Enhanced Degradation of Levofloxacin through Visible-Light-Driven Peroxymonosulfate Activation over CuInS2/g-C3N4 Heterojunctions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. The Synthesis of GCN
2.3. The Synthesis of CIS
2.4. The Synthesis of xCIS/GCN
2.5. Characterization of Catalysts
2.6. Experimental Procedure
3. Results
3.1. Physicochemical Properties of the xCIS/GCN Heterojunction
3.2. Catalytic Performance Evaluation of CIS/GCN
3.3. Identification of Reactive Species and Mechanism in the Process
3.4. Degradation Pathway of LVF
3.5. Reusability and Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Qian, J.; Wang, P.; Wu, J.; Lu, B.; Tang, S.; Gao, P. Acceleration of levofloxacin degradation by combination of multiple free radicals via MoS2 anchored in manganese ferrite doped perovskite activated PMS under visible light. Chem. Eng. J. 2022, 431, 133933. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Giannakis, S.; Marjanovic, M.; Kohantorabi, M.; Gholami, M.R.; Grandjean, D.; de Alencastro, L.F.; Pulgarín, C. Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5− vs. S2O82− in drinking water. Appl. Catal. B 2019, 248, 62–72. [Google Scholar] [CrossRef]
- Wu, H.; He, T.; Dan, M.; Du, L.; Li, N.; Liu, Z.Q. Activated Ni-based metal-organic framework catalyst with well-defined structure for electrosynthesis of hydrogen peroxide. Chem. Eng. J. 2022, 435, 134863. [Google Scholar] [CrossRef]
- Zhong, X.; Zhang, K.X.; Wu, D.; Ye, X.Y.; Huang, W.; Zhou, B.X. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation. Chem. Eng. J. 2020, 383, 123148. [Google Scholar] [CrossRef]
- Xiong, Q.; Liu, Y.S.; Hu, L.X.; Shi, Z.Q.; Ying, G.G. Levofloxacin and sulfamethoxazole induced alterations of biomolecules in Pseudokirchneriella subcapitata. Chemosphere 2020, 253, 126722. [Google Scholar] [CrossRef]
- Prabavathi, S.L.; Saravanakumar, K.; Park, C.M.; Muthuraj, V. Photocatalytic degradation of levofloxacin by a novel Sm6WO12/g-C3N4 heterojunction: Performance, mechanism and degradation pathways. Sep. Purif. Technol. 2021, 257, 117985. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, H.; Ma, H.; Ko, J.; Sun, W.; Lin, K.A.; Zhan, S.; Wang, H. Highly efficient activation of peroxymonosulfate by MOF-derived CoP/CoOx heterostructured nanoparticles for the degradation of tetracycline. Chem. Eng. J. 2022, 430, 132816. [Google Scholar] [CrossRef]
- Rao, V.N.; Kwon, H.; Lee, Y.; Ravi, P.; Ahn, C.W.; Kim, K.; Yang, J.M. Synergistic integration of MXene nanosheets with CdS@TiO2 core@shell S-scheme photocatalyst for augmented hydrogen generation. Chem. Eng. J. 2023, 471, 144490. [Google Scholar]
- Huang, F.; An, Z.; Moran, M.J.; Liu, F. Recognition of typical antibiotic residues in environmental media related to groundwater in China (2009–2019). J. Hazard. Mater. 2020, 399, 122813. [Google Scholar] [CrossRef]
- Li, S.; Lin, F.; Zheng, H.; Zheng, Y.; Zhang, B.; Ma, J.; Nan, J. Efficient PPCPs degradation by self-assembly Ag/Ti3C2@BiPO4 activated peroxydisulfate with microwave irradiation: Enhanced adsorptive binding and radical generation. Chem. Eng. J. 2023, 452, 139298. [Google Scholar] [CrossRef]
- Jia, K.; Liu, G.; Lang, D.N.; Chen, S.F.; Yang, C.; Wu, R.L.; Wang, W.; Wang, J.D. Degradation of tetracycline by visible light over ZnO nanophotocatalyst. J. Taiwan Inst. Chem. Eng. 2022, 136, 104422. [Google Scholar] [CrossRef]
- Gan, W.; Guo, J.; Fu, X.; Zhang, M.; Ding, C.; Hai, Y.; Lu, Y.; Li, J.; Li, Z.; Sun, Z. Dual defects modified ultrathin 2D/2D TiO2/g-C3N4 heterojunction for efficient removal of levofloxacin: Performance, degradation pathway, and mechanism. Sep. Purif. Technol. 2023, 306, 122578. [Google Scholar] [CrossRef]
