Spontaneous Vibrations and Stochastic Resonance of Short Oligomeric Springs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pyridine–Pyrrole and Pyridine–Furan Springs
2.2. Simulation Details
3. Results
3.1. Bistable Dynamics of the Oligo-PP-5 Spring
3.2. Bistable Dynamics of the Oligo-PF-5 Spring
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PP | Pyridine–pyrrole |
PF | Pyridine–furan |
THF | Tetrahydrofuran |
References
- Peschot, A.; Qian, C.; Liu, T.J.K. Nanoelectromechanical Switches for Low-Power Digital Computing. Micromachines 2015, 6, 1046–1065. [Google Scholar] [CrossRef]
- Varghese, S.; Elemans, J.A.A.W.; Rowan, A.E.; Nolte, R.J.M. Molecular computing: Paths to chemical Turing machines. Chem. Sci. 2015, 6, 6050–6058. [Google Scholar] [CrossRef] [PubMed]
- Erbas-Cakmak, S.; Kolemen, S.; Sedgwick, A.C.; Gunnlaugsson, T.; James, T.D.; Yoon, J.; Akkaya, E.U. Molecular logic gates: The past, present and future. Chem. Soc. Rev. 2018, 47, 2228–2248. [Google Scholar] [CrossRef] [PubMed]
- Benda, L.; Doistau, B.; Rossi-Gendron, C.; Chamoreau, L.M.; Hasenknopf, B.; Vives, G. Substrate-dependent allosteric regulation by switchable catalytic molecular tweezers. Commun. Chem. 2019, 2, 144. [Google Scholar] [CrossRef]
- Berselli, G.B.; Gimenez, A.V.; O’Connor, A.; Keyes, T.E. Robust Photoelectric Biomolecular Switch at a Microcavity-Supported Lipid Bilayer. ACS Appl. Mater. Interfaces 2021, 13, 29158–29169. [Google Scholar] [CrossRef] [PubMed]
- Nicoli, F.; Paltrinieri, E.; Tranfić Bakić, M.; Baroncini, M.; Silvi, S.; Credi, A. Binary logic operations with artificial molecular machines. Coord. Chem. Rev. 2021, 428, 213589. [Google Scholar] [CrossRef]
- Zhang, L.; Marcos, V.; Leigh, D.A. Molecular machines with bio-inspired mechanisms. Proc. Natl. Acad. Sci. USA 2018, 115, 9397–9404. [Google Scholar] [CrossRef]
- Shu, T.; Shen, Q.; Zhang, X.; Serpe, M.J. Stimuli-responsive polymer/nanomaterial hybrids for sensing applications. Analyst 2020, 145, 5713–5724. [Google Scholar] [CrossRef]
- Lemme, M.C.; Wagner, S.; Lee, K.; Fan, X.; Verbiest, G.J.; Wittmann, S.; Lukas, S.; Dolleman, R.J.; Niklaus, F.; van der Zant, H.S.J.; et al. Nanoelectromechanical Sensors Based on Suspended 2D Materials. Research 2020, 2020, 8748602. [Google Scholar] [CrossRef]
- Shi, Z.T.; Zhang, Q.; Tian, H.; Qu, D.H. Driving Smart Molecular Systems by Artificial Molecular Machines. Adv. Intell. Syst. 2020, 2, 1900169. [Google Scholar] [CrossRef]
- Aprahamian, I. The Future of Molecular Machines. ACS Cent. Sci. 2020, 6, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Li, Y.; Zhao, Y.; Hong, Y.; Tang, Y.; Yin, J. Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities. Adv. Mater. 2022, 34, 2110384. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tian, C.; Deng, Z.D. Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 2014, 1, 041301. [Google Scholar] [CrossRef]
- Kim, S.H.; Lima, M.D.; Kozlov, M.E.; Haines, C.S.; Spinks, G.M.; Aziz, S.; Choi, C.; Sim, H.J.; Wang, X.; Lu, H.; et al. Harvesting temperature fluctuations as electrical energy using torsional and tensile polymer muscles. Energy Environ. Sci. 2015, 8, 3336–3344. [Google Scholar] [CrossRef]
- Ackerman, M.L.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M.; Singh, S. Anomalous Dynamical Behavior of Freestanding Graphene Membranes. Phys. Rev. Lett. 2016, 117, 126801. [Google Scholar] [CrossRef] [PubMed]
- Dutreix, C.; Avriller, R.; Lounis, B.; Pistolesi, F. Two-level system as topological actuator for nanomechanical modes. Phys. Rev. Res. 2020, 2, 023268. [Google Scholar] [CrossRef]
- Thibado, P.M.; Kumar, P.; Singh, S.; Ruiz-Garcia, M.; Lasanta, A.; Bonilla, L.L. Fluctuation-induced current from freestanding graphene. Phys. Rev. E 2020, 102, 042101. [Google Scholar] [CrossRef]
- Cao, Y.; Derakhshani, M.; Fang, Y.; Huang, G.; Cao, C. Bistable Structures for Advanced Functional Systems. Adv. Funct. Mater. 2021, 31, 2106231. [Google Scholar] [CrossRef]
- Evans, D.J.; Searles, D.J. The Fluctuation Theorem. Adv. Phys. 2002, 51, 1529–1585. [Google Scholar] [CrossRef]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef]
