Unveiling the Synergy of Coupled Gold Nanoparticles and J-Aggregates in Plexcitonic Systems for Enhanced Photochemical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formation of J-Aggregates
2.3. Synthesis of AuBPs
2.4. Ligand Exchange Au-TMA
2.5. Ligand Exchange Au-MUS
2.6. Hybrid Systems
2.7. Substrate Preparation
2.8. Characterization
3. Results and Discussion
3.1. J-Aggregates
3.2. Plexcitonic Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LSPR | Localized surface plasmon resonance |
AuBPs | Gold bipyramids |
S2275 | 5-Chloro-2-[3-[5-chloro-3-(4-sulfobutyl)-3H-benzothiazol-2-ylidene]-propenyl]-3- |
(4-sulfobutyl)-benzothiazol-3-ium hydroxide, inner salt, triethylammonium salt | |
CTAB | Cetyltrimethylammonium bromide |
TMA | (11-Mercaptoundecyl)trimethylammonium bromide |
MUS | 11-Mercaptoundecane-1-sulfonic acid sodium salt |
PDDA | Poly(diallyldimethylammonium chloride) |
PL | Photoluminescence |
FLIM | Fluorescence Lifetime Imaging Microscopy |
NaCl | Sodium chloride |
References
- Manuel, A.P.; Kirkey, A.; Mahdi, N.; Shankar, K. Plexcitonics—Fundamental principles and optoelectronic applications. J. Mater. Chem. C 2019, 7, 1821–1853. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhou, W.J.; Deng, Y.H.; Zheng, Y.Q.; Shi, Z.H.; Ang, L.K.; Zhou, Z.K.; Wu, L. Plexcitonic strong coupling: Unique features, applications, and challenges. J. Phys. D Appl. Phys. 2022, 55, 203002. [Google Scholar] [CrossRef]
- Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S.J.; Scherman, O.A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J.J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Bitton, O.; Gupta, S.N.; Haran, G. Quantum dot plasmonics: From weak to strong coupling. Nanophotonics 2019, 8, 559–575. [Google Scholar] [CrossRef]
- Shi, X.; Ueno, K.; Oshikiri, T.; Sun, Q.; Sasaki, K.; Misawa, H. Enhanced water splitting under modal strong coupling conditions. Nat. Nanotechnol. 2018, 13, 953–958. [Google Scholar] [CrossRef]
- Suganami, Y.; Oshikiri, T.; Shi, X.; Misawa, H. Water Oxidation under Modal Ultrastrong Coupling Conditions Using Gold/Silver Alloy Nanoparticles and Fabry–Pérot Nanocavities. Angew. Chem. Int. Ed. 2021, 60, 18438–18442. [Google Scholar] [CrossRef]
- Lin, L.; Wang, M.; Wei, X.; Peng, X.; Xie, C.; Zheng, Y. Photoswitchable Rabi Splitting in Hybrid Plasmon–Waveguide Modes. Nano Lett. 2016, 16, 7655–7663. [Google Scholar] [CrossRef]
- Sigle, D.O.; Zhang, L.; Ithurria, S.; Dubertret, B.; Baumberg, J.J. Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting. J. Phys. Chem. Lett. 2015, 6, 1099–1103. [Google Scholar] [CrossRef]
- Oshikiri, T.; Jo, H.; Shi, X.; Misawa, H. Boosting Hydrogen Evolution at Visible Light Wavelengths by Using a Photocathode with Modal Strong Coupling between Plasmons and a Fabry-Pérot Nanocavity. Eur. J. Chem. 2022, 28, e202200288. [Google Scholar] [CrossRef]
- Yang, X.; Yu, H.; Guo, X.; Ding, Q.; Pullerits, T.; Wang, R.; Zhang, G.; Liang, W.; Sun, M. Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction. Mat. Today Energy 2017, 5, 72–78. [Google Scholar] [CrossRef]
