Role of Honey as a Bifunctional Reducing and Capping/Stabilizing Agent: Application for Silver and Zinc Oxide Nanoparticles
Abstract
:1. Introduction
1.1. Reducing Agent
1.2. Capping/Stabilising Agents
1.3. Bifunctional Reducing and Capping Agents
2. Honey
Honey as Bifunctional Reducing and Capping/Stabilising Agent
3. Silver and Zinc Oxide Nanoparticles
3.1. Honey-Mediated Silver Nanoparticles
3.2. Honey-Mediated Zinc Oxide Nanoparticles
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villaverde-Cantizano, G.; Contreras-Cáceres, R. Reducing Agents in Colloidal Nanoparticle Synthesis—An Introduction. In Reducing Agents in Colloidal Nanoparticle Synthesis; The Royal Society of Chemistry: London, UK, 2021; pp. 1–27. ISBN 9781839163623. [Google Scholar]
- Saravanan, A.; Kumar, P.S.; Karishma, S.; Vo, D.V.N.; Jeevanantham, S.; Yaashikaa, P.R.; George, C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere 2021, 264, 128580. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Tang, S.Y.; Yun, G.; Li, H.; Zhang, Y.; Qiao, R.; Li, W. Modular and Integrated Systems for Nanoparticle and Microparticle Synthesis—A Review. Biosensors 2020, 10, 165. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, H.; Venkat Kumar, S.; Rajeshkumar, S. A review on green synthesis of zinc oxide nanoparticles—An eco-friendly approach. Resour. Technol. 2017, 3, 406–413. [Google Scholar] [CrossRef]
- Reverberi, A.P.; Vocciante, M.; Lunghi, E.; Pietrelli, L. New Trends in the Synthesis of Nanoparticles by Green Methods. Chem. Eng. Trans. 2017, 61, 667–672. [Google Scholar] [CrossRef]
- Indumathy, R.; Sreeram, K.J.; Sriranjani, M.; Aby, C.P.; Nair, B.U. Bifunctional Role of Thiosalicylic Acid in the Synthesis of Silver Nanoparticles. Mater. Sci. Appl. 2010, 01, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Ajitha, B.; Kumar Reddy, Y.A.; Reddy, P.S.; Jeon, H.J.; Ahn, C.W. Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Adv. 2016, 6, 36171–36179. [Google Scholar] [CrossRef]
- Suriati, G.; Mariatti, M.; Azizan, A. Synthesis of Silver Nanoparticles by Chemical Reduction Method: Effect of Reducing Agent and Surfactant Concentration. Int. J. Autom. Mech. Eng. 2014, 10, 1920–1927. [Google Scholar] [CrossRef]
- Drummer, S.; Madzimbamuto, T.; Chowdhury, M. Green synthesis of transition-metal nanoparticles and their oxides: A review. Materials 2021, 14, 2700. [Google Scholar] [CrossRef]
- Muthivhi, R.; Parani, S.; May, B.; Oluwafemi, O.S. Green synthesis of gelatin-noble metal polymer nanocomposites for sensing of Hg2+ ions in aqueous media. Nano-Struct. Nano-Objects 2018, 13, 132–138. [Google Scholar] [CrossRef]
- Filippi, A.; Mattiello, A.; Musetti, R.; Petrussa, E.; Braidot, E.; Marchiol, L. Green synthesis of Ag nanoparticles using plant metabolites. AIP Conf. Proc. 2017, 1873, 020004. [Google Scholar]
- Batool, F.; Iqbal, M.S.; Khan, S.U.D.; Khan, J.; Ahmed, B.; Qadir, M.I. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Sci. Rep. 2021, 11, 22132. [Google Scholar] [CrossRef] [PubMed]
- Lilhare, D.; Khare, A. Chemical bath deposited (Cd0.85-Zn0.15)S nanocrystalline film: Influence of capping agent on various characterizations. Mater. Chem. Phys. 2021, 270, 124835. [Google Scholar] [CrossRef]
