A Terahertz Metasurface Sensor Based on Quasi-BIC for Detection of Additives in Infant Formula
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, L.; Zhong, J.; Wu, J.; Fu, F.; Chen, G.; Zheng, X.; Lin, S. Visual detection of melamine in milk products by label-free gold nanoparticles. Talanta 2010, 82, 1654–1658. (In English) [Google Scholar] [CrossRef]
- Shang, L.; Zhao, F.; Zeng, B. Sensitive voltammetric determination of vanillin with an AuPd nanoparticles–graphene composite modified electrode. Food Chem. 2014, 151, 53–57. (In English) [Google Scholar] [CrossRef]
- Xinying, M.A. Determination of Vanillin in Infant Formula Using Poly Valine Modified Electrode. Int. J. Electrochem. Sci. 2014, 9, 3181–3189. [Google Scholar] [CrossRef]
- Haghi, E.; Shakoori, A.; Alimohammadi, M.; Razeghi, F.; Sadighara, P. HPLC and spectrophotometry methods for measuring melamine migration from melamine dishes to food simulants. MethodsX 2021, 8, 101284. (In English) [Google Scholar] [CrossRef]
- Mauer, L.J.; Chernyshova, A.A.; Hiatt, A.; Deering, A.; Davis, R. Melamine Detection in Infant Formula Powder Using Near- and Mid-Infrared Spectroscopy. J. Agric. Food Chem. 2009, 57, 3974–3980. [Google Scholar] [CrossRef] [PubMed]
- Sostaric, T.; Boyce, M.C.; Spickett, E.E. Analysis of the Volatile Components in Vanilla Extracts and Flavorings by Solid-Phase Microextraction and Gas Chromatography. J. Agric. Food Chem. 2000, 48, 5802–5807. [Google Scholar] [CrossRef]
- Fu, X.; Liu, Y.; Chen, Q.; Fu, Y.; Cui, T.J. Applications of Terahertz Spectroscopy in the Detection and Recognition of Substances. Front. Phys. 2022, 10, 869537. [Google Scholar] [CrossRef]
- Kawase, K.; Ogawa, Y.; Watanabe, Y.; Inoue, H. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 2003, 11, 2549–2554. [Google Scholar] [CrossRef] [PubMed]
- Afsah-Hejri, L.; Hajeb, P.; Ara, P.; Ehsani, R.J. A Comprehensive Review on Food Applications of Terahertz Spectroscopy and Imaging. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1563–1621. (In English) [Google Scholar] [CrossRef]
- Yang, X.; Zhao, X.; Yang, K.; Liu, Y.; Liu, Y.; Fu, W.; Luo, Y. Biomedical Applications of Terahertz Spectroscopy and Imaging. Trends Biotechnol. 2016, 34, 810–824. [Google Scholar] [CrossRef]
- Zhang, M.; Hong, H.; Lin, H.; Shen, L.; Yu, H.; Ma, G.; Liao, B.Q. Mechanistic insights into alginate fouling caused by calcium ions based on terahertz time-domain spectra analyses and DFT calculations. Water Res. 2018, 129, 337–346. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, H. Qualitative and Quantitative Detection of Pesticides With Terahertz Time-Domain Spectroscopy. IEEE Trans. Microw. Theory Tech. 2010, 58, 2064–2070. [Google Scholar] [CrossRef]
- Chen, L.; Ren, G.; Liu, L.; Guo, P.; Wang, E.; Zhou, L.; Zhu, Z.; Zhang, J.; Yang, B.; Zhang, W.; et al. Terahertz Signatures of Hydrate Formation in Alkali Halide Solutions. J. Phys. Chem. Lett. 2020, 11, 7146–7152. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Pepper, M.; Taday, P. Signatures and fingerprints. Nat. Photon. 2008, 2, 541–543. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H.; Yuan, T.; Kersting, R.; Zhang, X.-C. Advancing terahertz time-domain spectroscopy for remote detection and tracing. In Terahertz for Military and Security Applications; SPIE: Bellingham, WA, USA, 2003; pp. 17–28. [Google Scholar] [CrossRef]
- Yamamoto, K.; Yamaguchi, M.; Miyamaru, F.; Tani, M.; Hangyo, M.; Ikeda, T.; Matsushita, A.; Koide, K.; Tatsuno, M.; Minami, Y. Noninvasive Inspection of C-4 Explosive in Mails by Terahertz Time-Domain Spectroscopy. Jpn. J. Appl. Phys. 2004, 43, L414–L417. [Google Scholar] [CrossRef]
