Magnetic Material in Triboelectric Nanogenerators: A Review
Abstract
:1. Introduction
2. Fundamentals of Triboelectricity and Magnetic Interactions in TENGs
2.1. Triboelectric Effect
2.2. Electromagnetic Induction
2.3. Working Modes of TENGs
3. Types of Magnetic Materials and Their Applications in TENGs
3.1. Hard Magnetic Materials in TENG
3.1.1. Hard Magnetic Materials
3.1.2. Application of Hard Magnetic Materials in TENGs
Material | Driving Mode | Key Materials | Output Voltage | Output Current | Output Power/ Power Density | Ref. |
---|---|---|---|---|---|---|
NdFeB/Fe3O4 | No contact | PZT nanowires | 3.2 V | 50 nA | 170 μW/cm3 | [94] |
Permanent magnet | Contact | PTFE/Ti | 70 V | 0.65 μA | — | [67] |
NdFeB-N35 | Contact | Nylon/FEP | 1.5 kV | 20 µA | 6.76 mW | [95] |
Permanent magnet | No contact | PLA | 4 V | 550 nA | 300 nW | [96] |
NdFeB-N50 | No contact | FEP/Cu | 1235 V | — | 39.55 W/m3 | [16] |
Rubidium magnets | Contact | Poly lactic acid/PTFE | 179.3 V | 11.3 µA | 0.66 mW | [55] |
NdFeB-N35 | Contact | Nylon/PTFE | 171 V | 14.6 µA | 0.33 mW | [56] |
NdFeB-N52 | No contact | PDMS/Al | 176 V | 375 μA | 4.7 mW | [97] |
3.2. Soft Magnetic Materials in TENG
3.2.1. Introduction to Soft Magnetic Materials
3.2.2. Application of Soft Magnetic Materials in TENGs
3.3. Magnetic Composite Materials in TENGs
3.3.1. Hybrid Materials Combining Magnetic and Triboelectric Properties
3.3.2. Synergistic Effects on TENGs through Composite Materials
Material | Driving Mode | Key Materials | Output Voltage | Output Current | Output Power/ Power Density | Ref. |
---|---|---|---|---|---|---|
Strontium ferrite | Contact | PTFE/Strontium ferrite | 0.6 V | — | — | [58] |
Fe3O4 | No contact | PVDF-Fe3O4 | 75 V | 6 µA | 0.23 mW | [109] |
Fe3O4 | Contact | CNTs@Fe3O4 | — | 1.1 µA | 147.9 µW | [110] |
Fe-Co-Ni | No contact | PDMS/Fe-Co-Ni | 206 V | 30 µA | 3 mW | [59] |
Fe-Co-Ni | No contact | PDMS/Fe-Co-Ni | 275 V | 9 µA | — | [111] |
Fe3O4 | Contact | Fe3O4@COFs/PDMS-MXene | 146 V | 32 µA | 8.04 µW/m2 | [112] |
SrFe12O19 | Contact | FEP-SrFe12O19/Al | 495 V | 130 µA | 19.0 mW | [113] |
Carbonyl iron | No contact/Contact | Ecoflex/CI | 23.59 V | 8.84 µA | 27.05 mW/m2 | [57] |
Fe3O4 | Contact | PVDF/Fe3O4 | — | 4.8 µA | 1.66 W/m2 | [114] |
4. Materials in Self-Powered Sensors
4.1. Self-Powered Magnetic Sensors
4.2. Self-Powered Temperature and Humidity Sensors
4.3. Self-Powered Pressure Sensors
4.4. Other Self-Powered Sensors
Materials | Driving Mode | Key Materials | Output 1 | Power/ Power Density | Cycle Performance | Applications | Ref. |
---|---|---|---|---|---|---|---|
Carbonyl iron | Contact | PVDF/CI | — | 676 pC (electric charges) | 100% at 17 cycles | Magnetic sensor | [115] |
Carbonyl iron | Contact | SSG/PDMS | 20.99 V/2.62 mA | 55.07 mW | 20.99 V to 20.33 V after 500 cycles | Magnetic sensor | [116] |
ErFeO3 | Contact | BaTiO3/ErFeO3 | 320 V/8.5 µA | 0.25 W/m2 | — | Magnetic sensor | [117] |
NdFeB | Contact | PDMS/NdFeB | 120 V/10 µA | 450 mW/m2 | 100% at 6000 cycles | Temperature sensor | [61] |
Iron | Contact | PDMS/Fe | 27 mA/m2 | 2 W/m2 | 100% at 6000 cycles | Temperature and humidity sensor | [118] |
Fe3O4 | Contact | PVDF-PI NFs | 1600 V/130 μA | 22 W/m2 | 100% at 1000 cycles | Humidity sensor | [63] |
Fe3O4 | Contact | MGC | 168.2 V/7.6 μA | 107.5 mW/m2 | 100% at 2400 cycles | Humidity sensor | [119] |
Fe2O3 | Contact/No contact | PVDF/PET | 250 V/5 μA | 0.17 mW/0.117 W/m2 | 100% at 3000 s | Pressure sensor | [120] |
Ni/NdFeB-N38 | Contact | PTFE | 1.75 V/70 nA | 1.05 nC (electric charge) | — | Force and acceleration sensor | [121] |
Carbonyl iron | Contact | PDMS-Fe | 70 V/250 nA | 2.75 µW/cm2 | 100% at 1600 cycles | Pressure sensor | [122] |
NdFeB | Contact | MC-PDMS | 103 V/7.6 μA | 7.3 µW/cm2 | 100% at 14,000 cycles | Three-dimensional trajectory sensor | [123] |
Nickel particles | Contact | Cu/Al | 233.4 V/32.6 µA | 2.5 mW | — | Automatic target-scoring system | [124] |
Magnet (M1) | Contact | Cu/Al | 4 V | 340 µW | — | Speed sensor | [125] |
5. Conclusions and Outlook
5.1. Power Output Enhancement
5.2. Durability Enhancement
5.3. Multifunctionality
5.4. Expansion of Application Scenarios
