Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells
Abstract
:1. Introduction
2. Photonic Curing of the HTL Layer
3. Photonic Curing of ETL Layer
ETL | Jsc (mA.cm−2) | (V) | FF (%) | PCE (%) | Ref |
---|---|---|---|---|---|
/ | 20.8/21.3 | 0.99/1.05 | 61.6/66.3 | 12.8/14.8 | [41] |
ETL 1 | 19.92/21.63/22.06 | 1.09/1.11/1.02 | 65.54/70.24/72.6 | 14.18/16.92/18.46 | [42] |
ETL 1 | 22/22.1/22.9 | 0.99/1.14/1.2 | 64.5/75.4/76.4 | 14/19/21.1 | [43] |
ETL 1 | 22.85/23.45/23.91 | 1.13/1.14/1.69 | 75.2/75.8/76.5 | 19.33/20.34/21.4 | [44] |
/Mix | 23.4/24.2 | 1.03/1.1 | 75/77 | 18.09/20.5 | [45] |
/Mix | 22.06/22.58 | 1.01/1.04 | 72.4/75 | 16.16/17.64 | [46] |
4. Photonic Curing of the Perovskite Layer
Year | Jsc (mA.cm−2) | (V) | FF (%) | PCE (%) | Ref |
---|---|---|---|---|---|
2015 | 15.36 | 1.01 | 64.3 | 10 | [62] |
2016 | 16.55 | 1.02 | 69 | 11.5 | [52] |
2016 | 16 | 1.06 | 67 | 11.27 | [63] |
2018 | 22.7 | 1.11 | 74 | 19 | [55] |
2018 | 20.7 | 0.97 | 62 | 12.6 | [64] |
2022 | 19.37 | 1.05 | 73.4 | 15.04 | [61] |
2022 | 18.44 | 0.94 | 65.9 | 11.34 | [65] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PSCs | Perovskite solar cells |
PC | Photonic curing |
TA | Thermal annealing |
FA | Furnace annealing |
ETL | Electron transport layer |
HTL | Hole transport layer |
References
- Hwang, H.J.; Oh, K.H.; Kim, H.S. All-photonic drying and sintering process via flash white light combined with deep-UV and near-infrared irradiation for highly conductive copper nano-ink. Sci. Rep. 2016, 6, 19696. [Google Scholar] [CrossRef]
- NovaCentrix, K. The Evolution of Photonic Curing. Available online: https://blog.novacentrix.com/the-evolution-of-photonic-curing (accessed on 13 May 2024).
- Mudgal, T.; Bhadrachalam, K.; Bischoff, P.; Cormier, D.; Manley, R.; Hirschman, K. Communication—CMOS thin-film transistors via Xe flash-lamp crystallization of patterned amorphous Si. ECS J. Solid State Sci. Technol. 2017, 6, Q179. [Google Scholar] [CrossRef]
- Akbari, M.; He, H.; Juuti, J.; Tentzeris, M.M.; Virkki, J.; Ukkonen, L. 3D printed and photonically cured graphene UHF RFID tags on textile, wood, and cardboard substrates. Int. J. Antennas Propag. 2017, 2017, 7327398. [Google Scholar] [CrossRef]
- Das, S.; Cormier, D.; Williams, S. Potential for multi-functional additive manufacturing using pulsed photonic sintering. Procedia Manuf. 2015, 1, 366–377. [Google Scholar] [CrossRef]
- Schube, J.; Fellmeth, T.; Maier, F.; Keding, R.; Clement, F.; Glunz, S.W. Applicability of photonic sintering and autoclaving as alternative contact formation methods for silicon solar cells with passivating contacts. AIP Conf. Proc. 2018, 1999, 040019. [Google Scholar]
- Chatterjee, N.; Weidling, A.M.; Swisher, S.L. Photonic Curing: Rapid Thermal Processing of Oxide Thin-film Transistors on Plastic. In Proceedings of the 2022 Device Research Conference (DRC), Columbus, OH, USA, 26–29 June 2022; pp. 1–2. [Google Scholar]
- Xu, W.; Piper, R.T.; Daunis, T.B.; Schroder, K.A.; Hsu, J.W. Photonic Curing Enabling High-Speed Processing for Perovskite Solar Cells. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 15 June–21 August 2020; pp. 0079–0081. [Google Scholar]
- Piper, R.T.; Daunis, T.B.; Xu, W.; Schroder, K.A.; Hsu, J.W. Photonic curing of nickel oxide transport layer and perovskite active layer for flexible perovskite solar cells: A path towards high-throughput manufacturing. Front. Energy Res. 2021, 9, 640960. [Google Scholar] [CrossRef]
- Xu, W.; Daunis, T.B.; Piper, R.T.; Hsu, J.W. Effects of photonic curing processing conditions on MAPbI3 film properties and solar cell performance. ACS Appl. Energy Mater. 2020, 3, 8636–8645. [Google Scholar] [CrossRef]
