self-powered flexible sensor for human sleep monitoring. Sensors 2018, 18, 1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; He, C.; Luo, F.; Wang, H.; Peng, Z. Robust conductive hydrogels with ultrafast self-recovery and nearly zero response hysteresis for epidermal sensors. Nanomaterials 2021, 11, 1854. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Xu, X.; Lin, Y.; Cui, Y.; Peng, Z. A bilayer skin-inspired hydrogel with strong bonding interface. Nanomaterials 2022, 12, 1137. [Google Scholar] [CrossRef]
- Dhanu, T.M.; Vijoy, K.V.; Nabendu, V.N.; Narayanapillai, M.; Kachirayil, J.S.; Suresh, C.; Honey, J. Surface area enhanced Nylon-6, 6 nanofiber engineered triboelectric nanogenerator for self-powered seat monitoring applications. ACS Sustain. Chem. Eng. 2022, 10, 14126–14135. [Google Scholar]
- Yuan, X.; Yan, A.; Lai, Z.; Liu, Z.; Yu, Z.; Li, Z.; Cao, Y.; Dong, S. A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application. Nano Energy 2022, 98, 107340. [Google Scholar] [CrossRef]
- Sarkar, L.; Kandala, A.B.; Bonam, S.; Mohanty, S.; Singh, S.G.; Vanjari, S.R.K. Flexible polymer-based triboelectric nanogenerator using Poly(vinylidene fluoride) and bombyx mori silk. Mater. Today Sustain. 2022, 20, 100230. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, H.; Zhong, Y.; Shi, S.; Wang, Z.; Wang, Z.; Zhao, Y. Triboelectric nanogenerator-based near-field electrospinning system for optimizing PVDF fibers with high piezoelectric performance. ACS Appl. Mater. Interfaces 2023, 15, 5242–5252. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; He, H.; Niu, C.; Rong, M.; Huang, Y.; Wu, Y. An improved equivalent capacitance model of the triboelectric nanogenerator incorporating its surface roughness. Nano Energy 2022, 96, 107070. [Google Scholar] [CrossRef]
- Padhan, A.M.; Hajra, S.; Sahu, M.; Nayak, S.; Kim, H.J.; Alagarsamy, P. Single-electrode mode TENG using ferromagnetic NiO-Ti based nanocomposite for effective energy harvesting. Mater. Lett. 2022, 312, 131644. [Google Scholar] [CrossRef]
- Hajra, S.; Sahu, M.; Sahu, R.; Padhan, A.M.; Alagarsamy, P.; Kim, H.-G.; Lee, H.; Oh, S.; Yamauchi, Y.; Kim, H.J. Significant effect of synthesis methodologies of metal-organic frameworks upon the additively manufactured dual-mode triboelectric nanogenerator towards self-powered applications. Nano Energy 2022, 98, 107253. [Google Scholar] [CrossRef]
- Yi, J.; Dong, K.; Shen, S.; Jiang, Y.; Peng, X.; Ye, C.; Wang, Z. Fully fabric-based triboelectric nanogenerators as self-powered human–machine interactive keyboards. Nano-Micro Lett. 2021, 13, 103. [Google Scholar] [CrossRef]
- Lai, Y.; Wu, H.; Lin, H.; Chang, C.; Chou, H.; Hsiao, Y.; Wu, Y. Entirely, intrinsically, and autonomously self-healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins. Adv. Funct. Mater. 2019, 29, 1904626. [Google Scholar] [CrossRef]
- Lee, Y.; Cha, S.; Kim, Y.; Choi, D.; Sun, J. Transparent and attachable ionic communicatorsbased on self-cleanable triboelectric nanogenerators. Nat. Commun. 2018, 9, 1804. [Google Scholar] [CrossRef]