- Hendel, T.; Krivenkov, V.; Sánchez-Iglesias, A.; Grzelczak, M.; Rakovich, Y.P. Strongly coupled exciton–plasmon nanohybrids reveal extraordinary resistance to harsh environmental stressors: Temperature, pH and irradiation. Nanoscale 2020, 12, 16875–16883. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.J.; Antosiewicz, T.J.; Shegai, T. Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. Opt. Express 2016, 24, 20373–20381. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Johansson, G.; Johansson, P.; Antosiewicz, T.J.; Käll, M.; Shegai, T. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Sci. Rep. 2013, 3, 3074. [Google Scholar] [CrossRef] [PubMed]
- Melnikau, D.; Savateeva, D.; Rusakov, K.I.; Rakovich, Y.P. Whispering gallery mode emission from a composite system of J-aggregates and photonic microcavity. J. Lumin. 2014, 145, 138–143. [Google Scholar] [CrossRef]
- Pelton, M.; Storm, S.D.; Leng, H. Strong coupling of emitters to single plasmonic nanoparticles: Exciton-induced transparency and Rabi splitting. Nanoscale 2019, 11, 14540–14552. [Google Scholar] [CrossRef] [PubMed]
- Baudrion, A.L.; Perron, A.; Veltri, A.; Bouhelier, A.; Adam, P.M.; Bachelot, R. Reversible Strong Coupling in Silver Nanoparticle Arrays Using Photochromic Molecules. Nano Lett. 2013, 13, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Doronin, I.V.; Kalmykov, A.S.; Zyablovsky, A.A.; Andrianov, E.S.; Khlebtsov, B.N.; Melentiev, P.N.; Balykin, V.I. Resonant Concentration-Driven Control of Dye Molecule Photodegradation via Strong Optical Coupling to Plasmonic Nanoparticles. Nano Lett. 2022, 22, 105–110. [Google Scholar] [CrossRef]
- Abramavicius, D.; Butkus, V.; Valkunas, L. Chapter 1—Interplay of Exciton Coherence and Dissipation in Molecular Aggregates. In Quantum Efficiency in Complex Systems, Part II; Wüerfel, U., Thorwart, M., Weber, E.R., Eds.; Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2011; Volume 85, pp. 3–46. [Google Scholar] [CrossRef]
- Möbius, D. Scheibe Aggregates. Adv. Mater. 1995, 7, 437–444. [Google Scholar] [CrossRef]
- Eisfeld, A.; Briggs, J. The J- and H-bands of organic dye aggregates. Chem. Phys. 2006, 324, 376–384. [Google Scholar] [CrossRef]
- Jumbo-Nogales, A.; Krivenkov, V.; Rusakov, K.; Urban, A.S.; Grzelczak, M.; Rakovich, Y.P. Cross Determination of Exciton Coherence Length in J-Aggregates. J. Phys. Chem. Lett. 2022, 13, 10198–10206. [Google Scholar] [CrossRef]
- Kim, Y.; Barulin, A.; Kim, S.; Lee, L.P.; Kim, I. Recent advances in quantum nanophotonics: Plexcitonic and vibro-polaritonic strong coupling and its biomedical and chemical applications. Nanophotonics 2023, 12, 413–439. [Google Scholar] [CrossRef]
- Engel, G.S. Quantum coherence in photosynthesis. Procedia Chem. 2011, 3, 222–231. [Google Scholar] [CrossRef]
- Khlebtsov, N.G.; Dykman, L.A. Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 1–35. [Google Scholar] [CrossRef]
- Wang, L.; Hasanzadeh Kafshgari, M.; Meunier, M. Optical Properties and Applications of Plasmonic-Metal Nanoparticles. Adv. Funct. Mater. 2020, 30, 2005400. [Google Scholar] [CrossRef]
- Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angew. Chem. Int. Ed. 2011, 50, 3376–3410. [Google Scholar] [CrossRef]