- Hsu, J.W. Higher Throughput, Lower Cost Processing of Flexible Perovskite Solar Cells by Photonic Curing; Report; University of Texas at Dallas: Dallas, TX, USA, 2021. [Google Scholar]
- Sarda, N.; Vidhan, A.; Basak, S.; Hazra, P.; Behera, T.; Ghosh, S.; Choudhary, R.J.; Chowdhury, A.; Sarkar, S.K. Photonically Cured Solution-Processed SnO2 Thin Films for High-Efficiency and Stable Perovskite Solar Cells and Minimodules. ACS Appl. Energy Mater. 2023, 6, 3996–4006. [Google Scholar] [CrossRef]
- Subbiah, A.S.; Halder, A.; Ghosh, S.; Mahuli, N.; Hodes, G.; Sarkar, S.K. Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 2014, 5, 1748–1753. [Google Scholar] [CrossRef]
- Sajid, S.; Elseman, A.M.; Huang, H.; Ji, J.; Dou, S.; Jiang, H.; Liu, X.; Wei, D.; Cui, P.; Li, M. Breakthroughs in NiOx-HTMs towards stable, low-cost and efficient perovskite solar cells. Nano Energy 2018, 51, 408–424. [Google Scholar] [CrossRef]
- Liu, Z.; Chang, J.; Lin, Z.; Zhou, L.; Yang, Z.; Chen, D.; Zhang, C.; Liu, S.; Hao, Y. High-Performance Planar Perovskite Solar Cells Using Low Temperature, Solution–Combustion-Based Nickel Oxide Hole Transporting Layer with Efficiency Exceeding 20%. Adv. Energy Mater. 2018, 8, 1703432. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, W.; Wu, Y.; He, Z.; Zhang, S.; Chen, S. A low-temperature-annealed and UV-ozone-enhanced combustion derived nickel oxide hole injection layer for flexible quantum dot light-emitting diodes. Nanoscale 2019, 11, 1021–1028. [Google Scholar] [CrossRef]
- Das, S.; Yang, B.; Gu, G.; Joshi, P.C.; Ivanov, I.N.; Rouleau, C.M.; Aytug, T.; Geohegan, D.B.; Xiao, K. High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics 2015, 2, 680–686. [Google Scholar] [CrossRef]
- Kim, M.; Choi, I.w.; Choi, S.J.; Song, J.W.; Mo, S.I.; An, J.H.; Jo, Y.; Ahn, S.; Ahn, S.K.; Kim, G.H. Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells. Joule 2021, 5, 659–672. [Google Scholar] [CrossRef]
- Homola, T.; Pospisil, J.; Shekargoftar, M.; Svoboda, T.; Hvojnik, M.; Gemeiner, P.; Weiter, M.; Dzik, P. Perovskite solar cells with low-cost TiO2 mesoporous photoanodes prepared by rapid low-temperature (70 °C) plasma processing. ACS Appl. Energy Mater. 2020, 3, 12009–12018. [Google Scholar] [CrossRef]
- Huang, H.; Cui, P.; Chen, Y.; Yan, L.; Yue, X.; Qu, S.; Wang, X.; Du, S.; Liu, B.; Zhang, Q. 24.8%-efficient planar perovskite solar cells via ligand-engineered TiO2 deposition. Joule 2022, 6, 2186–2202. [Google Scholar] [CrossRef]
- Otoufi, M.K.; Ranjbar, M.; Kermanpur, A.; Taghavinia, N.; Minbashi, M.; Forouzandeh, M.; Ebadi, F. Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers. Sol. Energy 2020, 208, 697–707. [Google Scholar] [CrossRef]
- Seo, S.; Shin, S.; Kim, E.; Jeong, S.; Park, N.G.; Shin, H. Amorphous TiO2 coatings stabilize perovskite solar cells. ACS Energy Lett. 2021, 6, 3332–3341. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, N.; Wei, P.; Cui, M.; Li, X.; Qin, C. Ultraviolet-ozone modification on TiO2 surface to promote both efficiency and stability of low-temperature planar perovskite solar cells. Chem. Eng. J. 2020, 393, 124731. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Wang, Y.; Wang, Q.; Liu, Z.; Geng, R.; Wang, H.; Jiang, W.; Ding, W. Improving the performance of perovskite solar cells via TiO2 electron transport layer prepared by direct current pulsed magnetron sputtering. J. Alloys Compd. 2022, 929, 167278. [Google Scholar] [CrossRef]
