Controlling Thermoelectric Properties of Laser-Induced Graphene on Polyimide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser-Induced Graphene Fabrication on Polyimide Film
2.2. Characterization
2.3. Seebeck Coefficient Measurement Setup
3. Results
3.1. Structural Characterization of Laser-Induced Graphene
3.2. Thermoelectric Properties of Laser-Induced Graphene on Polyimide Substrate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, M.; Wang, P.; Jiang, L.; Wang, B.; Yao, Y.; Liu, S.; Chu, D.; Cheng, W.; Lu, Y. Power Generation for Wearable Systems. Energy Environ. Sci. 2021, 14, 2114–2157. [Google Scholar] [CrossRef]
- Zhang, C.; Fan, W.; Wang, S.; Wang, Q.; Zhang, Y.; Dong, K. Recent Progress of Wearable Piezoelectric Nanogenerators. ACS Appl. Electron. Mater. 2021, 3, 2449–2467. [Google Scholar] [CrossRef]
- Choi, D.; Lee, Y.; Lin, Z.-H.; Cho, S.; Kim, M.; Ao, C.K.; Soh, S.; Sohn, C.; Jeong, C.K.; Lee, J.; et al. Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications. ACS Nano 2023, 17, 11087–11219. [Google Scholar] [CrossRef] [PubMed]
- Hatamvand, M.; Kamrani, E.; Lira-Cantú, M.; Madsen, M.; Patil, B.R.; Vivo, P.; Mehmood, M.S.; Numan, A.; Ahmed, I.; Zhan, Y. Recent Advances in Fiber-Shaped and Planar-Shaped Textile Solar Cells. Nano Energy 2020, 71, 104609. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, H.; Yang, X.; Fan, J.; Bi, H.; Wang, C.; Zhang, Y.; Luo, C.; Chen, X.; Wu, X. Facile Fabrication of Paper-Based Flexible Thermoelectric Generator. Npj Flex Electron 2021, 5, 1–6. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, Y.; Pan, L.; Ouyang, J.; Zhang, Q. Recent Developments in Flexible Thermoelectrics: From Materials to Devices. Renew. Sustain. Energy Rev. 2021, 137, 110448. [Google Scholar] [CrossRef]
- Zhu, S.; Fan, Z.; Feng, B.; Shi, R.; Jiang, Z.; Peng, Y.; Gao, J.; Miao, L.; Koumoto, K. Review on Wearable Thermoelectric Generators: From Devices to Applications. Energies 2022, 15, 3375. [Google Scholar] [CrossRef]
- Alam, H.; Ramakrishna, S. A Review on the Enhancement of Figure of Merit from Bulk to Nano-Thermoelectric Materials. Nano Energy 2013, 2, 190–212. [Google Scholar] [CrossRef]
- Hasan, M.N.; Wahid, H.; Nayan, N.; Mohamed Ali, M.S. Inorganic Thermoelectric Materials: A Review. Int. J. Energy Res. 2020, 44, 6170–6222. [Google Scholar] [CrossRef]
- Zheng, Z.-H.; Shi, X.-L.; Ao, D.-W.; Liu, W.-D.; Li, M.; Kou, L.-Z.; Chen, Y.-X.; Li, F.; Wei, M.; Liang, G.-X.; et al. Harvesting Waste Heat with Flexible Bi2Te3 Thermoelectric Thin Film. Nat. Sustain. 2023, 6, 180–191. [Google Scholar] [CrossRef]
- Fan, P.; Li, R.; Chen, Y.-X.; Zheng, Z.; Li, F.; Liang, G.; Luo, J. High Thermoelectric Performance Achieved in Bi0.4Sb1.6Te3 Films with High (00l) Orientation via Magnetron Sputtering. J. Eur. Ceram. Soc. 2020, 40, 4016–4021. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Zhang, J.-Z.; Nisar, M.; Abbas, A.; Li, F.; Liang, G.-X.; Fan, P.; Zheng, Z.-H. Realizing High Thermoelectric Performance in N-Type Bi2Te3 Based Thin Films via Post-Selenization Diffusion. J. Mater. 2023, 9, 618–625. [Google Scholar] [CrossRef]