- Basnet, P.; Chatterjee, S. Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Struct. Nano-Objects 2020, 22, 100426. [Google Scholar] [CrossRef]
- Javed, R.; Zia, M.; Naz, S.; Aisida, S.O.; ul Ain, N.; Ao, Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J. Nanobiotechnol. 2020, 18, 172. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Sachdeva, M.; Bhasin, K.K. Capping Agents in Nanoparticle Synthesis: Surfactant and Solvent System. AIP Conf. Proc. 2018, 1953, 030214. [Google Scholar]
- Vaseghi, Z.; Nematollahzadeh, A.; Tavakoli, O. Green methods for the synthesis of metal nanoparticles using biogenic reducing agents: A review. Rev. Chem. Eng. 2017, 34, 529–559. [Google Scholar] [CrossRef]
- Gusrizal, G.; Santosa, S.J.; Kunarti, E.S.; Rusdiarso, B. Dual function of p-hydroxy benzoic acid as reducing and capping agent in rapid and simple formation of stable silver nanoparticles. Int. J. ChemTech Res. 2016, 9, 472–482. [Google Scholar]
- Zahoor, M.; Nazir, N.; Iftikhar, M.; Naz, S.; Zekker, I.; Burlakovs, J.; Uddin, F.; Kamran, A.W.; Kallistova, A.; Pimenov, N.; et al. A review on silver nanoparticles: Classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment. Water 2021, 13, 2216. [Google Scholar] [CrossRef]
- Mohamad, N.A.N.; Arham, N.A.; Jai, J.; Hadi, A. Plant extract as reducing agent in synthesis of metallic nanoparticles: A review. Adv. Mater. Res. 2014, 832, 350–355. [Google Scholar] [CrossRef]
- Prakash, M.; Kavitha, H.P.; Abinaya, S.; Vennila, J.P.; Lohita, D. Green synthesis of bismuth based nanoparticles and its applications—A review. Sustain. Chem. Pharm. 2022, 25, 100547. [Google Scholar] [CrossRef]
- Rao, P.V.; Krishnan, K.T.; Salleh, N.; Gan, S.H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Braz. J. Pharmacogn. 2016, 26, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. Honey-based medicinal formulations: A critical review. Appl. Sci. 2021, 11, 5159. [Google Scholar] [CrossRef]
- Balasooriya, E.R.; Jayasinghe, C.D.; Jayawardena, U.A.; Ruwanthika, R.W.D.; De Silva, R.M.; Udagama, P.V. Honey Mediated Green Synthesis of Nanoparticles: New Era of Safe Nanotechnology. J. Nanomater. 2017, 2017, 5919836. [Google Scholar] [CrossRef]
- Zulkhairi Amin, F.A.; Sabri, S.; Mohammad, S.M.; Ismail, M.; Chan, K.W.; Ismail, N.; Norhaizan, M.E.; Zawawi, N. Therapeutic properties of stingless bee honey in comparison with european bee honey. Adv. Pharmacol. Sci. 2018, 2018, 6179596. [Google Scholar] [CrossRef] [PubMed]
- Ghramh, H.A.; Ibrahim, E.H.; Kilany, M. Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles production by Sidr honey from three different sources. Food Sci. Nutr. 2020, 8, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Gośliński, M.; Nowak, D.; Szwengiel, A. Multidimensional comparative analysis of bioactive phenolic compounds of honeys of various origin. Antioxidants 2021, 10, 530. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.; Mat-Khamir, N.F.; Sanny, M. Antibacterial Activity of Malaysian Produced Stingless-bee Honey on Wound Pathogen. J. Sustain. Sci. Manag. 2019, 14, 67–79. [Google Scholar]