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, S.; Chen, S. Recent advances in electrospinning nanofiber materials for aqueous zinc ion batteries. Chem. Sci. 2023, 14, 13346–13366. [Google Scholar] [CrossRef] [PubMed]
- Minh, N.Q.; Meng, Y.S. Future energy, fuel cells, and solid-oxide fuel-cell technology. MRS Bull. 2019, 44, 682–683. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical and Chemical Sensors. ACS Nano 2013, 7, 9533. [Google Scholar] [CrossRef]
- Shao, Y.; Luo, C.; Deng, B.-W.; Yin, B.; Yang, M.-B. Flexible porous silicone rubber-nanofiber nanocomposites generated by supercritical carbon dioxide foaming for harvesting mechanical energy. Nano Energy 2020, 67, 104290. [Google Scholar] [CrossRef]
- Yan, C.; Gao, Y.; Zhao, S.; Zhang, S.; Zhou, Y.; Deng, W.; Li, Z.; Jiang, G.; Jin, L.; Tian, G.; et al. A linear-to-rotary hybrid nanogenerator for high-performance wearable biomechanical energy harvesting. Nano Energy 2020, 67, 104235. [Google Scholar] [CrossRef]
- Cheng, B.; Ma, J.; Li, G.; Bai, S.; Xu, Q.; Cui, X.; Cheng, L.; Qin, Y.; Wang, Z.L. Mechanically Asymmetrical Triboelectric Nanogenerator for Self-Powered Monitoring of In Vivo Microscale Weak Movement. Adv. Energy Mater. 2020, 10, 2000827. [Google Scholar] [CrossRef]
- Li, C.; Liu, D.; Xu, C.; Wang, Z.; Shu, S.; Sun, Z.; Tang, W.; Wang, Z.L. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 2021, 12, 2950. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, F.; Wang, Z.; Dong, P.; Xia, G.; Wang, K. Flexible PVDF nanogenerator-driven motion sensors for human body motion energy tracking and monitoring. J. Mater. Sci. : Mater. Electron. 2021, 32, 14715–14727. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Du, W.; Zhao, Y.; Wang, W.; Pang, L.; Chen, L.; Yu, A.; Zhai, J. Self-powered triboelectric-mechanoluminescent electronic skin for detecting and differentiating multiple mechanical stimuli. Nano Energy 2022, 96, 107115. [Google Scholar] [CrossRef]
- Ye, C.; Yang, S.; Ren, J.; Dong, S.; Cao, L.; Pei, Y.; Ling, S. Electroassisted Core-Spun Triboelectric Nanogenerator Fabrics for IntelliSense and Artificial Intelligence Perception. ACS Nano 2022, 16, 4415–4425. [Google Scholar] [CrossRef]
- Hu, J.; Pu, X.; Yang, H.; Zeng, Q.; Tang, Q.; Zhang, D.; Hu, C.; Xi, Y. A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Res. 2019, 12, 3018–3023. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, Z.; Liu, Z.; Wang, L.; Guo, H.; Li, L.; Li, S.; Chen, X.; Tang, W.; Wang, Z.L. Energy Harvesting from Breeze Wind (0.7–6 m s−1) Using Ultra-Stretchable Triboelectric Nanogenerator. Adv. Energy Mater. 2020, 10, 2001770. [Google Scholar] [CrossRef]
- Yong, S.; Wang, J.; Yang, L.; Wang, H.; Luo, H.; Liao, R.; Wang, Z.L. Auto-Switching Self-Powered System for Efficient Broad-Band Wind Energy Harvesting Based on Dual-Rotation Shaft Triboelectric Nanogenerator. Adv. Energy Mater. 2021, 11, 2101194. [Google Scholar] [CrossRef]
- Bai, Q.; Liao, X.-W.; Chen, Z.-W.; Gan, C.-Z.; Zou, H.-X.; Wei, K.-X.; Gu, Z.; Zheng, X.-J. Snap-through triboelectric nanogenerator with magnetic coupling buckled bistable mechanism for harvesting rotational energy. Nano Energy 2022, 96, 107118. [Google Scholar] [CrossRef]
- Cui, N.; Jia, X.; Lin, A.; Liu, J.; Bai, S.; Zhang, L.; Qin, Y.; Yang, R.; Zhou, F.; Li, Y. Piezoelectric nanofiber/polymer composite membrane for noise harvesting and active acoustic wave detection. Nanoscale Adv. 2019, 1, 4909–4914. [Google Scholar] [CrossRef]
- Lee, D.-M.; Rubab, N.; Hyun, I.; Kang, W.; Kim, Y.-J.; Kang, M.; Choi, B.O.; Kim, S.-W. Ultrasound-mediated triboelectric nanogenerator for powering on-demand transient electronics. Sci. Adv. 2022, 8, eabl8423. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Wang, J.; Zi, Y.; Li, X.; Han, C.; Cao, X.; Hu, C.; Wang, Z. High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy 2017, 38, 101–108. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.; Kim, T.Y.; Khan, U.; Kim, S.-W. Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy 2019, 58, 579–584. [Google Scholar] [CrossRef]
- Zhong, W.; Xu, L.; Wang, H.; Li, D.; Wang, Z.L. Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy. Nano Energy 2019, 66, 104108. [Google Scholar] [CrossRef]