- Wei, H.; Meng, F.; Yu, W.; Li, J.; Zhang, H. Highly efficient photocatalytic degradation of levofloxacin by novel S-scheme heterojunction Co3O4/Bi2MoO6@g-C3N4 hollow microspheres: Performance, degradation pathway and mechanism. Sep. Purif. Technol. 2023, 318, 123940. [Google Scholar] [CrossRef]
- Xu, K.; Ben, W.; Ling, W.; Zhang, Y.; Qu, J.; Qiang, Z. Impact of humic acid on the degradation of levofloxacin by aqueous permanganate: Kinetics and mechanism. Water Res. 2017, 123, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Wang, J. Degradation of antibiotics in activated sludge by ionizing radiation: Effect of adsorption affinity of antibiotics. Chem. Eng. J. 2023, 468, 143821. [Google Scholar] [CrossRef]
- Zhang, X.; Bhattacharya, T.; Wang, C.; Kumar, A.; Nidheesh, P.V. Straw-derived biochar for the removal of antibiotics from water: Adsorption and degradation mechanisms, recent advancements and challenges. Environ. Res. 2023, 237, 116998. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Zheng, H.; Li, H.; Zheng, Y.; Nan, J.; Ma, J.; Nagarajan, D.; Chang, J.S. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. Chemosphere 2023, 311, 136977. [Google Scholar] [CrossRef]
- Yi, X.H.; Wang, T.Y.; Chu, H.Y.; Gao, Y.; Wang, C.C.; Li, Y.J.; Chen, L.; Wang, P.; Fu, H.; Zhao, C.; et al. Effective elimination of tetracycline antibiotics via photoactivated SR-AOP over vivianite: A new application approach of phosphorus recovery product from WWTP. Chem. Eng. J. 2022, 449, 137784. [Google Scholar] [CrossRef]
- Fan, J.; Liu, J.; Cai, Y.; Liu, Z.; Wu, D. Efficient degradation of tetracycline in FeS-based SR-AOPs process at basic pHs: The overlooked role of metal complexation and redox reaction in persulfate activation. Chem. Eng. J. 2023, 466, 143168. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.Y.A.; Ghanbari, F. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Cuesta, S.; Pérez, J.; Rodríguez, E.; Rodríguez-Chueca, J. Life Cycle Assessment of sulfate radical based-AOPs for wastewater disinfection. Chem. Eng. J. 2023, 474, 145427. [Google Scholar] [CrossRef]
- Fedorov, K.; Sun, X.; Boczkaj, G. Combination of hydrodynamic cavitation and SR-AOPs for simultaneous degradation of BTEX in water. Chem. Eng. J. 2021, 417, 128081. [Google Scholar] [CrossRef]
- Li, M.; He, Z.; Zhong, H.; Hu, L.; Sun, W. Multi-walled carbon nanotubes facilitated Roxarsone elimination in SR-AOPs by accelerating electron transfer in modified electrolytic manganese residue and forming surface activated-complexes. Water Res. 2021, 200, 117266. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, J.; Chang, J.; Fu, B.; Wang, H. Insight into advanced oxidation processes for the degradation of fluoroquinolone antibiotics: Removal, mechanism, and influencing factors. Sci. Total Environ. 2023, 857, 159172. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019, 378, 122149. [Google Scholar] [CrossRef]
- Du, A.; Fu, H.; Wang, P.; Zhao, C.; Wang, C.C. Enhanced catalytic peroxymonosulfate activation for sulfonamide antibiotics degradation over the supported CoSx-CuSx derived from ZIF-L(Co) immobilized on copper foam. J. Hazard. Mater. 2022, 426, 128134. [Google Scholar] [CrossRef]
- Li, J.; Zou, J.; Zhang, S.; Cai, H.; Huang, Y.; Lin, J.; Li, Q.; Yuan, B.; Ma, J. Sodium tetraborate simultaneously enhances the degradation of acetaminophen and reduces the formation potential of chlorinated by-products with heat-activated peroxymonosulfate oxidation. Water Res. 2022, 224, 119095. [Google Scholar] [CrossRef]