- Sharin, S.N.; Sani, M.S.A.; Jaafar, M.A.; Yuswan, M.H.; Kassim, N.K.; Manaf, Y.N.; Wasoh, H.; Zaki, N.N.M.; Hashim, A.M. Discrimination of Malaysian stingless bee honey from different entomological origins based on physicochemical properties and volatile compound profiles using chemometrics and machine learning. Food Chem. 2021, 346, 128654. [Google Scholar] [CrossRef]
- Lanjwani, M.F.; Channa, F.A. Minerals content in different types of local and branded honey in Sindh, Pakistan. Heliyon 2019, 5, E02042. [Google Scholar] [CrossRef] [Green Version]
- Shamsudin, S.; Selamat, J.; Sanny, M.; Abd. Razak, S.B.; Jambari, N.N.; Mian, Z.; Khatib, A. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int. J. Food Prop. 2019, 22, 238–263. [Google Scholar] [CrossRef] [Green Version]
- Kamal, D.A.M.; Ibrahim, S.F.; Kamal, H.; Kashim, M.I.A.M.; Mokhtar, M.H. Physicochemical and medicinal properties of Tualang, Gelam and Kelulut honeys: A comprehensive review. Nutrients 2021, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Haron, H.; Talib, R.A.; Subramaniam, P.; Arifen, Z.N.Z.; Ibrahim, M. A Comparison of Chemical Compositions in Kelulut Honey from Different Regions. Malays. J. Anal. Sci. 2022, 26, 447–456. [Google Scholar]
- De Sousa, J.M.B.; de Souza, E.L.; Marques, G.; Benassi, M.d.T.; Gullón, B.; Pintado, M.M.; Magnani, M. Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT—Food Sci. Technol. 2016, 65, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Al-Brahim, J.S.; Mohammed, A.E. Antioxidant, cytotoxic and antibacterial potential of biosynthesized nanoparticles using bee honey from two different floral sources in Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 363–373. [Google Scholar] [CrossRef]
- El-Desouky, T.A.; Ammar, H.A.M. Honey mediated silver nanoparticles and their inhibitory effect on aflatoxins and ochratoxin A. J. Appl. Pharm. Sci. 2016, 6, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Bonsignore, G.; Patrone, M.; Martinotti, S.; Ranzato, E. “Green” Biomaterials: The Promising Role of Honey. J. Funct. Biomater. 2021, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.M.S.; Kashef, M.T.; Rasmy, S.A.; Aboul-Magd, D.S.; El-Bazza, Z.E. Antimicrobial activity of silver nanoparticles synthesized using honey and gamma radiation against silver-resistant bacteria from wounds and burns. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Al-Zaban, M.I.; Mahmoud, M.A.; AlHarbi, M.A. Catalytic degradation of methylene blue using silver nanoparticles synthesized by honey. Saudi J. Biol. Sci. 2021, 28, 2007–2013. [Google Scholar] [CrossRef]
- Philip, D. Honey mediated green synthesis of gold nanoparticles. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2009, 73, 650–653. [Google Scholar] [CrossRef]
- Al-musawi, S.; Albukhaty, S.; Al-karagoly, H. Antibacterial Activity of Honey/Chitosan Nanofibers Loaded with Capsaicin and Gold Nanoparticles for Wound Dressing. Molecules 2020, 25, 4770. [Google Scholar] [CrossRef]
- Philip, D. Honey mediated green synthesis of silver nanoparticles. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2010, 75, 1078–1081. [Google Scholar] [CrossRef]