- Wu, M.; Wang, Y.; Gao, S.; Wang, R.; Ma, C.; Tang, Z.; Bao, N.; Wu, W.; Fan, F.; Wu, W. Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring. Nano Energy 2019, 56, 693–699. [Google Scholar] [CrossRef]
- Jiang, T.; Pang, H.; An, J.; Lu, P.; Feng, Y.; Liang, X.; Zhong, W.; Wang, Z.L. Robust Swing-Structured Triboelectric Nanogenerator for Efficient Blue Energy Harvesting. Adv. Energy Mater. 2020, 10, 2000064. [Google Scholar] [CrossRef]
- Xia, K.; Fu, J.; Xu, Z. Multiple-Frequency High-Output Triboelectric Nanogenerator Based on a Water Balloon for All-Weather Water Wave Energy Harvesting. Adv. Energy Mater. 2020, 10, 2000426. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Cheng, P.; Liu, D.; Zhang, C.; Li, X.; Li, S.; Wang, J.; Wang, Z.L. Bifilar-Pendulum-Assisted Multilayer-Structured Triboelectric Nanogenerators for Wave Energy Harvesting. Adv. Energy Mater. 2021, 11, 2003616. [Google Scholar] [CrossRef]
- Wu, H.; Mendel, N.; van der Ham, S.; Shui, L.; Zhou, G.; Mugele, F. Charge Trapping-Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets. Adv. Mater. 2020, 32, 2001699. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, W.; Gong, W.; Ma, W.; Hou, C.; Li, Y.; Zhang, Q.; Wang, H. Abrasion Resistant/Waterproof Stretchable Triboelectric Yarns Based on Fermat Spirals. Adv. Mater. 2021, 33, 2100782. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Luo, B.; Liu, Y.; Fu, Q.; Liu, T.; Wang, S.; Nie, S. Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater. Today 2022, 52, 299–326. [Google Scholar] [CrossRef]
- Tian, J.; Chen, X.; Wang, Z.L. Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 2020, 31, 242001. [Google Scholar] [CrossRef] [PubMed]
- Pullano, S.A.; Critello, D.C.; Fiorillo, A.S. Triboelectric-induced Pseudo-ICG for cardiovascular risk assessment on flexible electronics. Nano Energy 2020, 67, 104278. [Google Scholar] [CrossRef]
- Jin, F.; Li, T.; Yuan, T.; Du, L.; Lai, C.; Wu, Q.; Zhao, Y.; Sun, F.; Gu, L.; Wang, T.; et al. Physiologically Self-Regulated, Fully Implantable, Battery-Free System for Peripheral Nerve Restoration. Adv. Mater. 2021, 33, 2104175. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Dong, P.; Cui, X.; Zhang, Y. The strategy of circuit design for high performance nanogenerator based self-powered heart rate monitor system. Nano Energy 2022, 96, 107136. [Google Scholar] [CrossRef]
- Yao, S.; Zhao, X.; Wang, X.; Huang, T.; Ding, Y.; Zhang, J.; Zhang, Z.; Wang, Z.L.; Li, L. Bioinspired Electron Polarization of Nanozymes with a Human Self-Generated Electric Field for Cancer Catalytic Therapy. Adv. Mater. 2022, 34, 2109568. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.; Aazem, I.; Walden, R.; Bairagi, S.; Mulvihill, D.M.; Pillai, S.C. Electrospun nanofiber based TENGs for wearable electronics and self-powered sensing. Chem. Eng. J. 2023, 452, 139060. [Google Scholar] [CrossRef]
- Wang, H.; Han, M.; Song, Y.; Zhang, H. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy 2021, 81, 105627. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, D.; Seong, J.; Bak, B.; Choi, U.H.; Kim, J. Ionic liquid-based molecular design for transparent, flexible, and fire-retardant triboelectric nanogenerator (TENG) for wearable energy solutions. Nano Energy 2021, 84, 105925. [Google Scholar] [CrossRef]
- Li, H.; Guo, S.; Shin, K.; Wong, M.S.; Henkelman, G. Design of a Pd–Au Nitrite Reduction Catalyst by Identifying and Optimizing Active Ensembles. ACS Catal. 2019, 9, 7957–7966. [Google Scholar] [CrossRef]
- Feng, Y.; Han, J.; Xu, M.; Liang, X.; Jiang, T.; Li, H.; Wang, Z.L. Blue Energy for Green Hydrogen Fuel: A Self-Powered Electrochemical Conversion System Driven by Triboelectric Nanogenerators. Adv. Energy Mater. 2022, 12, 2103143. [Google Scholar] [CrossRef]
- Liu, X.; Mo, J.; Wu, W.; Song, H.; Nie, S. Triboelectric pulsed direct-current enhanced radical generation for efficient degradation of organic pollutants in wastewater. Appl. Catal. B Environ. 2022, 312, 121422. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Z.; Liu, D.; An, J.; Gao, Y.; Zhou, L.; Li, Y.; Cui, S.; Wang, J.; Wang, Z.L. A Self-Powered Dual-Type Signal Vector Sensor for Smart Robotics and Automatic Vehicles. Adv. Mater. 2022, 34, 2110363. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Wen, J.; Gao, X.; Nan, D.; Pan, J.; Yang, Y.; Chen, B.; Wang, Z.L. Self-Rebound Cambered Triboelectric Nanogenerator Array for Self-Powered Sensing in Kinematic Analytics. ACS Nano 2022, 16, 1271–1279. [Google Scholar] [CrossRef]