- Patyk, A. Thermoelectrics: Impacts on the Environment and Sustainability. J. Electron. Mater. 2010, 39, 2023–2028. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, G. Advancing Flexible Thermoelectric Devices with Polymer Composites. Adv. Mater. Technol. 2020, 5, 2000049. [Google Scholar] [CrossRef]
- Nasiri, M.A.; Tong, S.Y.; Cho, C.; Gómez, C.M.; Cantarero, A.; Culebras, M. Synthesis of PEDOT/CNTs Thermoelectric Thin Films with a High Power Factor. Materials 2024, 17, 1121. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Kanahashi, K.; Takekoshi, N.; Mada, H.; Ito, H.; Shimoi, Y.; Ohta, H.; Takenobu, T. Thermoelectric Properties of a Semicrystalline Polymer Doped beyond the Insulator-to-Metal Transition by Electrolyte Gating. Sci. Adv. 2020, 6, eaay8065. [Google Scholar] [CrossRef] [PubMed]
- Tsang, C.H.A.; Huang, H.; Xuan, J.; Wang, H.; Leung, D.Y.C. Graphene Materials in Green Energy Applications: Recent Development and Future Perspective. Renew. Sustain. Energy Rev. 2020, 120, 109656. [Google Scholar] [CrossRef]
- Luo, F.; Lyu, T.; Wang, D.; Zheng, Z. A Review on Green and Sustainable Carbon Anodes for Lithium Ion Batteries: Utilization of Green Carbon Resources and Recycling Waste Graphite. Green Chem. 2023, 25, 8950–8969. [Google Scholar] [CrossRef]
- Bark, H.; Ko, M.; Lee, M.; Lee, W.; Hong, B.; Lee, H. Thermoelectric Properties of Thermally Reduced Graphene Oxide Observed by Tuning the Energy States. ACS Sustain. Chem. Eng. 2018, 6, 7468–7474. [Google Scholar] [CrossRef]
- Feng, S.; Yao, T.; Lu, Y.; Hao, Z.; Lin, S. Quasi-Industrially Produced Large-Area Microscale Graphene Flakes Assembled Film with Extremely High Thermoelectric Power Factor. Nano Energy 2019, 58, 63–68. [Google Scholar] [CrossRef]
- Mehmood, T.; Kim, J.H.; Lee, D.-J.; Dizhur, S.; Odessey, R.; Hirst, E.S.; Osgood, R.M.; Sayyad, M.H.; Munawar, M.A.; Xu, J. Facile Chemical Tuning of Thermoelectric Power Factor of Graphene Oxide. Mater. Chem. Phys. 2020, 254, 123488. [Google Scholar] [CrossRef]
- Hwang, H.J.; Kim, S.-Y.; Lee, S.K.; Lee, B.H. Large Scale Graphene Thermoelectric Device with High Power Factor Using Gradient Doping Profile. Carbon 2023, 201, 467–472. [Google Scholar] [CrossRef]
- Pop, E.; Varshney, V.; Roy, A.K. Thermal Properties of Graphene: Fundamentals and Applications. MRS Bull. 2012, 37, 1273–1281. [Google Scholar] [CrossRef]
- Duan, S.; Wang, Y.; Wu, X.; Wu, M.; Wang, L.; Fang, M.; Huang, Z.; Luo, R. Printable Graphite-Based Thermoelectric Foam for Flexible Thermoelectric Devices. Appl. Phys. Lett. 2023, 123, 063904. [Google Scholar] [CrossRef]
- Duan, S.; Wu, X.; Ao, W.; Lei, Z.; Leng, G.; Fang, M.; Huang, Z.; Luo, B. Mesoscopic Combinatorial Design of Anisotropic Graphitic Carbon with Ordered Porous Frameworks for Thermoelectric Conversion. Carbon 2024, 224, 119052. [Google Scholar] [CrossRef]
