Copper(II) and Cobalt(II) Complexes Based on Abietate Ligands from Pinus Resin: Synthesis, Characterization and Their Antibacterial and Antiviral Activity against SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Materials, and Synthesis Procedure
2.2. Material Characterization
2.3. Antibacterial Test
2.4. Antiviral Test
3. Results and Discussion
3.1. Vibrational Spectroscopy (FTIR)
3.2. Mass Spectrometry (MS)
3.3. NEXAFS
3.4. XPS
3.5. Morphological (SEM) Characteristics
3.6. Colorimetric Analysis
3.7. TG-DTG
3.8. Antibacterial Activity
3.9. Antiviral Activity
4. Discussion on Advantages and Constraints of the Novel Synthesis Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farhadian, S.; Heidari-Soureshjani, E.; Hashemi-Shahraki, F.; Hasanpour-Dehkordi, A.; Uversky, V.N.; Shirani, M.; Shareghi, B.; Sadeghi, M.; Pirali, E.; Hadi-Alijanvand, S. Identification of SARS-CoV-2 Surface Therapeutic Targets and Drugs Using Molecular Modeling Methods for Inhibition of the Virus Entry. J. Mol. Struct. 2022, 1256, 132488. [Google Scholar] [CrossRef] [PubMed]
- Ou, X.; Liu, Y.; Lei, X.; Li, P.; Mi, D.; Ren, L.; Guo, L.; Guo, R.; Chen, T.; Hu, J.; et al. Characterization of Spike Glycoprotein of SARS-CoV-2 on Virus Entry and Its Immune Cross-Reactivity with SARS-CoV. Nat. Commun. 2020, 11, 1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizielińska, M.; Nawrotek, P.; Stachurska, X.; Ordon, M.; Bartkowiak, A. Packaging Covered with Antiviral and Antibacterial Coatings Based on Zno Nanoparticles Supplemented with Geraniol and Carvacrol. Int. J. Mol. Sci. 2021, 22, 1717. [Google Scholar] [CrossRef] [PubMed]
- Viana Martins, C.P.; Xavier, C.S.F.; Cobrado, L. Disinfection Methods against SARS-CoV-2: A Systematic Review. J. Hosp. Infect. 2022, 119, 84–117. [Google Scholar] [CrossRef] [PubMed]
- Ayub, M.; Othman, M.H.D.; Khan, I.U.; Yusop, M.Z.M.; Kurniawan, T.A. Graphene-Based Nanomaterials as Antimicrobial Surface Coatings: A Parallel Approach to Restrain the Expansion of COVID-19. Surf. Interfaces 2021, 27, 101460. [Google Scholar] [CrossRef]
- Lin, N.; Verma, D.; Saini, N.; Arbi, R.; Munir, M.; Jovic, M.; Turak, A. Antiviral Nanoparticles for Sanitizing Surfaces: A Roadmap to Self-Sterilizing against COVID-19. Nano Today 2021, 40, 101267. [Google Scholar] [CrossRef]
- Percivalle, E.; Clerici, M.; Cassaniti, I.; Vecchio Nepita, E.; Marchese, P.; Olivati, D.; Catelli, C.; Berri, A.; Baldanti, F.; Marone, P.; et al. SARS-CoV-2 Viability on Different Surfaces after Gaseous Ozone Treatment: A Preliminary Evaluation. J. Hosp. Infect. 2021, 110, 33–36. [Google Scholar] [CrossRef]
- Imani, S.M.; Ladouceur, L.; Marshall, T.; Maclachlan, R.; Soleymani, L.; Didar, T.F. Antimicrobial Nanomaterials and Coatings: Current Mechanisms and Future Perspectives to Control the Spread of Viruses Including SARS-CoV-2. ACS Nano 2020, 14, 12341–12369. [Google Scholar] [CrossRef]
- Minoshima, M.; Lu, Y.; Kimura, T.; Nakano, R.; Ishiguro, H.; Kubota, Y.; Hashimoto, K.; Sunada, K. Comparison of the Antiviral Effects of Solid-State Copper and Silver Compounds. J. Hazard. Mater. 2016, 312, 1–7. [Google Scholar] [CrossRef]