- Zhang, Z.C.; Wang, F.X.; Wang, C.C.; Yu, B.; Wang, P.; Zhao, C.; Fu, H. Selective oxidation of organic pollutants over a new Co-based MOF via peroxymonosulfate activation under UV light: Performance and mechanism. Sep. Purif. Technol. 2023, 327, 124944. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, X.; Dong, X.; Zhang, X.; Tan, Y.; Yuan, F.; Zheng, S.; Li, C. Synergistic activation of peroxymonosulfate via in situ growth FeCo2O4 nanoparticles on natural rectorite: Role of transition metal ions and hydroxyl groups. Chemosphere 2021, 263, 127965. [Google Scholar] [CrossRef]
- Bouzayani, B.; Rosales, E.; Pazos, M.; Elaoud, S.C.; Sanromán, M.A. Homogeneous and heterogeneous peroxymonosulfate activation by transition metals for the degradation of industrial leather dye. J. Clean. Prod. 2019, 228, 222–230. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, Q.; Nan, T.; Zhou, M.; Xia, Y.; Hu, G.; Zheng, Q.; Wu, Y.; Bian, T.; Wei, T.; et al. Cobalt-based catalysts for heterogeneous peroxymonosulfate (PMS) activation in degradation of organic contaminants: Recent advances and perspectives. J. Alloy. Compd. 2023, 958, 170370. [Google Scholar] [CrossRef]
- Huang, Y.X.; Chen, K.Y.; Wang, S.X.; Zhao, S.Y.; Yu, L.Q.; Huang, B.C.; Jin, R.C. Synergizing electron transfer with singlet oxygen to expedite refractory contaminant mineralization in peroxymonosulfate based heterogeneous oxidation system. Appl. Catal. B 2024, 341, 123324. [Google Scholar] [CrossRef]
- Fu, W.; Huo, S.; Zhang, M.; Song, L.; Zhao, Q.; Wu, X.; Gao, M. Efficient degradation of oxytetracycline by glucose modified CuFeO2 in visible-light-assisted heterogeneous activation of peroxymonosulfate system: Performance, mechanism and DFT calculation. J. Environ. Chem. Eng. 2023, 11, 111225. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Chen, M.; Bao, N.; Wang, X.; Chen, F.; Ji, G.; Shen, L.; Lu, X.L.; Song, A. Construction of Fe9S10@Fe2O3@Fe3S4 conductor-semiconductor type heterojunction as photoactivator of peroxymonosulfate toward the degradation of Malachite Green. Chem. Phys. Lett. 2021, 781, 139001. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, G.; Yu, Y. Co single-atom C2N3 activates peroxymonosulfate for efficient degradation of sulfamethoxazole at 4 °C: A combined experimental and density functional theory study. Chem. Eng. J. 2023, 476, 146721. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, H.; Liu, J.; Liu, X.; Song, X.; Zhou, W.; Zhang, J.; Huo, P. Enhanced degradation of polyethylene terephthalate plastics by CdS/CeO2 heterojunction photocatalyst activated peroxymonosulfate. J. Hazard. Mater. 2023, 452, 131375. [Google Scholar] [CrossRef]
- Wang, M.; Wang, F.; Wang, P.; Chu, H.; Fu, H.; Zhao, C.; Wang, C.C.; Zhao, Y. Highly efficient and selective organic pollutants degradation via peroxymonosulfate activation over micron-sized Co-MOF: Nearly 100% singlet oxygen mechanism. Sep. Purif. Technol. 2023, 326, 124806. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Li, S.; Xue, C.; Liu, D.; Huang, W. Unraveling the crucial role of Mo2N from Fe/Mo bimetal MOF-derived catalyst in initiating Fe3+/Fe2+ redox cycle to activate peroxymonosulfate for dibutyl phthalate degradation. Chem. Eng. J. 2023, 476, 146693. [Google Scholar] [CrossRef]
- Gu, A.; Chen, K.; Zhou, X.; Gong, C.; Wang, P.; Jiao, Y.; Mao, P.; Chen, K.; Lu, J.; Yang, Y. Trimetallic MOFs-derived Fe-Co-Cu oxycarbide toward peroxymonosulfate activation for efficient trichlorophenol degradation via high-valent metal-oxo species. Chem. Eng. J. 2023, 468, 143444. [Google Scholar] [CrossRef]