- Wei, X.; Wang, B.; Wu, Z.; Wang, Z.L. An Open-Environment Tactile Sensing System: Toward Simple and Efficient Material Identification. Adv. Mater. 2022, 34, 2203073. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, K.; Sharma, S.; Pradhan, G.B.; Bhatta, T.; Maharjan, P.; Rana, S.M.S.; Lee, S.; Seonu, S.; Shin, Y.; Park, J.Y. A Siloxene/Ecoflex Nanocomposite-Based Triboelectric Nanogenerator with Enhanced Charge Retention by MoS2/LIG for Self-Powered Touchless Sensor Applications. Adv. Funct. Mater. 2022, 32, 2113005. [Google Scholar] [CrossRef]
- Luo, J.; Gao, W.; Wang, Z.L. The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Adv. Mater. 2021, 33, 2004178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, Z.; Chen, Y.; Feng, Y.; Dong, S.; Zhou, H.; Wang, Z.L.; Zhang, C. Semiconductor Contact-Electrification-Dominated Tribovoltaic Effect for Ultrahigh Power Generation. Adv. Mater. 2022, 34, 2200146. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Peng, X.; Cheng, R.; Ning, C.; Jiang, Y.; Zhang, Y.; Wang, Z.L. Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures. Adv. Mater. 2022, 34, 2109355. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, M.; Wu, X.; Wu, X.; Zeng, F.; Li, Y.; Duan, S.; Fan, D.; Yang, Y.; Wu, X. The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries. J. Electroanal. Chem. 2019, 832, 69–74. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Du, H.; Liu, Y.; Xiang, Y.; Xiong, L.; Wu, X.; Wu, X. Copper Nanoparticle-Modified Carbon Nanofiber for Seeded Zinc Deposition Enables Stable Zn Metal Anode. ACS Sustain. Chem. Eng. 2022, 10, 12630–12641. [Google Scholar] [CrossRef]
- Jiao, P. Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy 2021, 88, 106227. [Google Scholar] [CrossRef]
- Liang, S.; Wang, Y.; Liu, Q.; Yuan, T.; Yao, C. The Recent Progress in Cellulose Paper-Based Triboelectric Nanogenerators. Adv. Sustain. Syst. 2021, 5, 2100034. [Google Scholar] [CrossRef]
- Chao, S.; Ouyang, H.; Jiang, D.; Fan, Y.; Li, Z. Triboelectric nanogenerator based on degradable materials. EcoMat 2021, 3, e12072. [Google Scholar] [CrossRef]
- Gorbachev, E.A.; Kozlyakova, E.S.; Trusov, L.A.; Sleptsova, A.E.; Zykin, M.A.; Kazin, P.E. Design of modern magnetic materials with giant coercivity. Russ. Chem. Rev. 2021, 90, 1287. [Google Scholar] [CrossRef]
- Wei, X.; Jin, M.-L.; Yang, H.; Wang, X.-X.; Long, Y.-Z.; Chen, Z. Advances in 3D printing of magnetic materials: Fabrication, properties, and their applications. J. Adv. Ceram. 2022, 11, 665–701. [Google Scholar] [CrossRef]
- Chaudhary, V.; Mantri, S.A.; Ramanujan, R.V.; Banerjee, R. Additive manufacturing of magnetic materials. Prog. Mater. Sci. 2020, 114, 100688. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Q.; Li, W.; Zhu, M.; Li, H.; Cheng, T.; Wang, Z.L. Alternating Magnetic Field-Enhanced Triboelectric Nanogenerator for Low-Speed Flow Energy Harvesting. Adv. Funct. Mater. 2023, 33, 2304839. [Google Scholar] [CrossRef]
- Zhao, J.; Mu, J.; Cui, H.; He, W.; Zhang, L.; He, J.; Gao, X.; Li, Z.; Hou, X.; Chou, X. Hybridized Triboelectric-Electromagnetic Nanogenerator for Wind Energy Harvesting to Realize Real-Time Power Supply of Sensor Nodes. Adv. Mater. Technol. 2021, 6, 2001022. [Google Scholar] [CrossRef]
- Wang, S.; Liu, S.; Zhou, J.; Li, F.; Li, J.; Cao, X.; Li, Z.; Zhang, J.; Li, B.; Wang, Y. Advanced triboelectric nanogenerator with multi-mode energy harvesting and anti-impact properties for smart glove and wearable e-textile. Nano Energy 2020, 78, 105291. [Google Scholar] [CrossRef]
- Qin, K.; Chen, C.; Pu, X.; Tang, Q.; He, W.; Liu, Y.; Zeng, Q.; Liu, G.; Guo, H.; Hu, C. Magnetic Array Assisted Triboelectric Nanogenerator Sensor for Real-Time Gesture Interaction. Nano-Micro Lett. 2021, 13, 1–9. [Google Scholar] [CrossRef]