- Besold, A.N.; Culbertson, E.M.; Culotta, V.C. The Yin and Yang of Copper during Infection. J. Biol. Inorg. Chem. 2016, 21, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Shionoiri, N.; Sato, T.; Fujimori, Y.; Nakayama, T.; Nemoto, M.; Matsunaga, T.; Tanaka, T. Investigation of the Antiviral Properties of Copper Iodide Nanoparticles against Feline Calicivirus. J. Biosci. Bioeng. 2012, 113, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Delehanty, J.B.; Bongard, J.E.; Thach, D.C.; Knight, D.A.; Hickey, T.E.; Chang, E.L. Antiviral Properties of Cobalt(III)-Complexes. Bioorg. Med. Chem. 2008, 16, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Rani, I.; Goyal, A.; Bhatnagar, M.; Manhas, S.; Goel, P.; Pal, A.; Prasad, R. Potential Molecular Mechanisms of Zinc- and Copper-Mediated Antiviral Activity on COVID-19. Nutr. Res. 2021, 92, 109–128. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Deshmukh, K.; Mustansar Hussain, C.; Khadheer Pasha, S.K. 2D MXenes for Combatting COVID-19 Pandemic: A Perspective on Latest Developments and Innovations. FlatChem 2022, 33, 100377. [Google Scholar] [CrossRef]
- Rastogi, A.; Singh, A.; Naik, K.; Mishra, A.; Chaudhary, S.; Manohar, R.; Singh Parmar, A. A Systemic Review on Liquid Crystals, Nanoformulations and Its Application for Detection and Treatment of SARS-CoV-2 (COVID-19). J. Mol. Liq. 2022, 362, 119795. [Google Scholar] [CrossRef]
- Ghasemi, L.; Hasanzadeh Esfahani, M.; Abbasi, A.; Behzad, M. Synthesis and Crystal Structures of New Mixed-Ligand Schiff Base Complexes Containing N-Donor Heterocyclic Co-Ligands: Molecular Docking and Pharmacophore Modeling Studies on the Main Proteases of SARS-CoV-2 Virus (COVID-19 Disease). Polyhedron 2022, 220, 115825. [Google Scholar] [CrossRef]
- Tretyakova, E.V.; Smirnova, I.E.; Salimova, E.V.; Odinokov, V.N. Synthesis and Antiviral Activity of Maleopimaric and Quinopimaric Acids’ Derivatives. Bioorg. Med. Chem. 2015, 23, 6543–6550. [Google Scholar] [CrossRef]
- De Oliveira Junkes, C.F.; Duz, J.V.V.; Kerber, M.R.; Wieczorek, J.; Galvan, J.L.; Fett, J.P.; Fett-Neto, A.G. Resinosis of Young Slash Pine (Pinus elliottii Engelm.) as a Tool for Resin Stimulant Paste Development and High Yield Individual Selection. Ind. Crops Prod. 2019, 135, 179–187. [Google Scholar] [CrossRef]
- Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Naguyen, T.T.H.; Park, S.J.; Chang, J.S.; Park, K.H.; et al. Biflavonoids from Torreya Nucifera Displaying SARS-CoV 3CLpro Inhibition. Bioorg. Med. Chem. 2010, 18, 7940–7947. [Google Scholar] [CrossRef]
- Geromichalou, E.G.; Trafalis, D.T.; Dalezis, P.; Malis, G.; Psomas, G.; Geromichalos, G.D. In Silico Study of Potential Antiviral Activity of Copper(II) Complexes with Non–Steroidal Anti–Inflammatory Drugs on Various SARS–CoV–2 Target Proteins. J. Inorg. Biochem. 2022, 231, 111805. [Google Scholar] [CrossRef]
- Karges, J.; Cohen, S.M. Metal Complexes as Antiviral Agents for SARS-CoV-2. ChemBioChem 2021, 22, 2600–2607. [Google Scholar] [CrossRef] [PubMed]
- De Souza Correa, J.; dos Santos, R.R.; Anaissi, F.J. Purification and Characterization of Colophony Extracted of Pinus elliottii (Engelm, Var. Elliottii). Orbital 2018, 10, 200–203. [Google Scholar] [CrossRef]