- Silva, R.R.M.; Ruotolo, L.A.M.; Nogueira, F.G.E. Peroxymonosulfate activation by magnetic NiFe2O4/g-C3N4 for tetracycline hydrochloride degradation under visible light. Chem. Eng. J. 2023, 476, 146621. [Google Scholar] [CrossRef]
- Hirani, R.A.K.; Hannan, A.; Rafique, N.; Shi, L.; Tian, W.; Wang, H.; Sun, H. Three-dimensional rGO/CNT/g-C3N4 macro discs as an efficient peroxymonosulfate activator for catalytic degradation of sulfamethoxazole. J. Hazard. Mater. 2023, 460, 132400. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Wang, M.; Li, T.; Hou, Y.; Xuan, K.; Hao, Y. Peroxymonosulfate-assisted photocatalysis by a novel Ti3C2-based heterojunction catalyst (g-C3N4/Ti3C2/MnFe2O4) for enhanced degradation of naphthalene. Chem. Eng. J. 2023, 464, 142566. [Google Scholar] [CrossRef]
- Bharagav, U.; Reddy, N.R.; Rao, V.N.K.; Ravi, P.; Sathish, M.; Rangappa, D.; Prathap, K.; Chakra, C.S.; Shankar, M.V.; Appels, L.; et al. Bifunctional g-C3N4/carbon nanotubes/WO3 ternary nanohybrids for photocatalytic energy and environmental applications. Chemosphere 2023, 311, 137030. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Nengzi, L.; Zhang, X.; Gou, J.; Gao, Y.; Zhu, G.; Cheng, Q.; Cheng, X. Catalytic degradation of ciprofloxacin by magnetic CuS/Fe2O3/Mn2O3 nanocomposite activated peroxymonosulfate: Influence factors, degradation pathways and reaction mechanism. Chem. Eng. J. 2020, 388, 124274. [Google Scholar] [CrossRef]
- Isari, A.A.; Moradi, S.; Rezaei, S.S.; Ghanbari, F.; Dehghanifard, E.; Kakavandi, B. Peroxymonosulfate catalyzed by core/shell magnetic ZnO photocatalyst towards malathion degradation: Enhancing synergy, catalytic performance and mechanism. Sep. Purif. Technol. 2021, 275, 119163. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Wang, X.; Wang, Y. Microbial-assisted synthesis of Schwertmannite@g-C3N4 composite for bisphenol AF degradation through visible light-driven peroxymonosulfate activation. J. Environ. Chem. Eng. 2023, 11, 111048. [Google Scholar] [CrossRef]
- Luo, J.; Ding, C.; Gan, Y.; Guo, Y.; Cui, Y.; Sun, C. A dual-MOFs (Fe and Co)/g-C3N4 heterostructure composite for high-efficiently activating peroxymonosulfate in degradation of sertraline in water. Sep. Purif. Technol. 2023, 307, 122701. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, B.; Li, X.; Fan, X.; Zhang, J.; Yu, Y.; Sun, Y. Anaerobic environment-induced efficient degradation of chloroquine phosphate: Insights into the role of metal-free C3N4 nanotube in visible light-driven peroxymonosulfate activation. Chem. Eng. J. 2023, 457, 141219. [Google Scholar] [CrossRef]
- Sarkar, P.; Neogi, S.; De, S. Accelerated radical generation from visible light driven peroxymonosulfate activation by Bi2MoO6/doped gCN S-scheme heterojunction towards Amoxicillin mineralization: Elucidation of the degradation mechanism. J. Hazard. Mater. 2023, 451, 131102. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.; Qi, K.; Liu, S.-Y. CuInS2 quantum-dot-modified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation. J. Mater. Sci. Technol. 2024, 172, 145–155. [Google Scholar] [CrossRef]
- Onwudiwe, D.C.; Oyewo, O.A.; Seheri, N.H.; Motaung, M.P.; Makgato, S.S.; Motshekga, S.C. Synthesis of CuInS2 nanoparticles and application in the photocatalytic degradation of tetracycline. J. Photochem. Photobiol. 2023, 18, 100212. [Google Scholar] [CrossRef]
- Cui, Q.; Gu, X.; Zhao, Y.; Qi, K.; Yan, Y. S-scheme CuInS2/ZnS heterojunctions for the visible light-driven photocatalytic degradation of tetracycline antibiotic drugs. J. Taiwan Inst. Chem. Eng. 2023, 142, 104679. [Google Scholar] [CrossRef]