- Weis, P.; Garcia-Pomar, J.L.; Beigang, R.; Rahm, M. Hybridization induced transparency in composites of metamaterials and atomic media. Opt. Express 2011, 19, 23573–23580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lang, T.; Hong, Z.; Liu, J.; Wang, P. Sensitive Detection of Aspartame and Vanillin by Combining Terahertz Fingerprinting With a Metamaterial. IEEE Sens. J. 2022, 22, 16513–16521. [Google Scholar] [CrossRef]
- Lee, D.-K.; Kim, G.; Kim, C.; Jhon, Y.M.; Kim, J.H.; Lee, T.; Son, J.-H.; Seo, M. Ultrasensitive Detection of Residual Pesticides Using THz Near-Field Enhancement. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 389–395. [Google Scholar] [CrossRef]
- Ng, B.; Hanham, S.M.; Wu, J.; Fernández-Domínguez, A.I.; Klein, N.; Liew, Y.F.; Breese, M.B.H.; Hong, M.; Maier, S.A. Broadband Terahertz Sensing on Spoof Plasmon Surfaces. ACS Photon. 2014, 1, 1059–1067. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Qin, J. A terahertz metasurface sensor with fingerprint enhancement in a wide spectrum band for thin film detection. Nanoscale Adv. 2023, 5, 2210–2215. [Google Scholar] [CrossRef]
- Sun, L.; Xu, L.; Wang, J.; Jiao, Y.; Ma, Z.; Ma, Z.; Chang, C.; Yang, X.; Wang, R. A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing. Nanoscale 2022, 14, 9681–9685. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Ma, Y.; Liu, X.; Khan, S.A.; Chen, W.; Zhu, L.; Zhu, J.; Liu, Q.H. Dual-Degree-of-Freedom Multiplexed Metasensor Based on Quasi-BICs for Boosting Broadband Trace Isomer Detection by THz Molecular Fingerprint. IEEE J. Sel. Top. Quantum Electron. 2023, 29, 8600110. [Google Scholar] [CrossRef]
- Lin, J.; Xue, Y.; Wang, W.; Sun, M.; Shi, S.; Zhang, S.; Shi, Y. Enhancing Multi-Spectral Fingerprint Sensing for Trace Explosive Molecules with All-Silicon Metasurfaces. Nanomaterials 2024, 14, 738. [Google Scholar] [CrossRef]
- Zhong, Y.; Du, L.; Liu, Q.; Zhu, L.; Meng, K.; Zou, Y.; Zhang, B. Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range. RSC Adv. 2020, 10, 33018–33025. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yue, Z.; Li, J.; Zheng, C.; Zhang, Y.; Yao, J. Ultra-narrowband terahertz circular dichroism driven by planar metasurface supporting chiral quasi bound states in continuum. Opt. Laser Technol. 2023, 161, 109173. [Google Scholar] [CrossRef]
- Hsu, C.W.; Zhen, B.; Stone, A.D.; Joannopoulos, J.D.; Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 2016, 1, 16048. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Y.; Lin, Y.; Xiang, J.; Feng, T.; Cao, Q.; Li, J.; Lan, S.; Liu, J. High-Q Quasibound States in the Continuum for Nonlinear Metasurfaces. Phys. Rev. Lett. 2019, 123, 253901. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Zuo, J.; Zhang, C.L. Analysis of Complex Dielectric Constant and Loss Properties of Cyclic Olefin Polymer Substrate by Terahertz Time-Domain Spectroscopy. Spectrosc. Spectr. Anal. 2018, 38, 2998–3003. (In Chinese) [Google Scholar] [CrossRef]
- Terai, H.; Funahashi, R.; Hashimoto, T.; Kakuta, M. Heterogeneous bonding between cyclo-olefin polymer (COP) and glass-like substrate by newly developed water vapor-assisted plasma, Aqua Plasma Cleaner. Electr. Eng. Jpn. 2018, 205, 48–56. [Google Scholar] [CrossRef]
- Bi, K.; Wang, Q.; Xu, J.; Chen, L.; Lan, C.; Lei, M. All-Dielectric Metamaterial Fabrication Techniques. Adv. Opt. Mater. 2021, 9, 2001474. [Google Scholar] [CrossRef]
- Leitis, A.; Tittl, A.; Liu, M.; Lee, B.H.; Gu, M.B.; Kivshar, Y.S.; Altug, H. Angle-multiplexed all-dielectric metasurfaces for broadband molecular fingerprint retrieval. Sci. Adv. 2019, 5, eaaw2871. (In English) [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, B.; Wang, W. Symmetry-protected dual quasi-bound states in the continuum with high tunability in metasurface. J. Opt. 2020, 22, 125102. (In English) [Google Scholar] [CrossRef]