- Lee, S.W.; Bae, S.; Cho, K.; Kim, S.; Hwang, J.K.; Lee, W.; Lee, S.; Hyun, J.Y.; Lee, S.; Choi, S.B. Sputtering of TiO2 for high-efficiency perovskite and 23.1% perovskite/silicon 4-terminal tandem solar cells. ACS Appl. Energy Mater. 2019, 2, 6263–6268. [Google Scholar] [CrossRef]
- Xue, T.; Chen, D.; Li, T.; Chou, X.; Wang, X.; Tang, Z.; Zhang, F.; Huang, J.; Guo, K.; Takaloo, A.V. Boosting the Performance of Perovskite Solar Cells through Systematic Investigation of the Annealing Effect of E-Beam Evaporated TiO2. Micromachines 2023, 14, 1095. [Google Scholar] [CrossRef]
- Vaenas, N.; Konios, D.; Stergiopoulos, T.; Kymakis, E. Slow photocharging and reduced hysteresis in low-temperature processed planar perovskite solar cells. RSC Adv. 2015, 5, 107771–107776. [Google Scholar] [CrossRef]
- Feleki, B.; Bex, G.; Andriessen, R.; Galagan, Y.; Di Giacomo, F. Rapid and low temperature processing of mesoporous TiO2 for perovskite solar cells on flexible and rigid substrates. Mater. Today Commun. 2017, 13, 232–240. [Google Scholar] [CrossRef]
- Das, S.; Gu, G.; Joshi, P.C.; Yang, B.; Aytug, T.; Rouleau, C.M.; Geohegan, D.B.; Xiao, K. Low thermal budget, photonic-cured compact TiO2 layers for high-efficiency perovskite solar cells. J. Mater. Chem. A 2016, 4, 9685–9690. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, J.; Ali, M.; Wei, J.; Wang, H.; Yeo, L.Y.; Friend, J.R.; MacFarlane, D.R. UV/ozone-assisted low temperature preparation of mesoporous TiO2 with tunable phase composition and enhanced solar light photocatalytic activity. J. Mater. Chem. A 2014, 2, 18791–18795. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, W.; Ke, W.; Clark, S.; Secor, E.B.; Song, T.B.; Kanatzidis, M.G.; Li, X.; Hersam, M.C. Millisecond-pulsed photonically-annealed tin oxide electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 2017, 5, 24110–24115. [Google Scholar] [CrossRef]
- Ghahremani, A.H.; Martin, B.; Gupta, A.; Bahadur, J.; Ankireddy, K.; Druffel, T. Rapid fabrication of perovskite solar cells through intense pulse light annealing of SnO2 and triple cation perovskite thin films. Mater. Des. 2020, 185, 108237. [Google Scholar] [CrossRef]
- Abulikemu, M.; Neophytou, M.; Barbé, J.M.; Tietze, M.L.; El Labban, A.; Anjum, D.H.; Amassian, A.; McCulloch, I.; Del Gobbo, S. Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. J. Mater. Chem. A 2017, 5, 7759–7763. [Google Scholar] [CrossRef]
- Ke, W.; Fang, G.; Liu, Q.; Xiong, L.; Qin, P.; Tao, H.; Wang, J.; Lei, H.; Li, B.; Wan, J. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 2015, 137, 6730–6733. [Google Scholar] [CrossRef]
- Xie, H.; Yin, X.; Chen, P.; Liu, J.; Yang, C.; Que, W.; Wang, G. Solvothermal synthesis of highly crystalline SnO2 nanoparticles for flexible perovskite solar cells application. Mater. Lett. 2019, 234, 311–314. [Google Scholar] [CrossRef]
- Baena, J.P.C.; Steier, L.; Tress, W.; Saliba, M.; Neutzner, S.; Matsui, T.; Giordano, F.; Jacobsson, T.J.; Kandada, A.R.S.; Zakeeruddin, S.M. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 2015, 8, 2928–2934. [Google Scholar] [CrossRef]
- Ren, N.; Zhu, C.; Li, R.; Mazumdar, S.; Sun, C.; Chen, B.; Xu, Q.; Wang, P.; Shi, B.; Huang, Q. 50 °C low-temperature ALD SnO2 driven by H2O2 for efficient perovskite and perovskite/silicon tandem solar cells. Appl. Phys. Lett. 2022, 121. [Google Scholar] [CrossRef]
- Yi, H.; Wang, D.; Mahmud, M.A.; Haque, F.; Upama, M.B.; Xu, C.; Duan, L.; Uddin, A. Bilayer SnO2 as electron transport layer for highly efficient perovskite solar cells. ACS Appl. Energy Mater. 2018, 1, 6027–6039. [Google Scholar] [CrossRef]