- Bricks, J.L.; Slominskii, Y.L.; Panas, I.D.; Demchenko, A.P. Fluorescent J-aggregates of cyanine dyes: Basic research and applications review. Methods Appl. Fluoresc. 2017, 6, 012001. [Google Scholar] [CrossRef]
- Lee, Y.M.; Kim, S.E.; Park, J.E. Strong coupling in plasmonic metal nanoparticles. Nano Converg. 2023, 10, 34. [Google Scholar] [CrossRef]
- Kirschner, M.S.; Ding, W.; Li, Y.; Chapman, C.T.; Lei, A.; Lin, X.M.; Chen, L.X.; Schatz, G.C.; Schaller, R.D. Phonon-Driven Oscillatory Plasmonic Excitonic Nanomaterials. Nano Lett. 2018, 18, 442–448. [Google Scholar] [CrossRef]
- Kumar, M.; Dey, J.; Swaminathan, S.; Chandra, M. Shape Dependency of the Plasmon–Exciton Interaction at the Nanoscale: Interplay between the Plasmon Local Density of States and the Plasmon Decay Rate. J. Phys. Chem. C 2022, 126, 7941–7948. [Google Scholar] [CrossRef]
- Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning. J. Am. Chem. Soc. 2017, 139, 107–110. [Google Scholar] [CrossRef]
- Deshmukh, A.P. Tuning the Excitonic Properties of Two-Dimensional Molecular Aggregates Across the Visible and Shortwave Infrared. Ph.D. Thesis, UCLA, Los Angeles, CA, USA, 2021. [Google Scholar]
- Koch, L.; Pollak, R.; Ebbinghaus, S.; Huber, K. A Comparative Study on Cyanine Dyestuffs as Sensor Candidates for Macromolecular Crowding In Vitro and In Vivo. Biosensors 2023, 13, 720. [Google Scholar] [CrossRef]
- Chow, T.H.; Li, N.; Bai, X.; Zhuo, X.; Shao, L.; Wang, J. Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles. Acc. Chem. Res. 2019, 52, 2136–2146. [Google Scholar] [CrossRef]
- Vasista, A.B.; Barnes, W.L. Strong Coupling of Multimolecular Species to Soft Microcavities. J. Phys. Chem. Lett. 2022, 13, 1019–1024. [Google Scholar] [CrossRef]
- Walker, B.J.; Nair, G.P.; Marshall, L.F.; Bulović, V.; Bawendi, M.G. Narrow-Band Absorption-Enhanced Quantum Dot/J-Aggregate Conjugates. J. Am. Chem. Soc. 2009, 131, 9624–9625. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.; Li, H.; Zhang, W. Quantifying thiol–gold interactions towards the efficient strength control. Nat. Commun. 2014, 5, 4348. [Google Scholar] [CrossRef]
- Ishida, Y.; Suzuki, J.; Akita, I.; Yonezawa, T. Ultrarapid Cationization of Gold Nanoparticles via a Single-Step Ligand Exchange Reaction. Langmuir 2018, 34, 10668–10672. [Google Scholar] [CrossRef]
- Hue, D.T.; Thu Huong, T.T.; Thu Ha, P.T.; Trang, T.T.; Ha Lien, N.T.; Xuan Hoa, V. The dependence of medium refractive index on optical properties of gold nanorods and their SERS application. AIP Adv. 2021, 11, 055319. [Google Scholar] [CrossRef]
- Liu, X.; Huang, H.; Jin, Q.; Ji, J. Mixed Charged Zwitterionic Self-Assembled Monolayers as a Facile Way to Stabilize Large Gold Nanoparticles. Langmuir 2011, 27, 5242–5251. [Google Scholar] [CrossRef]
- Hou, S.; Tobing, L.Y.M.; Wang, X.; Xie, Z.; Yu, J.; Zhou, J.; Zhang, D.; Dang, C.; Coquet, P.; Tay, B.K.; et al. Manipulating Coherent Light–Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS2 Monolayer Coupled with Plasmonic Nanocavities. Adv. Opt. Mater. 2019, 7, 1900857. [Google Scholar] [CrossRef]