- Correa, J.S.; Primo, J.O.; Bittencourt, C.; Horsth, D.F.L.; Radovanovic, E.; Silveira-Jr, A.T.; Toma, H.E.; Zanette, C.M.; Anaissi, F.J. Experimental Data for Green Synthesis of Zn-Abietate Complex from Natural Resin. Data Br. 2022, 40, 107776. [Google Scholar] [CrossRef] [PubMed]
- Correa, J.S.; Primo, J.O.; Bittencourt, C.; Horsth, D.F.L.; Radovanovic, E.; Silveira-Jr, A.T.; Toma, H.E.; Zanette, C.M.; Anaissi, F.J. Ecofriendly Synthesis of Zn-Abietate Complex Derived from Pinus elliottii Resin and Its Application as an Antibacterial Pigment against S. aureus and E. coli. Dye. Pigment. 2022, 197, 109946. [Google Scholar] [CrossRef]
- Guttmann, P.; Werner, S.; Siewert, F.; Sokolov, A.; Schmidt, J.-S.; Mast, M.; Brzhezinskaya, M.; Jung, C.; Follath, R.; Schneider, G. The New HZB X-Ray Microscopy Beamline U41-PGM1-XM at BESSY II. Microsc. Microanal. 2018, 24, 206–207. [Google Scholar] [CrossRef] [Green Version]
- Werner, S.; Guttmann, P.; Siewert, F.; Sokolov, A.; Mast, M.; Huang, Q.; Feng, Y.; Li, T.; Senf, F.; Follath, R.; et al. Spectromicroscopy of Nanoscale Materials in the Tender X-Ray Regime Enabled by a High Efficient Multilayer-Based Grating Monochromator. Small Methods 2023, 7, 1–9. [Google Scholar] [CrossRef]
- Cheung, V. Uniform Color Spaces. In Handbook of Visual Display Technology; Springer: Berlin/Heidelberg, Germany, 2016; pp. 187–196. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M02-A12: Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition. Clin. Lab. Stand. Inst. 2015, 35, 73. [Google Scholar]
- Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.A.; Romanos, G.E.; Katsaros, F.K. Metal-Carboxylate Interactions in Metal-Alginate Complexes Studied with FTIR Spectroscopy. Carbohydr. Res. 2010, 345, 469–473. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships between the Carbon-Oxygen Stretching Frequencies of Carboxylate Complexes and the Type of Carboxylate Coordination. Coord. Chem. Rev. 2005, 33, 227–250. [Google Scholar] [CrossRef]
- Palacios, E.G.; Juárez-López, G.; Monhemius, A.J. Infrared Spectroscopy of Metal Carboxylates: II. Analysis of Fe(III), Ni and Zn Carboxylate Solutions. Hydrometallurgy 2004, 72, 139–148. [Google Scholar] [CrossRef]
- Neuville, D.R.; Cormier, L.; Flank, A.-M.; Prado, R.J.; Lagarde, P. Na K-Edge XANES Spectra of Minerals and Glasses. Eur. J. Mineral. 2004, 16, 809–816. [Google Scholar] [CrossRef]
- Ragoen, C.; Cormier, L.; Bidegaray, A.I.; Vives, S.; Henneman, F.; Trcera, N.; Godet, S. A XANES Investigation of the Network-Modifier Cations Environment before and after the Na+/K+ Ion-Exchange in Silicate Glasses. J. Non-Cryst. Solids 2018, 479, 97–104. [Google Scholar] [CrossRef]
- Singh, J.P.; Gautam, S.; Lim, W.C.; Asokan, K.; Singh, B.B.; Raju, M.; Chaudhary, S.; Kabiraj, D.; Kanjilal, D.; Lee, J.M.; et al. Electronic Structure of Magnetic Fe/MgO/Fe/Co Multilayer Structure by NEXAFS Spectroscopy. Vacuum 2017, 138, 48–54. [Google Scholar] [CrossRef]