- Xu, L.; Kamali, K.Z.; Huang, L.; Rahmani, M.; Smirnov, A.; Camacho-Morales, R.; Ma, Y.; Zhang, G.; Woolley, M.; Neshev, D.; et al. Dynamic Nonlinear Image Tuning through Magnetic Dipole Quasi-BIC Ultrathin Resonators. Adv. Sci. 2019, 6, 1802119. (In English) [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, C.; Liu, T.; Xiao, S. Symmetry-protected bound states in the continuum supported by all-dielectric metasurfaces. Phys. Rev. A 2019, 100, 063803. [Google Scholar] [CrossRef]
- Koshelev, K.; Bogdanov, A.; Kivshar, Y. Meta-optics and bound states in the continuum. Sci. Bull. 2018, 64, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xu, Z.; Li, M.; Liu, Y. Determination of Melamine Content in Milk Powder Based on Neural Network Algorithm and Terahertz Spectrum Detection. Laser Optoelectron. Prog. 2020, 57, 223001. (In Chinese) [Google Scholar] [CrossRef]
- Dorney, T.D.; Baraniuk, R.G.; Mittleman, D.M. Material parameter estimation with terahertz time-domain spectroscopy. J. Opt. Soc. Am. A 2001, 18, 1562–1571. [Google Scholar] [CrossRef]
- Duvillaret, L.; Garet, F.; Coutaz, J.-L. Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. Appl. Opt. 1999, 38, 409–415. (In English) [Google Scholar] [CrossRef] [PubMed]
- Tych, K.M.; Wood, C.D.; Tych, W. A Simple Transfer-Function-Based Approach for Estimating Material Parameters From Terahertz Time-Domain Data. IEEE Photon. J. 2013, 6, 6800211. (In English) [Google Scholar] [CrossRef]
- Xiangshuai, G. Terahertz time-domain spectroscopy of Vanillin and the analysis of the vibration mode. Electron. Des. Appl. 2017, 46, 32–34. [Google Scholar]
- Maamar, N.; Lazoul, M. Terahertz time-domain spectroscopy for the detection and identification of concealed materials in transmission and reflection configurations. In Proceedings of the 2019 International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, 19–21 November 2019; pp. 1–4. (In English) [Google Scholar] [CrossRef]
- Peré-Trepat, E.; Hildebrandt, A.; Barceló, D.; Lacorte, S.; Tauler, R. Fast chromatography of complex biocide mixtures using diode array detection and multivariate curve resolution. Chemom. Intell. Lab. Syst. 2004, 74, 293–303. [Google Scholar] [CrossRef]
- Parastar, H.; Tauler, R. Multivariate Curve Resolution of Hyphenated and Multidimensional Chromatographic Measure-ments: A New Insight to Address Current Chromatographic Challenges. Anal. Chem. 2014, 86, 286–297. (In English) [Google Scholar] [CrossRef] [PubMed]
- Dable, B.K.; Marquardt, B.J.; Booksh, K.S. Rapid multivariate curve resolution applied to near real-time process monitoring with HPLC/Raman data. Anal. Chim. Acta 2005, 544, 71–81. (In English) [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Lin, J.; Xue, Y.; Wang, W.; Shi, S.; Zhang, S.; Shi, Y. A Terahertz Metasurface Sensor Based on Quasi-BIC for Detection of Additives in Infant Formula. Nanomaterials 2024, 14, 883. https://doi.org/10.3390/nano14100883
Sun M, Lin J, Xue Y, Wang W, Shi S, Zhang S, Shi Y. A Terahertz Metasurface Sensor Based on Quasi-BIC for Detection of Additives in Infant Formula. Nanomaterials. 2024; 14(10):883. https://doi.org/10.3390/nano14100883
Chicago/Turabian StyleSun, Mingjun, Jie Lin, Ying Xue, Weijin Wang, Shengnan Shi, Shan Zhang, and Yanpeng Shi. 2024. "A Terahertz Metasurface Sensor Based on Quasi-BIC for Detection of Additives in Infant Formula" Nanomaterials 14, no. 10: 883. https://doi.org/10.3390/nano14100883
APA StyleSun, M., Lin, J., Xue, Y., Wang, W., Shi, S., Zhang, S., & Shi, Y. (2024). A Terahertz Metasurface Sensor Based on Quasi-BIC for Detection of Additives in Infant Formula. Nanomaterials, 14(10), 883. https://doi.org/10.3390/nano14100883