- Horowitz, J.M.; Gingrich, T.R. Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat. Phys. 2020, 16, 15–20. [Google Scholar] [CrossRef]
- Ciliberto, S. Experiments in Stochastic Thermodynamics: Short History and Perspectives. Phys. Rev. X 2017, 7, 021051. [Google Scholar] [CrossRef]
- Wang, G.M.; Sevick, E.M.; Mittag, E.; Searles, D.J.; Evans, D.J. Experimental Demonstration of Violations of the Second Law of Thermodynamics for Small Systems and Short Time Scales. Phys. Rev. Lett. 2002, 89, 050601. [Google Scholar] [CrossRef] [PubMed]
- Jop, P.; Petrosyan, A.; Ciliberto, S. Work and dissipation fluctuations near the stochastic resonance of a colloidal particle. EPL Europhys. Lett. 2008, 81, 50005. [Google Scholar] [CrossRef]
- Astumian, R.D. Stochastic pumping of non-equilibrium steady-states: How molecules adapt to a fluctuating environment. Chem. Commun. 2018, 54, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Vroylandt, H.; Esposito, M.; Verley, G. Efficiency Fluctuations of Stochastic Machines Undergoing a Phase Transition. Phys. Rev. Lett. 2020, 124, 250603. [Google Scholar] [CrossRef] [PubMed]
- Arnold, V.I. Catastrophe Theory; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Poston, T.; Stewart, I. Catastrophe Theory and Its Applications; Dover Publications: Mineola, NY, USA, 1996. [Google Scholar]
- Avetisov, V.A.; Astakhov, A.M.; Valov, A.F.; Markina, A.A.; Muratov, A.D.; Petrovsky, V.S.; Frolkina, M.A. Euler Arches and Duffing Springs of a Few Nanometers in Size. Russ. J. Phys. Chem. B 2023, 17, 533–549. [Google Scholar] [CrossRef]
- Duffing, G. Erzwungene Schwingungen bei Veränderlicher Eigenfrequenz und ihre Technische Bedeutung; Number 41–42; F. Vieweg & Sohn: Born, Germany, 1918. [Google Scholar]
- Korsch, H.J.; Jodl, H.J.; Hartmann, T. (Eds.) The Duffing Oscillator. In Chaos: A Program Collection for the PC; Springer: Berlin/Heidelberg, Germany, 2008; pp. 157–184. [Google Scholar]
- Avetisov, V.A.; Markina, A.A.; Valov, A.F. Oligomeric “Catastrophe Machines” with Thermally Activated Bistability and Stochastic Resonance. J. Phys. Chem. Lett. 2019, 10, 5189–5192. [Google Scholar] [CrossRef]
- Markina, A.; Muratov, A.; Petrovskyy, V.; Avetisov, V. Detection of single molecules using stochastic resonance of bistable oligomers. Nanomaterials 2020, 10, 2519. [Google Scholar] [CrossRef]
- Avetisov, V.A.; Frolkina, M.A.; Markina, A.A.; Muratov, A.D.; Petrovskii, V.S. Short Pyridine-Furan Springs Exhibit Bistable Dynamics of Duffing Oscillators. Nanomaterials 2021, 11, 3264. [Google Scholar] [CrossRef]
- Kramers, H. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 1940, 7, 284–304. [Google Scholar] [CrossRef]
- Benzi, R.; Sutera, A.; Vulpiani, A. The mechanism of stochastic resonance. J. Phys. A Math. Gen. 1981, 14, L453–L457. [Google Scholar] [CrossRef]
- Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A. Stochastic resonance in climatic change. Tellus 1982, 34, 10–15. [Google Scholar] [CrossRef]
- Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A. A Theory of Stochastic Resonance in Climatic Change. SIAM J. Appl. Math. 1983, 43, 565–578. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 1998, 70, 223–287. [Google Scholar] [CrossRef]
- Wellens, T.; Shatokhin, V.; Buchleitner, A. Stochastic resonance. Rep. Prog. Phys. 2004, 67, 45–105. [Google Scholar] [CrossRef]
- Hasan, M.N.; Greenwood, T.E.; Parker, R.G.; Kong, Y.L.; Wang, P. Fractal patterns in the parameter space of a bistable Duffing oscillator. Phys. Rev. E 2023, 108, L022201. [Google Scholar] [CrossRef]
- Baughman, R.H.; Cui, C.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Wallace, G.G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A.G.; et al. Carbon nanotube actuators. Science 1999, 284, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Fujii, H.; Setiadi, A.; Kuwahara, Y.; Akai-Kasaya, M. Single walled carbon nanotube-based stochastic resonance device with molecular self-noise source. Appl. Phys. Lett. 2017, 111, 133501. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, S.; Li, J.; Li, Z. Nonlocal nonlinear model of Bernoulli–Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes. Microsyst. Technol. 2019, 25, 4303–4310. [Google Scholar] [CrossRef]