- Huang, L.-b.; Xu, W.; Bai, G.; Wong, M.-C.; Yang, Z.; Hao, J. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 2016, 30, 36–42. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Ahn, K.K. The Effect of a Magnetic Field on Solid–Liquid Contact Electrification for Streaming Flow Energy Harvesting. Energies 2023, 16, 4779. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, Y.; Wang, J.; Wang, Q.; Zheng, G.; Li, Y.; Chen, Z.; Chen, Y.; Jiang, L.; Wong, C.-P. Slug-inspired Magnetic Soft Millirobot Fully Integrated with Triboelectric Nanogenerator for On-board Sensing and Self-powered Charging. Nano Energy 2022, 99, 107367. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Liu, Y.; Zhang, P.; Ren, C.; Zhang, H.; Cai, H.; Ding, G.; Yang, Z.; Zhang, C. Regulation of nanocrystals structure for high-performance magnetic triboelectric nanogenerator. Nano Energy 2021, 89, 106390. [Google Scholar] [CrossRef]
- Tayyab, M.; Wang, J.; Wang, J.; Maksutoglu, M.; Yu, H.; Sun, G.; Yildiz, F.; Eginligil, M.; Huang, W. Enhanced output in polyvinylidene fluoride nanofibers based triboelectric nanogenerator by using printer ink as nano-fillers. Nano Energy 2020, 77, 105178. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, Y.; Gao, Q.; Zhang, X.; Zhang, J.; Wang, Y.; He, S.; Li, H.; Wang, Z.L.; Cheng, T. Enhancing performance of triboelectric nanogenerator by accelerating the charge transfer strategy. Nano Energy 2024, 121, 109194. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Ge, J.; Chen, C.; Yu, X.; Wang, Z.L.; Cheng, T. Single-material-substrated triboelectric-electromagnetic hybrid generator for self-powered multifunctional sensing in intelligent greenhouse. Nano Res. 2023, 16, 3149–3155. [Google Scholar] [CrossRef]
- Ahmed, A.; Hassan, I.; Mosa, I.M.; Elsanadidy, E.; Sharafeldin, M.; Rusling, J.F.; Ren, S. An Ultra-Shapeable, Smart Sensing Platform Based on a Multimodal Ferrofluid-Infused Surface. Adv. Mater. 2019, 31, 1807201. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Feng, H.; Zhang, L.; Li, Z.; Zou, Y.; Tan, P.; Ouyang, H.; Jiang, D.; Yu, M.; Wang, C. Highly Efficient In Vivo Cancer Therapy by an Implantable Magnet Triboelectric Nanogenerator. Adv. Funct. Mater. 2019, 29, 1808640. [Google Scholar] [CrossRef]
- Li, C.; Qin, Y.; Zhang, H.; Wang, Y.; Liao, J.; Guo, H. Spray power generation based on triboelectric effect. Nano Energy 2024, 120, 109138. [Google Scholar] [CrossRef]
- Yang, S.; Du, H.; Li, Y.; Wu, X.; Xiao, B.; He, Z.; Zhang, Q.; Wu, X. Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy Environ. 2023, 8, 1531–1552. [Google Scholar] [CrossRef]
- Qi, C.; Yang, Z.; Zhi, J.; Zhang, R.; Wen, J.; Qin, Y. Enhancing the powering ability of triboelectric nanogenerator through output signal’s management strategies. Nano Res. 2023, 16, 11783–11800. [Google Scholar] [CrossRef]
- Shang, Y.; Li, C.; Yu, G.; Yang, Y.; Zhao, W.; Tang, W. High Storable Power Density of Triboelectric Nanogenerator within Centimeter Size. Materials 2023, 16, 4669. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Qi, B.; Wang, Z.; Cai, M.; Cui, J.; Zheng, Y. High Performance Rotating Triboelectric Nanogenerator with Coaxial Rolling Charge Pump Strategy. Micromachines 2023, 14, 2160. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zheng, Y.; Li, X. Recent Progress in Self-Powered Sensors Based on Triboelectric Nanogenerators. Sensors 2021, 21, 7129. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, L.; Wu, Z.; Guo, H.; Yu, W.; Du, Z.; Wang, Z.L. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 2020, 32, 84–93. [Google Scholar] [CrossRef]