- Zhu, D.; Cao, Q.; Qiao, R.; Zhu, S.; Yang, W.; Xia, W.; Tian, Y.; Liu, G.; Yan, S. Oxygen Vacancies Controlled Multiple Magnetic Phases in Epitaxial Single Crystal Co0.5(Mg0.55Zn0.45)0.5O1-v Thin Films. Sci. Rep. 2016, 6, 24188. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, Z.; Cheong, W.C.; Zhang, C.; Zheng, L.; Yan, W.; Yu, R.; Chen, C.; Li, Y. Nitrogen-Coordinated Cobalt Nanocrystals for Oxidative Dehydrogenation and Hydrogenation of N-Heterocycles. Chem. Sci. 2019, 10, 5345–5352. [Google Scholar] [CrossRef] [Green Version]
- Istomin, S.Y.; Tyablikov, O.A.; Kazakov, S.M.; Antipov, E.V.; Kurbakov, A.I.; Tsirlin, A.A.; Hollmann, N.; Chin, Y.Y.; Lin, H.J.; Chen, C.T.; et al. An Unusual High-Spin Ground State of Co3+ in Octahedral Coordination in Brownmillerite-Type Cobalt Oxide. Dalt. Trans. 2015, 44, 10708–10713. [Google Scholar] [CrossRef]
- Gurevich, A.B.; Bent, B.E.; Teplyakov, A.V.; Chen, J.G. NEXAFS Investigation of the Formation and Decomposition of CuO and Cu2O Thin Films on Cu(100). Surf. Sci. 1999, 442, L971–L976. [Google Scholar] [CrossRef]
- Sivkov, D.V.; Petrova, O.V.; Nekipelov, S.V.; Vinogradov, A.S.; Skandakov, R.N.; Isaenko, S.I.; Ob’edkov, A.M.; Kaverin, B.S.; Vilkov, I.V.; Korolev, R.I.; et al. The Identification of Cu–o–c Bond in Cu/Mwcnts Hybrid Nanocomposite by Xps and Nexafs Spectroscopy. Nanomaterials 2021, 11, 2993. [Google Scholar] [CrossRef]
- Wu, Z.W.; Tyan, S.L.; Chen, H.H.; Huang, J.C.A.; Huang, Y.C.; Lee, C.R.; Mo, T.S. Temperature-Dependent Photoluminescence and XPS Study of ZnO Nanowires Grown on Flexible Zn Foil via Thermal Oxidation. Superlattices Microstruct. 2017, 107, 38–43. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Bedar, A.; Tewari, P.K.; Bindal, R.C.; Kar, S. Enhancing γ-Radiation Resistant Property of Polysulfone Membranes with Carboxylated Nanodiamond: Impact and Effect of Surface Tunability. Appl. Surf. Sci. 2020, 507, 144897. [Google Scholar] [CrossRef]
- Carvalho, M.F.N.N.; Botelho do Rego, A.M.; Galvão, A.M.; Herrmann, R.; Marques, F. Search for Cytotoxic Compounds against Ovarian Cancer Cells: Synthesis, Characterization and Assessment of the Activity of New Camphor Carboxylate and Camphor Carboxamide Silver Complexes. J. Inorg. Biochem. 2018, 188, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Lopez, T.; Cuevas, J.L.; Ilharco, L.; Ramírez, P.; Rodríguez-Reinoso, F.; Rodríguez-Castellón, E. XPS Characterization and E. coli DNA Degradation Using Functionalized Cu/TiO2 Nanobiocatalysts. Mol. Catal. 2018, 449, 62–71. [Google Scholar] [CrossRef]
- Dias, C.O.; dos Santos Opuski de Almeida, J.; Pinto, S.S.; de Oliveira Santana, F.C.; Verruck, S.; Müller, C.M.O.; Prudêncio, E.S.; de Mello Castanho Amboni, R.D. Development and Physico-Chemical Characterization of Microencapsulated Bifidobacteria in Passion Fruit Juice: A Functional Non-Dairy Product for Probiotic Delivery. Food Biosci. 2018, 24, 26–36. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Y.; Ni, C.; Yu, L. Preparation and Evaluation of Natural Rosin-Based Zinc Resins for Marine Antifouling. Prog. Org. Coatings 2021, 157, 106270. [Google Scholar] [CrossRef]