- Li, Z.; Shen, Y.; Liu, Z.; Li, Z.; Zhu, T.; Fan, S.; Wang, S.; Song, H.; Yao, Z.; Hou, Y. Double vacancies synergistically enhanced photocatalytic activity of S-Scheme VO, S-Bi2WO6/L-CoIn2S4 heterojunction for degradation of co-existing antibiotics. Sep. Purif. Technol. 2024, 330, 125553. [Google Scholar] [CrossRef]
- Zhang, C.; Ni, J.; Ding, N.; Liu, H. Visible-light-assisted PMS activation by heterojunction photocatalyst MgIn2S4/Bi2O3 for tetracycline degradation. Catal. Commun. 2023, 183, 106773. [Google Scholar] [CrossRef]
- Shi, H.; He, Y.; Li, Y.; He, T.; Luo, P. Efficient degradation of tetracycline in real water systems by metal-free g-C3N4 microsphere through visible-light catalysis and PMS activation synergy. Sep. Purif. Technol. 2022, 280, 119864. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Giannakis, S.; Moussavi, G.; Bensimon, M.; Gholami, M.R.; Pulgarin, C. An innovative, highly stable Ag/ZIF-67@GO nanocomposite with exceptional peroxymonosulfate (PMS) activation efficacy, for the destruction of chemical and microbiological contaminants under visible light. J. Hazard. Mater. 2021, 413, 125308. [Google Scholar] [CrossRef]
- Zhu, S.; Xiao, P.; Wang, X.; Liu, Y.; Yi, X.; Zhou, H. Efficient peroxymonosulfate (PMS) activation by visible-light-driven formation of polymorphic amorphous manganese oxides. J. Hazard. Mater. 2022, 427, 127938. [Google Scholar] [CrossRef]
- Chen, P.; Gou, Y.; Ni, J.; Liang, Y.; Yang, B.; Jia, F.; Song, S. Efficient Ofloxacin degradation with Co(II)-doped MoS2 nano-flowers as PMS activator under visible-light irradiation. Chem. Eng. J. 2020, 401, 125978. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Chen, S.; Zhang, W.; Xiang, K.; Shen, F.; Xiao, R.; Chai, L.; Zhao, F. A layered g-C3N4 support Single-Atom Fe-N4 catalyst derived from hemin to Activate PMS for Selective degradation of electron-rich compounds via singlet oxygen species. Chem. Eng. J. 2023, 474, 145571. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, X.; Zhang, C.; Li, T.; Lin, Y.; Xie, T.; Dong, S. Porous 0D/3D NiCo2O4/g-C3N4 accelerate emerging pollutant degradation in PMS/vis system: Degradation mechanism, pathway and toxicity assessment. Chem. Eng. J. 2020, 397, 125356. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Ye, Y.; Chen, J. Photocatalytic oxygen reduction reaction over copper-indium-sulfide modified polymeric carbon nitride S-scheme heterojunction photocatalyst. J. Catal. 2023, 419, 9–18. [Google Scholar] [CrossRef]
- Wang, Y.; Du, P.; Pan, H.; Fu, L.; Zhang, Y.; Chen, J.; Du, Y.; Tang, N.; Liu, G. Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis. Adv. Mater. 2019, 31, 1807540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Zeng, P.; Yu, Y.X.; Zhang, W.D. Integration of nickel complex as a cocatalyst onto in-plane benzene ring-incorporated graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 381, 122635. [Google Scholar] [CrossRef]
- Luo, Z.; Jia, T.; Liu, Q.; Song, Y.; Zhou, M.; Ma, X.; Wu, J.; Qin, Z.; Wu, X. Development of CuInS2/g-C3N4 nanolayer for efficient adsorption of elemental mercury from coal combustion flue gas. Chem. Eng. J. 2021, 426, 131905. [Google Scholar] [CrossRef]
- Guan, C.; Jiang, J.; Pang, S.; Chen, X.; Webster, R.D.; Lim, T.T. Facile synthesis of pure g-C3N4 materials for peroxymonosulfate activation to degrade bisphenol A: Effects of precursors and annealing ambience on catalytic oxidation. Chem. Eng. J. 2020, 387, 123726. [Google Scholar] [CrossRef]