- Haroun, A.; Tarek, M.; Mosleh, M.; Ismail, F. Recent Progress on Triboelectric Nanogenerators for Vibration Energy Harvesting and Vibration Sensing. Nanomaterials 2022, 12, 2960. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Cao, H.; Zhang, X.; Li, M.; Liu, Y. Large Scale Triboelectric Nanogenerator and Self-Powered Flexible Sensor for Human Sleep Monitoring. Sensors 2018, 18, 1713. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Wu, Q.; Wang, S.; Zhao, Y.; Wang, Z.; Hu, Q.; Li, L.; Liu, H. Self-Driven Electric Field Control of Orbital Electrons in AuPd Alloy Nanoparticles for Cancer Catalytic Therapy. Small 2024, 20, 2307087. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Wang, B.; Dai, S.; Liu, G.; Pu, Y.; Hu, C. Folded Elastic Strip-Based Triboelectric Nanogenerator for Harvesting Human Motion Energy for Multiple Applications. ACS Appl. Mater. Interfaces 2015, 7, 20469–20476. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Zheng, M.; Wang, S.; Huang, T.; Wang, Z.; Zhao, Y.; Yuan, W.; Li, Z.; Wang, Z.L.; Li, L. Self-driven Electrical Stimulation Promotes Cancer Catalytic Therapy Based on Fully Conjugated Covalent Organic Framework Nanocages. Adv. Funct. Mater. 2022, 32, 2209142. [Google Scholar] [CrossRef]
- Gai, L.; Wang, F.; Zhou, F. A Stretchable Triboelectric Nanogenerator Integrated Ion Coagulation Electrode for Cheerleading Monitoring. J. Electron. Mater. 2022, 51, 7182–7189. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Y.; Bai, L.; Li, J.; Li, T.; Zhao, C.; Zhang, J.; Song, G. Optimization of contact-mode triboelectric nanogeneration for high energy conversion efficiency. Sci. China Inf. Sci. 2018, 61, 060416. [Google Scholar] [CrossRef]
- You, A.; Zhang, X.; Peng, X.; Dong, K.; Lu, Y.; Zhang, Q. A Skin-Inspired Triboelectric Nanogenerator with an Interpenetrating Structure for Motion Sensing and Energy Harvesting. Macromol. Mater. Eng. 2021, 306, 2100147. [Google Scholar] [CrossRef]
- Huang, T.; Long, Y.; Dong, Z.; Hua, Q.; Niu, J.; Dai, X.; Wang, J.; Xiao, J.; Zhai, J.; Hu, W. Ultralight, Elastic, Hybrid Aerogel for Flexible/Wearable Piezoresistive Sensor and Solid–Solid/Gas–Solid Coupled Triboelectric Nanogenerator. Adv. Sci. 2022, 9, 2204519. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Tang, W.; Han, C.; Fan, F.; Wang, Z.L. Theoretical Comparison, Equivalent Transformation, and Conjunction Operations of Electromagnetic Induction Generator and Triboelectric Nanogenerator for Harvesting Mechanical Energy. Adv. Mater. 2014, 26, 3580–3591. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, J.; Fu, S.; Shan, C.; Wu, H.; An, S.; Du, Y.; He, W.; Wang, Z.; Liu, W.; et al. A Nanogenerator Enabled by a Perfect Combination and Synergetic Utilization of Triboelectrification, Charge Excitation and Electromagnetic Induction to Reach Efficient Energy Conversion. Adv. Funct. Mater. 2023, 33, 2213893. [Google Scholar] [CrossRef]
- Lu, Y.; Qin, Q.; Meng, J.; Mi, Y.; Wang, X.; Cao, X.; Wang, N. Constructing highly flexible dielectric sponge for enhancing triboelectric performance. Chem. Eng. J. 2023, 468, 143802. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, D.; Zhao, Z.; Li, S.; Liu, Y.; Liu, L.; Gao, Y.; Wang, Z.L.; Wang, J. Simultaneously Enhancing Power Density and Durability of Sliding-Mode Triboelectric Nanogenerator via Interface Liquid Lubrication. Adv. Energy Mater. 2020, 10, 2002920. [Google Scholar] [CrossRef]
- Zhang, M.; Jie, Y.; Cao, X.; Bian, J.; Li, T.; Wang, N.; Wang, Z.L. Robust design of unearthed single-electrode TENG from three-dimensionally hybridized copper/polydimethylsiloxane film. Nano Energy 2016, 30, 155–161. [Google Scholar] [CrossRef]
- Ren, D.; Yang, H.; Zhang, X.; Li, Q.; Yang, Q.; Li, X.; Ji, P.; Yu, P.; Xi, Y.; Wang, Z.L. Ultra-High DC and Low Impedance Output for Free-Standing Triboelectric Nanogenerator. Adv. Energy Mater. 2023, 13, 2302877. [Google Scholar] [CrossRef]
- Ahmed, R.; Kim, Y.; Mehmood, M.U.; Zeeshan, u.; Shaislamov, U.; Chun, W. Power generation by a thermomagnetic engine by hybrid operation of an electromagnetic generator and a triboelectric nanogenerator. Int. J. Energy Res. 2019, 43, 5852–5863. [Google Scholar] [CrossRef]
- Bernier, F.; Ibrahim, M.; Mihai, M.; Thomas, Y.; Lamarre, J.-M. Additive manufacturing of soft and hard magnetic materials used in electrical machines. Met. Powder Rep. 2020, 75, 334–343. [Google Scholar] [CrossRef]
- Yakout, S.M. Spintronics: Future Technology for New Data Storage and Communication Devices. J. Supercond. Nov. Magn. 2020, 33, 2557–2580. [Google Scholar] [CrossRef]
- Taylor, A.P.; Cuervo, C.V.; Arnold, D.P.; Velásquez-García, L.F. Fully 3D-Printed, Monolithic, Mini Magnetic Actuators for Low-Cost, Compact Systems. J. Microelectromech. Syst. 2019, 28, 481–493. [Google Scholar] [CrossRef]