- Rafique, S.; Burton, M.R.; Badieh, N.; Mehraban, S.; Tarat, A.; Zuo, G.; Li, L.; Zhan, Y. Ultralow Thermal Conductivity Achieved by All Carbon Nanocomposites for Thermoelectric Applications. Adv. Electron. Mater. 2023, 9, 2300023. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-Induced Porous Graphene Films from Commercial Polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.; Wang, R.; Luo, J.; Yao, Y.; Liu, T. Experimental and Modeling Study of CO2 Laser Writing Induced Polyimide Carbonization Process. Mater. Des. 2018, 160, 1168–1177. [Google Scholar] [CrossRef]
- Vivaldi, F.M.; Dallinger, A.; Bonini, A.; Poma, N.; Sembranti, L.; Biagini, D.; Salvo, P.; Greco, F.; Di Francesco, F. Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS Appl. Mater. Interfaces 2021, 13, 30245–30260. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, K.; Zheng, B.; Dong, X.; Mei, X.; Lv, J.; Duan, W.; Wang, W. Laser-Induced Graphene: Preparation, Functionalization and Applications. Mater. Technol. 2018, 33, 340–356. [Google Scholar] [CrossRef]
- Le, T.-S.D.; Phan, H.-P.; Kwon, S.; Park, S.; Jung, Y.; Min, J.; Chun, B.J.; Yoon, H.; Ko, S.H.; Kim, S.-W.; et al. Recent Advances in Laser-Induced Graphene: Mechanism, Fabrication, Properties, and Applications in Flexible Electronics. Adv. Funct. Mater. 2022, 32, 2205158. [Google Scholar] [CrossRef]
- Stanford, M.G.; Yang, K.; Chyan, Y.; Kittrell, C.; Tour, J.M. Laser-Induced Graphene for Flexible and Embeddable Gas Sensors. ACS Nano 2019, 13, 3474–3482. [Google Scholar] [CrossRef]
- Carvalho, A.F.; Fernandes, A.J.S.; Leitão, C.; Deuermeier, J.; Marques, A.C.; Martins, R.; Fortunato, E.; Costa, F.M. Laser-Induced Graphene Strain Sensors Produced by Ultraviolet Irradiation of Polyimide. Adv. Funct. Mater. 2018, 28, 1805271. [Google Scholar] [CrossRef]
- Peng, Z.; Lin, J.; Ye, R.; Samuel, E.L.G.; Tour, J.M. Flexible and Stackable Laser-Induced Graphene Supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 3414–3419. [Google Scholar] [CrossRef]
- Stanford, M.G.; Li, J.T.; Chyan, Y.; Wang, Z.; Wang, W.; Tour, J.M. Laser-Induced Graphene Triboelectric Nanogenerators. ACS Nano 2019, 13, 7166–7174. [Google Scholar] [CrossRef]
- Bobinger, M.R.; Romero, F.J.; Salinas-Castillo, A.; Becherer, M.; Lugli, P.; Morales, D.P.; Rodríguez, N.; Rivadeneyra, A. Flexible and Robust Laser-Induced Graphene Heaters Photothermally Scribed on Bare Polyimide Substrates. Carbon 2019, 144, 116–126. [Google Scholar] [CrossRef]
- Wu, C.; Wu, F.; Hu, H.; Ma, C.; Ye, J.; Wang, S.; Wu, H.; Wang, J.; Liu, A.; Guo, D. Work Function Tunable Laser Induced Graphene Electrodes for Schottky Type Solar-Blind Photodetectors. Appl. Phys. Lett. 2022, 120, 101102. [Google Scholar] [CrossRef]
- Smith, M.K.; Luong, D.X.; Bougher, T.L.; Kalaitzidou, K.; Tour, J.M.; Cola, B.A. Thermal Conductivity Enhancement of Laser Induced Graphene Foam upon P3HT Infiltration. Appl. Phys. Lett. 2016, 109, 253107. [Google Scholar] [CrossRef]
- Chyan, Y.; Ye, R.; Li, Y.; Singh, S.P.; Arnusch, C.J.; Tour, J.M. Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano 2018, 12, 2176–2183. [Google Scholar] [CrossRef]