- Pu, X.; Liu, M.; Chen, X.; Sun, J.; Du, C.; Zhang, Y.; Zhai, J.; Hu, W.; Wang, Z. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Zhang, Y.; Shi, N.; Liu, Z.; Zhang, X.; Wu, M.; Pan, C.; Liu, H.; Li, L.; Wang, Z.L. Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing. Nano Energy 2019, 59, 302–310. [Google Scholar] [CrossRef]
- Sheng, F.; Yi, J.; Shen, S.; Cheng, R.; Ning, C.; Ma, L.; Peng, X.; Deng, W.; Dong, K.; Wang, Z. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors. ACS Appl. Mater. Interfaces 2021, 13, 44868–44877. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z.; Zhao, G.; Zhang, Z.; Zhao, X.; Wan, X.; Zhang, Y.; Wang, Z.; Li, L. Stretchable unsymmetrical piezoelectric BaTiO3 composite hydrogel for triboelectric nanogenerators and multimodal sensors. ACS Nano 2022, 16, 1661–1670. [Google Scholar] [CrossRef]
- Wang, J.; Cui, P.; Zhang, J.; Ge, Y.; Liu, X.; Xuan, N.; Gu, G.; Cheng, G.; Du, Z. A stretchable self-powered triboelectric tactile sensor with EGaIn alloy electrode for ultra-low-pressure detection. Nano Energy 2021, 89, 106320. [Google Scholar] [CrossRef]
- Jiang, J.; Guan, Q.; Liu, Y.; Sun, X.; Wen, Z. Abrasion and fracture self-healable triboelectric nanogenerator with ultrahigh stretchability and long-term durability. Adv. Funct. Mater. 2021, 31, 2105380. [Google Scholar] [CrossRef]
- Wang, Z. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, X.; Li, H.; Li, H.; Li, Z. Effect of humidity on tribological properties and electrification performance of sliding-mode triboelectric nanogenerator. Nano Energy 2020, 71, 104640. [Google Scholar] [CrossRef]
Device Composition | Stretchability | Detection Limit | Sensitivity | Ref. |
---|---|---|---|---|
PDMS/HTS-c-hydrogel | 900% | 1 kPa | n/a | [25] |
PDMS/PAAm hydrogel | 330% | n/a | n/a | [26] |
VHB/PAAm hydrogel | 1160% | 1.3 kPa | n/a | [27] |
PDMS/PAMPS ionogel | <300% | 0.1N | 1.76 V/N | [28] |
SA−Zn hydrogel/Ecoflex | 830% | n/a | 6.989 V/N | [29] |
PTFE/BTO nanocube/PAM hydrogel | 800% | 0.25N | 7.91 V/N | [30] |
PDMS/EGaIn | 50% | 0.23 Pa | 0.239 V/kPa | [31] |
PDMS-PU0.6-PA0.4-Zn/PDMS-PU0.6-PA0.4-Zn-NSP | 10000% | 0.25 kPa | 4.209 V/kPa | [32] |
Ecoflex/PVDF nanofibers/PACC hydrogel | 1370% | 0.25 kPa (0.1 N) | 20.1 V/N (8.03 V/kPa) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Xu, X.; He, C.; Peng, Z. Electrospun Nanofibers Hybrid Wrinkled Micropyramidal Architectures for Elastic Self-Powered Tactile and Motion Sensors. Nanomaterials 2023, 13, 1181. https://doi.org/10.3390/nano13071181
Cao Z, Xu X, He C, Peng Z. Electrospun Nanofibers Hybrid Wrinkled Micropyramidal Architectures for Elastic Self-Powered Tactile and Motion Sensors. Nanomaterials. 2023; 13(7):1181. https://doi.org/10.3390/nano13071181
Chicago/Turabian StyleCao, Zhenpeng, Xiuru Xu, Chubin He, and Zhengchun Peng. 2023. "Electrospun Nanofibers Hybrid Wrinkled Micropyramidal Architectures for Elastic Self-Powered Tactile and Motion Sensors" Nanomaterials 13, no. 7: 1181. https://doi.org/10.3390/nano13071181
APA StyleCao, Z., Xu, X., He, C., & Peng, Z. (2023). Electrospun Nanofibers Hybrid Wrinkled Micropyramidal Architectures for Elastic Self-Powered Tactile and Motion Sensors. Nanomaterials, 13(7), 1181. https://doi.org/10.3390/nano13071181