- Haiza, H.; Azizan, A.; Mohidin, A.H.; Halin, D.S.C. Green Synthesis of Silver Nanoparticles Using Local Honey. Nano Hybrids 2013, 4, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Cai, X.; Nelson, K.; Xing, W.; Xia, J.; Zhang, R.; Stacy, A.J.; Luderer, M.; Lanza, G.M.; Wang, L.V.; et al. A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging. Nano Res. 2013, 6, 312–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venu, R.; Ramulu, T.S.; Anandakumar, S.; Rani, V.S.; Kim, C.G. Bio-directed synthesis of platinum nanoparticles using aqueous honey solutions and their catalytic applications. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 733–738. [Google Scholar] [CrossRef]
- Reddy, S.M.; Datta, K.K.R.; Sreelakshmi, C.; Eswaramoorthy, M.; Reddy, B.V.S. Honey mediated green synthesis of Pd nanoparticles for suzuki coupling and hydrogenation of conjugated olefins. Nanosci. Nanotechnol. Lett. 2012, 4, 420–425. [Google Scholar] [CrossRef]
- Rayani Nivethitha, P.; Carolin Jeniba Rachel, D. A study of antioxidant and antibacterial activity using honey mediated Chromium oxide nanoparticles and its characterization. Mater. Today Proc. 2019, 48, 276–281. [Google Scholar] [CrossRef]
- Bahari, N.; Hashim, N.; Md Akim, A.; Maringgal, B. Recent Advances in Honey-Based Nanoparticles for Wound Dressing: A Review. Nanomaterials 2022, 12, 2560. [Google Scholar] [CrossRef]
- Liu, Y.S.; Chang, Y.C.; Chen, H.H. Silver nanoparticle biosynthesis by using phenolic acids in rice husk extract as reducing agents and dispersants. J. Food Drug Anal. 2018, 26, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Al Habsi, F.S.; Al Dholi, H.M.; Al-Musallami, S.T.; Al Sharji, W.H.; Reddy, S.H. Green synthesis, characterization and optimization of silver nanoparticles using honey and antimicrobial study with food supplements. Indian J. Nat. Prod. Resour. 2019, 10, 150–157. [Google Scholar]
- Maringgal, B.; Hashim, N.; Tawakkal, I.S.M.A.; Hamzah, M.H.; Mohamed, M.T.M. Biosynthesis of CaO nanoparticles using Trigona sp. Honey: Physicochemical characterization, antifungal activity, and cytotoxicity properties. J. Mater. Res. Technol. 2020, 9, 11756–11768. [Google Scholar] [CrossRef]
- Ismail, N.A.; Shameli, K.; Wong, M.M.T.; Teow, S.Y.; Chew, J.; Sukri, S.N.A.M. Antibacterial and cytotoxic effect of honey mediated copper nanoparticles synthesized using ultrasonic assistance. Mater. Sci. Eng. C 2019, 104, 109899. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, H.; Azhar, M.; Bashir, M.; Riaz, S.; Kayani, Z.N.; Naseem, S. Effect of capping agent on microwave assisted sol-gel synthesized zirconia coatings for optical applications. Optik 2020, 222, 165297. [Google Scholar] [CrossRef]
- Czernel, G.; Bloch, D.; Matwijczuk, A.; Cieśla, J.; Kędzierska-matysek, M.; Florek, M.; Gagoś, M. Biodirected synthesis of silver nanoparticles using aqueous honey solutions and evaluation of their antifungal activity against pathogenic Candida spp. Int. J. Mol. Sci. 2021, 22, 7715. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, E.; Basirun, W.J.; Rezayi, M.; Shameli, K.; Nourmohammadi, E.; Khandanlou, R.; Izadiyan, Z.; Sarkarizi, H.K. Ultrasmall Superparamagnetic Fe3O4 Nanoparticles: Honey-based Green and Facile Synthesis and In Vitro Viability Assay. Int. J. Nanomed. 2018, 13, 6903–6911. [Google Scholar] [CrossRef] [Green Version]