- Cui, N.; Wu, W.; Zhao, Y.; Bai, S.; Meng, L.; Qin, Y.; Wang, Z.L. Magnetic Force Driven Nanogenerators as a Noncontact Energy Harvester and Sensor. Nano Lett. 2012, 12, 3701–3705. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Yuan, Z.; Shi, Y.; Sun, Y.; Li, R.; Chen, J.; Wang, L.; Wu, Z.; Wang, Z.L. Triboelectric Nanogenerator Based on a Rotational Magnetic Ball for Harvesting Transmission Line Magnetic Energy. Adv. Funct. Mater. 2021, 32, 2108827. [Google Scholar] [CrossRef]
- Jiao, P.; Nazar, A.M.; Egbe, K.-J.I.; Barri, K.; Alavi, A.H. Magnetic capsulate triboelectric nanogenerators. Sci. Rep. 2022, 12, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Wang, C.; Ma, J.; Fan, C.; Lv, P.; Bai, Y.; Rong, Y.; Wang, X.; Yuan, H.; Rong, M. Hybrid piezo/triboelectric nanogenerator for stray magnetic energy harvesting and self-powered sensing applications. High Volt. 2021, 6, 978–985. [Google Scholar] [CrossRef]
- Yan, Y.; Hu, Z.; Yang, Z.; Yuan, W.; Song, C.; Pan, J.; Shen, Y. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci. Robot. 2021, 6, eabc8801. [Google Scholar] [CrossRef] [PubMed]
- Mintken, M.; Schweichel, M.; Schröder, S.; Kaps, S.; Carstensen, J.; Mishra, Y.K.; Strunskus, T.; Faupel, F.; Adelung, R. Nanogenerator and piezotronic inspired concepts for energy efficient magnetic field sensors. Nano Energy 2019, 56, 420–425. [Google Scholar] [CrossRef]
- Takeda, M.; Takahashi, Y.; Fujiwara, K.; Imamori, S. Iron loss estimation of soft magnetic materials for power transformers considering hysteretic properties. Electron. Commun. Jpn. 2021, 104, e12334. [Google Scholar] [CrossRef]
- Jiaxin, Y.; Hao, Y.; Liang, H.; Yong, X.; Ding, D. A multi-parameter model of heat treatment process for soft magnetic materials on performance of HSERs. Chin. J. Aeronaut. 2022, 35, 379–388. [Google Scholar]
- Martinek, G.; Sinz, C. Additive manufacturing of soft magnetic materials and components. Addit. Manuf. 2019, 27, 428–439. [Google Scholar]
- Paralı, L.; Dönmez, Ç.E.D.; Koç, M.; Aktürk, S. Piezoelectric and magnetoelectric properties of PVDF/NiFe2O4 based electrospun nanofibers for flexible piezoelectric nanogenerators. Curr. Appl. Phys. 2022, 36, 143–159. [Google Scholar] [CrossRef]
- Durga Prasad, P.; Hemalatha, J. Multifunctional films of poly(vinylidene fluoride)/ZnFe2O4 nanofibers for nanogenerator applications. J. Alloys Compd. 2021, 854, 157189. [Google Scholar] [CrossRef]
- Nawaz, A.; Kang, M.; Choi, H.W.; Ahmad, R.T.M.; Kim, S.-W.; Yoon, D.H. ZnFe2O4 nanocomposite films for electromagnetic-triboelectric-piezoelectric effect-based hybrid multimodal nanogenerator. Chem. Eng. J. 2023, 454, 140262. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, G.; Zhu, J.; Wu, Z. Adsorption of heavy metal ions in water by surface functionalized magnetic composites: A review. Environ. Sci. Water Res. Technol. 2022, 8, 907–925. [Google Scholar] [CrossRef]
- Romero-Fierro, D.; Bustamante-Torres, M.; Bravo-Plascencia, F.; Magaña, H.; Bucio, E. Polymer-magnetic semiconductor nanocomposites for industrial electronic applications. Polymers 2022, 14, 2467. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Jain, S.; Lamba, B.Y. A review on synthesis, characterisation and surface modification of magnetic nanoparticle and its composite for removal of heavy metals from wastewater. Int. J. Environ. Anal. Chem. 2023, 103, 6510–6525. [Google Scholar] [CrossRef]
- Ren, X.; Fan, H.; Wang, C.; Ma, J.; Lei, S.; Zhao, Y.; Li, H.; Zhao, N. Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy. Nano Energy 2017, 35, 233–241. [Google Scholar] [CrossRef]
- Zheng, J.; Wei, X.; Li, Y.; Dong, W.; Li, X.; Shiju, E.; Wu, Z.; Wen, J. Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature. Nano Energy 2021, 89, 106397. [Google Scholar] [CrossRef]
- Huang, L.B.; Bai, G.; Wong, M.C.; Yang, Z.; Xu, W.; Hao, J. Magnetic-Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy into Electricity and Light Emissions. Adv. Mater. 2016, 28, 2744–2751. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.; Iffelsberger, C.; Konečný, M.; Vyskočil, J.; Michalička, J.; Pumera, M. Nanoarchitectonics of Triboelectric Nanogenerator for Conversion of Abundant Mechanical Energy to Green Hydrogen. Adv. Energy Mater. 2023, 13, 2203476. [Google Scholar] [CrossRef]