- Melnikau, D.; Samokhvalov, P.; Sánchez-Iglesias, A.; Grzelczak, M.; Nabiev, I.; Rakovich, Y.P. Strong coupling effects in a plexciton system of gold nanostars and J-aggregates. J. Lumin. 2022, 242, 118557. [Google Scholar] [CrossRef]
- Yoshie, T.; Scherer, A.; Hendrickson, J.; Khitrova, G.; Gibbs, H.M.; Rupper, G.; Ell, C.; Shchekin, O.B.; Deppe, D.G. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 2004, 432, 200–203. [Google Scholar] [CrossRef]
- Khitrova, G.; Gibbs, H.M.; Kira, M.; Koch, S.W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90. [Google Scholar] [CrossRef]
- Hopfield, J.J. Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals. Phys. Rev. 1958, 112, 1555–1567. [Google Scholar] [CrossRef]
- Feller, K.H.; Gadonas, R.; Krasauskas, V.; Fidler, V.; Vajda, S. Time-Resolved Spectroscopy of Polymethine J-Aggregates. Laser Chem. 1900, 11, 287617. [Google Scholar] [CrossRef]
- Dimitriev, O.P.; Zirzlmeier, J.; Menon, A.; Slominskii, Y.; Guldi, D.M. Exciton Dynamics in J- and H-Aggregates of a Tricarbocyanine Near-Infrared Dye. J. Phys. Chem. C 2021, 125, 9855–9865. [Google Scholar] [CrossRef]
- Spano, F.C.; Mukamel, S. Superradiance in molecular aggregates. J. Chem. Phys. 1989, 91, 683–700. [Google Scholar] [CrossRef]
- Jennings, T.L.; Singh, M.P.; Strouse, G.F. Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity. J. Am. Chem. Soc. 2006, 128, 5462–5467. [Google Scholar] [CrossRef]
- Li, J.; Krasavin, A.V.; Webster, L.; Segovia, P.; Zayats, A.V.; Richards, D. Spectral variation of fluorescence lifetime near single metal nanoparticles. Sci. Rep. 2016, 6, 21349. [Google Scholar] [CrossRef]
- Kemnitz, K.; Yoshihara, K.; Tani, T. Short and excitation-independent fluorescence lifetimes of J-aggregates adsorbed on silver(I) bromide and silica. J. Phys. Chem. 1990, 94, 3099–3104. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, X.; Oshikiri, T.; Misawa, H. Improved water splitting efficiency of Au-NP-loaded Ga2O3 thin films in the visible region under strong coupling conditions. Nanoscale Adv. 2023, 5, 119–123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jumbo-Nogales, A.; Rao, A.; Olejniczak, A.; Grzelczak, M.; Rakovich, Y. Unveiling the Synergy of Coupled Gold Nanoparticles and J-Aggregates in Plexcitonic Systems for Enhanced Photochemical Applications. Nanomaterials 2024, 14, 35. https://doi.org/10.3390/nano14010035
Jumbo-Nogales A, Rao A, Olejniczak A, Grzelczak M, Rakovich Y. Unveiling the Synergy of Coupled Gold Nanoparticles and J-Aggregates in Plexcitonic Systems for Enhanced Photochemical Applications. Nanomaterials. 2024; 14(1):35. https://doi.org/10.3390/nano14010035
Chicago/Turabian StyleJumbo-Nogales, Alba, Anish Rao, Adam Olejniczak, Marek Grzelczak, and Yury Rakovich. 2024. "Unveiling the Synergy of Coupled Gold Nanoparticles and J-Aggregates in Plexcitonic Systems for Enhanced Photochemical Applications" Nanomaterials 14, no. 1: 35. https://doi.org/10.3390/nano14010035
APA StyleJumbo-Nogales, A., Rao, A., Olejniczak, A., Grzelczak, M., & Rakovich, Y. (2024). Unveiling the Synergy of Coupled Gold Nanoparticles and J-Aggregates in Plexcitonic Systems for Enhanced Photochemical Applications. Nanomaterials, 14(1), 35. https://doi.org/10.3390/nano14010035