- Solanki, A.; Sadhu, M.H.; Patel, S.; Devkar, R.; Kumar, S.B. Ternary Complexes of Copper(II) and Cobalt(II) Carboxylate with Pyrazole Based Ligand: Syntheses, Characterization, Structures, and Bioactivities. Polyhedron 2015, 102, 267–275. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Liu, H.; Yang, X.; Shan, Y.; Xu, X.; Shang, S.; Song, Z. Dual-Functional Antimicrobial Coating Based on a Quaternary Ammonium Salt from Rosin Acid with in Vitro and in Vivo Antimicrobial and Antifouling Properties. Chem. Eng. J. 2019, 374, 564–575. [Google Scholar] [CrossRef]
- Kong, Q.; Li, Z.; Ding, F.; Ren, X. Hydrophobic N-Halamine Based POSS Block Copolymer Porous Films with Antibacterial and Resistance of Bacterial Adsorption Performances. Chem. Eng. J. 2021, 410, 128407. [Google Scholar] [CrossRef]
- Motshekga, S.C.; Sinha Ray, S.; Maity, A. Synthesis and Characterization of Alginate Beads Encapsulated Zinc Oxide Nanoparticles for Bacteria Disinfection in Water. J. Colloid Interface Sci. 2018, 512, 686–692. [Google Scholar] [CrossRef]
- Hikku, G.S.; Jeyasubramanian, K.; Vignesh Kumar, S. Nanoporous MgO as Self-Cleaning and Anti-Bacterial Pigment for Alkyd Based Coating. J. Ind. Eng. Chem. 2017, 52, 168–178. [Google Scholar] [CrossRef]
- Turlybekuly, A.; Pogrebnjak, A.D.; Sukhodub, L.F.; Sukhodub, L.B.; Kistaubayeva, A.S.; Savitskaya, I.S.; Shokatayeva, D.H.; Bondar, O.V.; Shaimardanov, Z.K.; Plotnikov, S.V.; et al. Synthesis, Characterization, in Vitro Biocompatibility and Antibacterial Properties Study of Nanocomposite Materials Based on Hydroxyapatite-Biphasic ZnO Micro- and Nanoparticles Embedded in Alginate Matrix. Mater. Sci. Eng. C 2019, 104, 109965. [Google Scholar] [CrossRef] [PubMed]
- Zelenák, V.; Györyová, K.; Mlynarcík, D. Antibacterial and Antifungal Activity of Zinc(II) Carboxylates with/without N-Donor Organic Ligands. Met. Based. Drugs 2001, 8, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hijazi, A.K.; Taha, Z.A.; Abuhamad, N.J.; Al-Momani, W.M. Synthesis, and Characterization of Some Cu(I) Complexes Having Propionitrile and Pyridine Moieties: An Investigation on Their Antibacterial Properties. J. Saudi Chem. Soc. 2021, 25, 101387. [Google Scholar] [CrossRef]
- Woźniczka, M.; Świątek, M.; Sutradhar, M.; Gądek-Sobczyńska, J.; Chmiela, M.; Gonciarz, W.; Pasternak, B.; Pająk, M. Equilibria of Complexes in the Aqueous Cobalt(II)–N-(2-Hydroxybenzyl)Phenylalanine System and Their Biological Activity Compared to Analogous Schiff Base Structures. Comput. Struct. Biotechnol. J. 2023, 21, 1312–1323. [Google Scholar] [CrossRef] [PubMed]
- Ragab, A.; Ammar, Y.A.; Ezzat, A.; Mahmoud, A.M.; Mohamed, M.B.I.; El-Tabl, A.S.; Farag, R.S. Synthesis, Characterization, Thermal Properties, Antimicrobial Evaluation, ADMET Study, and Molecular Docking Simulation of New Mono Cu (II) and Zn (II) Complexes with 2-Oxoindole Derivatives. Comput. Biol. Med. 2022, 145, 105473. [Google Scholar] [CrossRef] [PubMed]
- Yernale, N.G.; Matada, B.S.; Vibhutimath, G.B.; Biradar, V.D.; Karekal, M.R.; Udayagiri, M.D.; Hire Mathada, M.B. Indole Core-Based Copper(II), Cobalt(II), Nickel(II) and Zinc(II) Complexes: Synthesis, Spectral and Biological Study. J. Mol. Struct. 2022, 1248, 131410. [Google Scholar] [CrossRef]