- Zayadi, R.A.; Abu Bakar, F.; Ahmad, M.K. Elucidation of synergistic effect of eucalyptus globulus honey and Zingiber officinale in the synthesis of colloidal biogenic gold nanoparticles with antioxidant and catalytic properties. Sustain. Chem. Pharm. 2019, 13, 100156. [Google Scholar] [CrossRef]
- Manju, R.; Savi, D. Synthesis of Gold Nanoparticles from Natural Honey. Int. J. Innov. Sci. Res. Technol. 2018, 3, 253–256. [Google Scholar]
- Soni, J.; Koser, A.A. Synthesis of ZnO Nanoparticle using Different Concentration of Capping Agent. Open Int. J. Technol. Innov. Res. 2015, 16, 1–7. [Google Scholar]
- Kandarp, M.; Mihir, S. Synthesis of Silver Nanoparticles by using Sodium Borohydride as a Reducing Agent. Int. J. Eng. Res. Technol. 2013, 2, 1–5. [Google Scholar]
- Costa, I.D.; Wanderley Neto, A.D.O.; Da Silva, H.F.O.; Moraes, E.P.; Damascena Nóbrega, E.T.; Sant’anna, C.; Eugenio, M.; Da Silva Gasparotto, L.H. Dual role of a ricinoleic acid derivative in the aqueous synthesis of silver nanoparticles. J. Nanomater. 2017, 2017, 1230467. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Xu, J.; Huang, Y.; Zhu, S.; Abbes, N.; Jing, X.; Zhang, L. A review of the green synthesis of ZnO nanoparticles using plant extracts and their prospects for application in antibacterial textiles. J. Eng. Fiber. Fabr. 2021, 16, 1–14. [Google Scholar] [CrossRef]
- Das, S.; Aswani, R.; Midhun, S.J.; Radhakrishnan, E.K.; Mathew, J. Advantage of zinc oxide nanoparticles over silver nanoparticles for the management of Aeromonas veronii infection in Xiphophorus hellerii. Microb. Pathog. 2020, 147, 104348. [Google Scholar] [CrossRef] [PubMed]
- Vinay, S.P.; Chandrasekhar, N. Structural and Biological Investigation of Green Synthesized Silver and Zinc Oxide Nanoparticles. J. Inorg. Organomet. Polym. Mater. 2021, 31, 552–558. [Google Scholar] [CrossRef]
- Hu, M.; Li, C.; Li, X.; Zhou, M.; Sun, J.; Sheng, F.; Shi, S.; Lu, L. Zinc oxide/silver bimetallic nanoencapsulated in PVP/PCL nanofibres for improved antibacterial activity. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1248–1257. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, H.; Darroudi, M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceram. Int. 2017, 43, 907–914. [Google Scholar] [CrossRef]
- Kyomuhimbo, H.D.; Michira, I.N.; Mwaura, F.B.; Derese, S.; Feleni, U.; Iwuoha, E.I. Silver–zinc oxide nanocomposite antiseptic from the extract of Bidens pilosa. SN Appl. Sci. 2019, 1, 681. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Gautam, P.K.; Verma, A.; Singh, V.; Shivapriya, P.M.; Shivalkar, S.; Sahoo, A.K.; Samanta, S.K. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol. Rep. 2020, 25, e00427. [Google Scholar] [CrossRef] [PubMed]
- Jafarirad, S.; Taghizadeh, P.M.; Divband, B. Biosynthesis, Characterization and Structural Properties of a Novel Kind of Ag/ZnO Nanocomposites In Order to Increase Its Biocompatibility Across Human A549 Cell Line. Bionanoscience 2020, 10, 42–53. [Google Scholar] [CrossRef]
- Khorrami, S.; Jafari Najafabadi, F.; Zarepour, A.; Zarrabi, A. Is Astragalus gossypinus Honey a Natural Antibacterial and Cytotoxic Agent? An Investigation on A. gossypinus Honey Biological Activity and Its Green Synthesized Silver Nanoparticles. Bionanoscience 2019, 9, 603–610. [Google Scholar] [CrossRef]