- Kouvelis, K.; Kampioti, A.A.; Petala, A.; Frontistis, Z. Degradation of sulfamethoxazole using a hybrid CuOx–BiVO4/SPS/Solar System. Catalysts 2022, 12, 882. [Google Scholar] [CrossRef]
- Wang, M.; Li, T.; Hou, Q.; Hao, Y.; Wang, Z. Facile one-step preparation of Co and Ce doped TiO2 in visible light PMS activation for PAHs degradation. Chemosphere 2022, 308, 136360. [Google Scholar] [CrossRef]
- Akbari, S.; Moussavi, G.; Decker, J.; Marin, M.L.; Bosca, F.; Giannakis, S. Superior visible light-mediated catalytic activity of a novel N-doped, Fe3O4-incorporating MgO nanosheet in presence of PMS: Imidacloprid degradation and implications on simultaneous bacterial inactivation. Appl. Catal. B Environ. 2022, 317, 121732. [Google Scholar] [CrossRef]
- Wang, H.; Long, Z.; Chen, R.; Zhang, H.; Shi, H.; Chen, Y. Boosting PMS activation over BiVO4 piezo-photocatalyst to rapidly degrade tetracycline: Intermediates and mechanism. Sep. Purif. Technol. 2023, 331, 125598. [Google Scholar] [CrossRef]
- Phan, H.T.B.; Nguyen, A.Q.K.; Ahn, Y.Y.; Kim, K.; Kim, S.; Kim, J. Visible light-induced degradation of propranolol with peroxymonosulfate as an oxidant and a radical precursor. Sep. Purif. Technol. 2022, 289, 120764. [Google Scholar] [CrossRef]
- Zou, H.; Liu, Y.; Ni, L.; Luo, S.; Moskovskikh, D.; Oleszczuk, P.; Czech, B.; Lu, J.; Li, T.; Wang, H. Enhanced degradation of tetracycline via Visible-light-assisted peroxymonosulfate activation over oxygen vacancy rich Fe2O3-CoFe2O4 heterostructures. Sep. Purif. Technol. 2023, 314, 123586. [Google Scholar] [CrossRef]
- Meng, X.; Song, T.; Zhang, C.; Wang, H.; Ge, M.; Guo, C. Magnetic MnFe2O4 nanoparticles anchored on sludge-derived biochar in activating peroxydisulfate for levofloxacin degradation: Mechanism, degradation pathways and cost analysis. J. Environ. Chem. Eng. 2023, 11, 110241. [Google Scholar] [CrossRef]
- Huang, W.; Ming, H.; Bian, X.; Yang, C.; Hou, Y.; Ding, K.; Zhang, J. Copper single atoms incorporated in crystalline carbon nitride for efficient photocatalytic activation of peroxymonosulfate toward bisphenol A removal with visible light. Chem. Eng. J. 2023, 473, 145230. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, M.; Ge, C.; Zhang, P.; Xu, W.; Zhang, L.; Zhou, S.; Liao, J. Cu single atoms/O doping g-C3N4 mediated photocatalytic activation of peroxymonosulfate for ultrafast carbamazepine removal via high 1O2 yield. Appl. Surf. Sci. 2023, 640, 158290. [Google Scholar] [CrossRef]
- Wang, M.; Jin, C.; Kang, J.; Liu, J.; Tang, Y.; Li, Z.; Li, S. CuO/g-C3N4 2D/2D heterojunction photocatalysts as efficient peroxymonosulfate activators under visible light for oxytetracycline degradation: Characterization, efficiency and mechanism. Chem. Eng. J. 2021, 416, 128118. [Google Scholar] [CrossRef]
- Yang, L.; Ren, X.; Zhang, Y.; Chen, Z. Heterogeneous activation of peroxymonosulfate by Cu+-decorated g-C3N4 under sunlight for degradation of organic pollutants. J. Environ. Chem. Eng. 2021, 9, 106596. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Wang, C.; Yue, L.; Liu, T.; Lan, Q.; Cao, X.; Xing, B. Photocatalytic inactivation of harmful algae Microcystis aeruginosa and degradation of microcystin by g-C3N4/Cu-MOF nanocomposite under visible light. Sep. Purif. Technol. 2023, 313, 123515. [Google Scholar] [CrossRef]
- Guo, F.; Shi, W.; Li, M.; Shi, Y.; Wen, H. 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible light-driven photocatalytic activity towards the degradation of tetracycline. Sep. Purif. Technol. 2019, 210, 608–615. [Google Scholar] [CrossRef]