- Liang, J.; Huang, L.; Li, N.; Huang, Y.; Wu, Y.; Fang, S.; Oh, J.; Kozlov, M.; Ma, Y.; Li, F.; et al. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene. ACS Nano 2012, 6, 4508–4519. [Google Scholar] [CrossRef] [PubMed]
- Forns, N.; de Lorenzo, S.; Manosas, M.; Hayashi, K.; Huguet, J.M.; Ritort, F. Improving signal/noise resolution in single-molecule experiments using molecular constructs with short handles. Biophys. J. 2011, 100, 1765–1774. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K.; de Lorenzo, S.; Manosas, M.; Huguet, J.; Ritort, F. Single-molecule stochastic resonance. Phys. Rev. X 2012, 2, 031012. [Google Scholar] [CrossRef]
- Cecconi, C.; Shank, E.A.; Bustamante, C.; Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 2005, 309, 2057–2060. [Google Scholar] [CrossRef] [PubMed]
- Lai, Z.; Leng, Y. Weak-signal detection based on the stochastic resonance of bistable Duffing oscillator and its application in incipient fault diagnosis. Mech. Syst. Signal Process. 2016, 81, 60–74. [Google Scholar] [CrossRef]
- Lu, Z.Q.; Wu, D.; Ding, H.; Chen, L.Q. Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Appl. Math. Model. 2021, 89, 249–267. [Google Scholar] [CrossRef]
- Alan Jones, R.; Karatza, M.; Voro, T.N.; Civeir, P.U.; Franck, A.; Ozturk, O.; Seaman, J.P.; Whitmore, A.P.; Williamson, D.J. Extended heterocyclic systems 1. The synthesis and characterisation of pyrrolylpyridines, alternating pyrrole: Pyridine oligomers and polymers, and related systems. Tetrahedron 1996, 52, 8707–8724. [Google Scholar] [CrossRef]
- Alan Jones, R.; Civcir, P.U. Extended heterocyclic systems 2. The synthesis and characterisation of (2-furyl) pyridines,(2-thienyl) pyridines, and furan-pyridine and thiophene-pyridine oligomers. Tetrahedron 1997, 53, 11529–11540. [Google Scholar] [CrossRef]
- Sahu, H.; Gupta, S.; Gaur, P.; Panda, A.N. Structure and optoelectronic properties of helical pyridine–furan, pyridine–pyrrole and pyridine–thiophene oligomers. Phys. Chem. Chem. Phys. 2015, 17, 20647–20657. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Kaminski, G.A.; Friesner, R.A.; Tirado-Rives, J.; Jorgensen, W.L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B 2001, 105, 6474–6487. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed]
- Stark, R.W. Bistability, higher harmonics, and chaos in AFM. Mater. Today 2010, 13, 24–32. [Google Scholar] [CrossRef]
- Ribezzi-Crivellari, M.; Ritort, F. Large work extraction and the Landauer limit in a continuous Maxwell demon. Nat. Phys. 2019, 15, 660–664. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Berk, H. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 2008, 4, 116–122. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astakhov, A.M.; Petrovskii, V.S.; Frolkina, M.A.; Markina, A.A.; Muratov, A.D.; Valov, A.F.; Avetisov, V.A. Spontaneous Vibrations and Stochastic Resonance of Short Oligomeric Springs. Nanomaterials 2024, 14, 41. https://doi.org/10.3390/nano14010041
Astakhov AM, Petrovskii VS, Frolkina MA, Markina AA, Muratov AD, Valov AF, Avetisov VA. Spontaneous Vibrations and Stochastic Resonance of Short Oligomeric Springs. Nanomaterials. 2024; 14(1):41. https://doi.org/10.3390/nano14010041
Chicago/Turabian StyleAstakhov, Alexey M., Vladislav S. Petrovskii, Maria A. Frolkina, Anastasia A. Markina, Alexander D. Muratov, Alexander F. Valov, and Vladik A. Avetisov. 2024. "Spontaneous Vibrations and Stochastic Resonance of Short Oligomeric Springs" Nanomaterials 14, no. 1: 41. https://doi.org/10.3390/nano14010041
APA StyleAstakhov, A. M., Petrovskii, V. S., Frolkina, M. A., Markina, A. A., Muratov, A. D., Valov, A. F., & Avetisov, V. A. (2024). Spontaneous Vibrations and Stochastic Resonance of Short Oligomeric Springs. Nanomaterials, 14(1), 41. https://doi.org/10.3390/nano14010041