- Tang, Q.; Pu, X.; Zeng, Q.; Yang, H.; Li, J.; Wu, Y.; Guo, H.; Huang, Z.; Hu, C. A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy 2019, 66, 104087. [Google Scholar] [CrossRef]
- Firdous, I.; Fahim, M.; Wang, L.; Li, W.J.; Zi, Y.; Daoud, W.A. Boosting current output of triboelectric nanogenerator by two orders of magnitude via hindering interfacial charge recombination. Nano Energy 2021, 89, 106315. [Google Scholar] [CrossRef]
- Sang, M.; Wang, S.; Liu, M.; Bai, L.; Jiang, W.; Xuan, S.; Gong, X. Fabrication of a piezoelectric polyvinylidene fluoride/carbonyl iron (PVDF/CI) magnetic composite film towards the magnetic field and deformation bi-sensor. Compos. Sci. Technol. 2018, 165, 31–38. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, F.; Liu, S.; Zhou, J.; Xuan, S.; Wang, Y.; Gong, X. A smart triboelectric nanogenerator with tunable rheological and electrical performance for self-powered multi-sensors. J. Mater. Chem. C 2020, 8, 3715–3723. [Google Scholar] [CrossRef]
- Hajra, S.; Vivekananthan, V.; Sahu, M.; Khandelwal, G.; Raj, N.P.M.J.; Kim, S.-J. Triboelectric nanogenerator using multiferroic materials: An approach for energy harvesting and self-powered magnetic field detection. Nano Energy 2021, 85, 105964. [Google Scholar] [CrossRef]
- Liu, L.; Li, J.; Ou-Yang, W.; Guan, Z.; Hu, X.; Xie, M.; Tian, Z. Ferromagnetic-assisted Maxwell’s displacement current based on iron/polymer composite for improving the triboelectric nanogenerator output. Nano Energy 2022, 96, 107139. [Google Scholar] [CrossRef]
- Xiang, H.; Yang, J.; Cao, X.; Wang, N. Flexible and highly sensitive triboelectric nanogenerator with magnetic nanocomposites for cultural heritage conservation and human motion monitoring. Nano Energy 2022, 101, 107570. [Google Scholar] [CrossRef]
- Fatma, B.; Bhunia, R.; Gupta, S.; Verma, A.; Verma, V.; Garg, A. Maghemite/Polyvinylidene Fluoride Nanocomposite for Transparent, Flexible Triboelectric Nanogenerator and Noncontact Magneto-Triboelectric Nanogenerator. ACS Sustain. Chem. Amp; Eng. 2019, 7, 14856–14866. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, B.; Zou, H.; Lin, Z.; Liu, G.; Wang, Z.L. Multifunctional Sensor Based on Translational-Rotary Triboelectric Nanogenerator. Adv. Energy Mater. 2019, 9, 1901124. [Google Scholar] [CrossRef]
- Seo, J.; Hajra, S.; Sahu, M.; Kim, H.J. Effect of cilia microstructure and ion injection upon single-electrode triboelectric nanogenerator for effective energy harvesting. Mater. Lett. 2021, 304, 130674. [Google Scholar] [CrossRef]
- Wan, J.; Wang, H.; Miao, L.; Chen, X.; Song, Y.; Guo, H.; Xu, C.; Ren, Z.; Zhang, H. A flexible hybridized electromagnetic-triboelectric nanogenerator and its application for 3D trajectory sensing. Nano Energy 2020, 74, 104878. [Google Scholar] [CrossRef]
- Sun, R.; Gao, L.; Shou, M.; Li, B.; Chen, X.; Wang, F.; Mu, X.; Xie, L.; Liao, C. Tribo-material based on a magnetic polymeric composite for enhancing the performance of triboelectric nanogenerator. Nano Energy 2020, 78, 105402. [Google Scholar] [CrossRef]
- Nazar, A.M.; Egbe, K.-J.I.; Jiao, P.; Wang, Y.; Yang, Y. Magnetic lifting triboelectric nanogenerators (ml-TENG) for energy harvesting and active sensing. APL Mater. 2021, 9, 091111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, E.; Zhu, Q.; Rehman, H.U.; Wu, T.; Cao, X.; Wang, N. Magnetic Material in Triboelectric Nanogenerators: A Review. Nanomaterials 2024, 14, 826. https://doi.org/10.3390/nano14100826
Sun E, Zhu Q, Rehman HU, Wu T, Cao X, Wang N. Magnetic Material in Triboelectric Nanogenerators: A Review. Nanomaterials. 2024; 14(10):826. https://doi.org/10.3390/nano14100826
Chicago/Turabian StyleSun, Enqi, Qiliang Zhu, Hafeez Ur Rehman, Tong Wu, Xia Cao, and Ning Wang. 2024. "Magnetic Material in Triboelectric Nanogenerators: A Review" Nanomaterials 14, no. 10: 826. https://doi.org/10.3390/nano14100826
APA StyleSun, E., Zhu, Q., Rehman, H. U., Wu, T., Cao, X., & Wang, N. (2024). Magnetic Material in Triboelectric Nanogenerators: A Review. Nanomaterials, 14(10), 826. https://doi.org/10.3390/nano14100826