- Kumar, A.; Patel, A.; Singh, S.; Kandasami, A.; Kanjilal, D. Apparatus for Seebeck Coefficient Measurement of Wire, Thin Film, and Bulk Materials in the Wide Temperature Range (80–650 K). Rev. Sci. Instrum. 2019, 90, 104901. [Google Scholar] [CrossRef]
- Ponnambalam, V.; Lindsey, S.; Hickman, N.S.; Tritt, T.M. Sample Probe to Measure Resistivity and Thermopower in the Temperature Range of 300–1000 K. Rev. Sci. Instrum. 2006, 77, 073904. [Google Scholar] [CrossRef]
- Wahab, H.; Jain, V.; Tyrrell, A.S.; Seas, M.A.; Kotthoff, L.; Johnson, P.A. Machine-Learning-Assisted Fabrication: Bayesian Optimization of Laser-Induced Graphene Patterning Using In-Situ Raman Analysis. Carbon 2020, 167, 609–619. [Google Scholar] [CrossRef]
- Kwak, D.; Kim, H.; Jang, S.; Kim, B.G.; Cho, D.; Chang, H.; Lee, J.-O. Investigation of Laser-Induced Graphene (LIG) on a Flexible Substrate and Its Functionalization by Metal Doping for Gas-Sensing Applications. Int. J. Mol. Sci. 2024, 25, 1172. [Google Scholar] [CrossRef]
- Alsulami, I.K.; Abdullahi, S.; Alshahrie, A.; Salah, N. Thermoelectric and Power Generation of 2D Structured Pieces of Graphene–Nanodiamonds Nanocomposite. RSC Adv. 2023, 13, 26169–26178. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Zhao, J.; Gao, C.; Wang, H.; Chen, G.; Shi, D. Carbon Nanoparticle Hybrid Aerogels: 3D Double-Interconnected Network Porous Microstructure, Thermoelectric, and Solvent-Removal Functions. ACS Appl. Mater. Interfaces 2017, 9, 21820–21828. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Luo, C.; Chen, Y.; Feng, D.; Gong, Y.; Pan, C.; He, J. High Performance Polymer Thermoelectric Composite Achieved by Carbon-Coated Carbon Nanotubes Network. ACS Appl. Energy Mater. 2019, 2, 2427–2434. [Google Scholar] [CrossRef]
- Lin, Z.; Du, Y.; Chi, C.; Dang, H.; Song, D.; Ma, W.; Li, Y.; Zhang, X. Energy-Dependent Carrier Scattering at Weak Localizations Leading to Decoupling of Thermopower and Conductivity. Carbon 2022, 194, 62–71. [Google Scholar] [CrossRef]
- Lin, Y.; Wood, M.; Imasato, K.; Jiahong Kuo, J.; Lam, D.N.; Mortazavi, A.J.; Slade, T.; Hodge, S.A.; Xi, K.G.; Kanatzidis, M.; et al. Expression of Interfacial Seebeck Coefficient through Grain Boundary Engineering with Multi-Layer Graphene Nanoplatelets. Energy Environ. Sci. 2020, 13, 4114–4121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kincal, C.; Solak, N. Controlling Thermoelectric Properties of Laser-Induced Graphene on Polyimide. Nanomaterials 2024, 14, 879. https://doi.org/10.3390/nano14100879
Kincal C, Solak N. Controlling Thermoelectric Properties of Laser-Induced Graphene on Polyimide. Nanomaterials. 2024; 14(10):879. https://doi.org/10.3390/nano14100879
Chicago/Turabian StyleKincal, Cem, and Nuri Solak. 2024. "Controlling Thermoelectric Properties of Laser-Induced Graphene on Polyimide" Nanomaterials 14, no. 10: 879. https://doi.org/10.3390/nano14100879
APA StyleKincal, C., & Solak, N. (2024). Controlling Thermoelectric Properties of Laser-Induced Graphene on Polyimide. Nanomaterials, 14(10), 879. https://doi.org/10.3390/nano14100879