- González Fá, A.J.; Juan, A.; Di Nezio, M.S. Synthesis and Characterization of Silver Nanoparticles Prepared with Honey: The Role of Carbohydrates. Anal. Lett. 2017, 50, 877–888. [Google Scholar] [CrossRef] [Green Version]
- Ghramh, H.A.; Ibrahim, E.H.; Ahmad, Z. Antimicrobial, immunomodulatory and cytotoxic activities of green synthesized nanoparticles from Acacia honey and Calotropis procera. Saudi J. Biol. Sci. 2021, 28, 3367–3373. [Google Scholar] [CrossRef] [PubMed]
- Hemmati, S.; Retzlaff-Roberts, E.; Scott, C.; Harris, M.T. Artificial sweeteners and sugar ingredients as reducing agent for green synthesis of silver nanoparticles. J. Nanomater. 2019, 2019, 22–26. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Redhwi, H.H.; Achilias, D.S.; Kosmidou, E.; Vakalopoulou, E.; Ioannidou, M.D. Green Synthesis of Silver Nanoparticles and Study of Their Antimicrobial Properties. J. Polym. Environ. 2018, 26, 423–433. [Google Scholar] [CrossRef]
- Sreelakshmi, C.; Datta, K.K.R.; Yadav, J.S.; Subba Reddy, B.V. Honey derivatized Au and Ag nanoparticles and evaluation of its antimicrobial activity. J. Nanosci. Nanotechnol. 2011, 11, 6995–7000. [Google Scholar] [CrossRef]
- Hoseini, S.J.; Darroudi, M.; Kazemi Oskuee, R.; Gholami, L.; Khorsand Zak, A. Honey-based synthesis of ZnO nanopowders and their cytotoxicity effects. Adv. Powder Technol. 2015, 26, 991–996. [Google Scholar] [CrossRef]
- Shubha, P.; Namratha, K.; Chatterjee, J.; Ms, M.; Byrappa, K. Use of Honey in Stabilization of ZnO Nanoparticles Synthesized via Hydrothermal Route and Assessment of their Antibacterial Activity and Cytotoxicity. Glob. J. Nanomed. 2017, 2, 555585. [Google Scholar] [CrossRef]
- Sharmila, M.; Jothi Mani, R.; Kader, A.; Ahmad, A.; Eldesoky, G.E.; Yahya, A.E.M.; Bahajjaj, A.A.A. Photocatalytic and biological activity of ZnO nanoparticles using honey. Coatings 2021, 11, 1046. [Google Scholar] [CrossRef]
- Jeyageetha, J.C.; Geetha, M.G.; Packiam, C.S. Synthesis of Honey Mediated Biogenic Zinc Oxide nanoparticles and Structural Parameters Investigations. JETIR 2019, 6, 882–888. [Google Scholar]
- Ranjithkumar, B.; Ramalingam, H.B.; Kumar, E.R.; Srinivas, C.; Magesh, G.; Rahale, C.S.; El-Metwaly, N.M.; Shekar, B.C. Natural fuels (Honey and Cow urine) assisted combustion synthesis of zinc oxide nanoparticles for antimicrobial activities. Ceram. Int. 2021, 47, 14475–14481. [Google Scholar] [CrossRef]
- Ranjithkumar, B.; Kumar, E.R.; Srinivas, M.; Ramalingam, H.B.; Srinivas, C.; Magesh, G.; Balamurugan, A.; Rahale, C.S.; ChandarShekar, B. Evaluation of structural, surface morphological and thermal properties of Ag-doped ZnO nanoparticles for antimicrobial activities. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 133, 114801. [Google Scholar] [CrossRef]
Type of NPs | Reducing Agent | Capping/Stabilizing Agent | Size of NPs Formed (nm) | Application of NPs | References |
---|---|---|---|---|---|
Ag | Glucose, Fructose | Protein | 4.18 to 18.17 | Antimicrobial | [38] |
Glucose, Fructose, Vitamin C | Glucose, Fructose, Protein/Enzymes | 5 to 25 | Catalytic degradation of methylene blue | [39] | |