- Nguyen, M.B.; Lan, P.T.; Anh, N.T.; Tung, N.N.; Guan, S.; Ting, V.P.; Nguyen, T.T.B.; Doan, H.V.; Tung, M.T.; Lam, T.D. Ternary heterogeneous Z-scheme photocatalyst TiO2/CuInS2/OCN incorporated with carbon quantum dots (CQDs) for enhanced photocatalytic degradation efficiency of reactive yellow 145 dye in water. RSC Adv. 2023, 13, 35339. [Google Scholar] [CrossRef]
- Li, Q.; Wei, G.; Zhang, L.; Li, Z.; Li, J. Activation of peroxymonosulfate by a waste red mud-supported Co3O4 quantum dots under visible light for the degradation of levofloxacin. Chem. Eng. J. 2023, 452, 139382. [Google Scholar] [CrossRef]
- Guo, P.; Hu, X. Co, Fe co-doped g-C3N4 composites as peroxymonosulfate activators under visible light irradiation for levofloxacin degradation: Characterization, performance and synergy mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129423. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Zhu, C.; Zhang, J.; Chen, L. Degradation of levofloxacin hydrochloride by Bi2O3/BiFeO3 activated peroxymonosulfate driven by visible light. Opt. Mater. 2023, 143, 114200. [Google Scholar] [CrossRef]
- Ding, C.; Lu, Y.; Guo, J.; Gan, W.; Qi, S.; Yin, Z.; Zhang, M.; Sun, Z. Internal electric field-mediated sulfur vacancies-modified-In2S3/TiO2 thin-film heterojunctions as a photocatalyst for peroxymonosulfate activation: Density functional theory calculations, levofloxacin hydrochloride degradation pathways and toxicity of intermediates. Chem. Eng. J. 2022, 450, 138271. [Google Scholar]
- Li, X.; Chen, T.; Qiu, Y.; Zhu, Z.; Zhang, H.; Yin, D. Magnetic dual Z-scheme g-C3N4/BiVO4/CuFe2O4 heterojunction as an efficient visible-light-driven peroxymonosulfate activator for levofloxacin degradation. Chem. Eng. J. 2023, 452, 139659. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W.; Cai, W. The synergistic effect of Ag/AgCl@ZIF-8 modified g-C3N4 composite and peroxymonosulfate for the enhanced visible-light photocatalytic degradation of levofloxacin. Sci. Total Environ. 2019, 696, 133962. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Zhu, C.; Yang, N.; Li, Y.; Su, F.; Qian, J. Visible light-driven Z-scheme Bi2O3/CuBi2O4 heterojunction with dual metal ions cycle for PMS activation and Lev degradation. Inorg. Chem. Commun. 2023, 158, 111531. [Google Scholar] [CrossRef]
- Guo, P.; Hu, X. ZIF-derived CoFe2O4/Fe2O3 combined with g-C3N4 as high-efficient photocatalysts for enhanced degradation of levofloxacin in the presence of peroxymonosulfate. J. Alloy. Compd. 2022, 914, 165338. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, X.; Ji, M.; Wu, W.; Lu, C.; Liu, W.; Jiang, F. Enhanced Degradation of Levofloxacin through Visible-Light-Driven Peroxymonosulfate Activation over CuInS2/g-C3N4 Heterojunctions. Nanomaterials 2024, 14, 74. https://doi.org/10.3390/nano14010074
Zhong X, Ji M, Wu W, Lu C, Liu W, Jiang F. Enhanced Degradation of Levofloxacin through Visible-Light-Driven Peroxymonosulfate Activation over CuInS2/g-C3N4 Heterojunctions. Nanomaterials. 2024; 14(1):74. https://doi.org/10.3390/nano14010074
Chicago/Turabian StyleZhong, Xin, Meihuan Ji, Wenxin Wu, Caicai Lu, Wenping Liu, and Fubin Jiang. 2024. "Enhanced Degradation of Levofloxacin through Visible-Light-Driven Peroxymonosulfate Activation over CuInS2/g-C3N4 Heterojunctions" Nanomaterials 14, no. 1: 74. https://doi.org/10.3390/nano14010074
APA StyleZhong, X., Ji, M., Wu, W., Lu, C., Liu, W., & Jiang, F. (2024). Enhanced Degradation of Levofloxacin through Visible-Light-Driven Peroxymonosulfate Activation over CuInS2/g-C3N4 Heterojunctions. Nanomaterials, 14(1), 74. https://doi.org/10.3390/nano14010074