- Paton, S.; Spencera, A.; Garratta, I.; Thompsona, K.-A.; Dinesha, I.; Aranega-Boua, P.; Stevensona, D.; Clarka, S.; Dunningb, J.; Bennetta, A.; et al. Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Virus and Viral RNA in Relation to Surface Type and Contamination Concentration. Appl. Environ. Microbiol. 2021, 87, e0052621. [Google Scholar] [CrossRef]
- Fei, B.L.; Tu, S.; Wei, Z.; Wang, P.; Qiao, C.; Chen, Z.F. Optically Pure Chiral Copper(II) Complexes of Rosin Derivative as Attractive Anticancer Agents with Potential Anti-Metastatic and Anti-Angiogenic Activities. Eur. J. Med. Chem. 2019, 176, 175–186. [Google Scholar] [CrossRef]
Sample | υas (cm−1) | υs (cm−1) | Δυ (cm−1) * | Coordinating Mode |
---|---|---|---|---|
Na-abietate | 1544 | 1397 | 147 | - |
Co-abietate | 1570 | 1411 | 159 | Bidentate |
Cu-abietate | 1597 | 1402 | 195 | Unidentate |
Research | Strain | Compound | MIC |
---|---|---|---|
[54] | S. aureus | [Cu(C2H5CN)4] [B(C6F5)4] | 32 (μg/mL) |
[55] | S. aureus and E. coli | Co (II)–PhAlaSal | 1.82 (mg/mL) |
[56] | S. aureus and E. coli | [C22H23CuN5O6S2]2H2O | 3.9 and 6.63 (μg/mL) |
[57] | E. coli | [Cu(L)(Cl)(H2O)2] and [Co(L)(Cl)(H2O)2] | 12.50 (μg/mL) |
[47] | S. aureus and E. coli | Cu(II) and Co(II) complexes | 200 (mg/mL) |
This work | S. aureus and E. coli | Co and Cu-abietate | 4.50 (μg/mL) |
Sample | Decrease (Log) |
---|---|
Control (Copper) | 2.90 b |
Acrylic paint | 1.50 c |
Co-abietate | >4 a |
Cu-abietate | >4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correa, J.d.S.; Primo, J.d.O.; Balaba, N.; Pratsch, C.; Werner, S.; Toma, H.E.; Anaissi, F.J.; Wattiez, R.; Zanette, C.M.; Onderwater, R.C.A.; et al. Copper(II) and Cobalt(II) Complexes Based on Abietate Ligands from Pinus Resin: Synthesis, Characterization and Their Antibacterial and Antiviral Activity against SARS-CoV-2. Nanomaterials 2023, 13, 1202. https://doi.org/10.3390/nano13071202
Correa JdS, Primo JdO, Balaba N, Pratsch C, Werner S, Toma HE, Anaissi FJ, Wattiez R, Zanette CM, Onderwater RCA, et al. Copper(II) and Cobalt(II) Complexes Based on Abietate Ligands from Pinus Resin: Synthesis, Characterization and Their Antibacterial and Antiviral Activity against SARS-CoV-2. Nanomaterials. 2023; 13(7):1202. https://doi.org/10.3390/nano13071202
Chicago/Turabian StyleCorrea, Jamille de S., Julia de O. Primo, Nayara Balaba, Christoph Pratsch, Stephan Werner, Henrique E. Toma, Fauze J. Anaissi, Ruddy Wattiez, Cristina M. Zanette, Rob C. A. Onderwater, and et al. 2023. "Copper(II) and Cobalt(II) Complexes Based on Abietate Ligands from Pinus Resin: Synthesis, Characterization and Their Antibacterial and Antiviral Activity against SARS-CoV-2" Nanomaterials 13, no. 7: 1202. https://doi.org/10.3390/nano13071202
APA StyleCorrea, J. d. S., Primo, J. d. O., Balaba, N., Pratsch, C., Werner, S., Toma, H. E., Anaissi, F. J., Wattiez, R., Zanette, C. M., Onderwater, R. C. A., & Bittencourt, C. (2023). Copper(II) and Cobalt(II) Complexes Based on Abietate Ligands from Pinus Resin: Synthesis, Characterization and Their Antibacterial and Antiviral Activity against SARS-CoV-2. Nanomaterials, 13(7), 1202. https://doi.org/10.3390/nano13071202