Glucose | Protein | 4 | Na | [42] | |
Amide and amine groups, phenolic compounds, carbonyl groups | Protein | 100 | Antimicrobial | [50] | |
Glucose, Fructose | Protein | 42 to 80 | Antifungal | [54] | |
Fructose, Glucose, Sucrose, Protein/Enzyme, Vitamins, Minerals, Organic acids | Fructose, Glucose, Sucrose, Protein/Enzyme, Vitamins, Minerals, Organic acids | 15.63 to 26.05 | Na | [43] | |
Cr2O3 | Carbohydrate | Phenolic compounds | 24 | Antioxidant and antibacterial | [47] |
Au | Fructose | Protein | 15 | Na | [40] |
Fructose, Vitamin C | Protein | 14.1 to 14.5 | Antioxidant and Catalytic activity | [56] | |
Ns | Ns | 20 to 50 | Na | [57] | |
CaO | Phytochemical compounds | Protein | 100 | Antifungal | [51] |
Cu | Glucose, Fructose, Protein, Ascorbic acid | Protein, Glucose, Fructose | 3.68 | Antibacterial | [52] |
Tetragonal ZrO2 | Ns | Ns | 17.44 to 23.01 | Optical | [53] |
Fe3O4 | Fructose | Protein | 2.22 to 3.21 | Na | [55] |
Silver Salt/Precursor | Synthesis Condition | Shape | Size (nm) | Application | References |
---|---|---|---|---|---|
AgNO3 |
| Spherical | 50 to 98 | Antioxidant, antibacterial | [35] |
AgNO3 |
| Spherical | 42.7 | Antibacterial | [70] |
AgNO3 |
| Spherical | 20.0 | Na | [71] |
AgNO3 |
| - | 15.63 to 26.05 | Na | [43] |
AgNO3 |
| Spherical | 50 to 90 | Anticancer, antimicrobial, immunomodulatory | [26] |
AgNO3 |
| Spherical | 60 to 85 | Antimicrobial, immunomodulatory | [72] |
AgNO3 |
| Spherical | 42 to 80 | Antifungal | [54] |
AgNO3 |
| Spherical | 5 to 25 | Catalytic degradation of methylene blue | [39] |
Zinc Salt/Precursor | Synthesis Condition | Shape | Size (nm) | Application | References |
---|---|---|---|---|---|
Zn(NO3)2·6H2O |
| Quasi-Spherical | 39 | Photocatalytic degradation of methylene blue, antibacterial, antifungal | [78] |
Zn(NO3)2·6H2O |
| Spherical | 30 | Na | [76] |
Zn(NO3)2·6H2O |
| Plate-like and rod-like structure | 26 | Na | [79] |
Zn(NO3)2·6H2O |
| Spherical | 23 | Antimicrobial | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bahari, N.; Hashim, N.; Abdan, K.; Md Akim, A.; Maringgal, B.; Al-Shdifat, L. Role of Honey as a Bifunctional Reducing and Capping/Stabilizing Agent: Application for Silver and Zinc Oxide Nanoparticles. Nanomaterials 2023, 13, 1244. https://doi.org/10.3390/nano13071244
Bahari N, Hashim N, Abdan K, Md Akim A, Maringgal B, Al-Shdifat L. Role of Honey as a Bifunctional Reducing and Capping/Stabilizing Agent: Application for Silver and Zinc Oxide Nanoparticles. Nanomaterials. 2023; 13(7):1244. https://doi.org/10.3390/nano13071244
Chicago/Turabian StyleBahari, Norfarina, Norhashila Hashim, Khalina Abdan, Abdah Md Akim, Bernard Maringgal, and Laith Al-Shdifat. 2023. "Role of Honey as a Bifunctional Reducing and Capping/Stabilizing Agent: Application for Silver and Zinc Oxide Nanoparticles" Nanomaterials 13, no. 7: 1244. https://doi.org/10.3390/nano13071244
APA StyleBahari, N., Hashim, N., Abdan, K., Md Akim, A., Maringgal, B., & Al-Shdifat, L. (2023). Role of Honey as a Bifunctional Reducing and Capping/Stabilizing Agent: Application for Silver and Zinc Oxide Nanoparticles. Nanomaterials, 13(7), 1244. https://doi.org/10.3390/nano13071244