- Yoo, J.; Jung, U.; Jung, B.; Shen, W.; Park, J. Improved Photoresponse Characteristics of a ZnO-Based UV Photodetector by the Formation of an Amorphous SnO2 Shell Layer. Sensors 2021, 21, 6124. [Google Scholar] [CrossRef]
- Xiong, L.; Guo, Y.; Wen, J.; Liu, H.; Yang, G.; Qin, P.; Fang, G. Review on the application of SnO2 in perovskite solar cells. Adv. Funct. Mater. 2018, 28, 1802757. [Google Scholar] [CrossRef]
- Barbé, J.; Tietze, M.L.; Neophytou, M.; Murali, B.; Alarousu, E.; Labban, A.E.; Abulikemu, M.; Yue, W.; Mohammed, O.F.; McCulloch, I. Amorphous tin oxide as a low-temperature-processed electron-transport layer for organic and hybrid perovskite solar cells. Acs Appl. Mater. Interfaces 2017, 9, 11828–11836. [Google Scholar] [CrossRef]
- Li, N.; Yan, J.; Ai, Y.; Jiang, E.; Lin, L.; Shou, C.; Yan, B.; Sheng, J.; Ye, J. A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells. Sci. China Mater 2020, 63, 207–215. [Google Scholar] [CrossRef]
- Song, S.; Kang, G.; Pyeon, L.; Lim, C.; Lee, G.Y.; Park, T.; Choi, J. Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (n = 21.1%). ACS Energy Lett. 2017, 2, 2667–2673. [Google Scholar] [CrossRef]
- Tavakoli, M.M.; Yadav, P.; Tavakoli, R.; Kong, J. Surface engineering of TiO2 ETL for highly efficient and hysteresis-less planar perovskite solar cell (21.4%) with enhanced open-circuit voltage and stability. Adv. Energy Mater. 2018, 8, 1800794. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, L.; She, S.; Wu, J.; Zhou, X.; Li, X.; Wang, D.; Miao, J.; Mi, G.; Chen, H. Electron transporting bilayer of SnO2 and TiO2 nanocolloid enables highly efficient planar perovskite solar cells. Solar Rrl 2020, 4, 1900331. [Google Scholar] [CrossRef]
- Sun, X.; Li, L.; Shen, S.; Wang, F. TiO2/SnO2 Bilayer Electron Transport Layer for High Efficiency Perovskite Solar Cells. Nanomaterials 2023, 13, 249. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Li, J.; Bu, T.; Yang, S.; Xiao, J.; Peng, Y.; Li, W.; Zhong, J.; Ku, Z.; Cheng, Y.B. Room-temperature synthesized SnO2 electron transport layers for efficient perovskite solar cells. RSC Adv. 2019, 9, 9946–9950. [Google Scholar] [CrossRef] [PubMed]
- Regalado-Pérez, E.; Díaz-Cruz, E.B.; Landa-Bautista, J.; Mathews, N.; Mathew, X. Impact of vertical inhomogeneity on the charge extraction in perovskite solar cells: A study by depth-dependent photoluminescence. ACS Appl. Mater. Interfaces 2021, 13, 11833–11844. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xiao, C.; Yu, Y.; Zhao, D.; Awni, R.A.; Grice, C.R.; Ghimire, K.; Constantinou, I.; Liao, W.; Cimaroli, A.J. Understanding and eliminating hysteresis for highly efficient planar perovskite solar cells. Adv. Energy Mater. 2017, 7, 1700414. [Google Scholar] [CrossRef]
- Chiang, C.H.; Kan, C.W.; Wu, C.G. Synergistic engineering of conduction band, conductivity, and interface of bilayered electron transport layers with scalable TiO2 and SnO2 nanoparticles for high-efficiency stable perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 23606–23615. [Google Scholar] [CrossRef]
- Pascoe, A.R.; Duffy, N.W.; Scully, A.D.; Huang, F.; Cheng, Y.B. Insights into planar CH3NH3PbI3 perovskite solar cells using impedance spectroscopy. J. Phys. Chem. C 2015, 119, 4444–4453. [Google Scholar] [CrossRef]
- Lavery, B.W.; Kumari, S.; Konermann, H.; Draper, G.L.; Spurgeon, J.; Druffel, T. Intense pulsed light sintering of CH3NH3PbI3 solar cells. ACS Appl. Mater. Interfaces 2016, 8, 8419–8426. [Google Scholar] [CrossRef] [PubMed]
- Ghahremani, A.H.; Martin, B.; Ankireddy, K.; Druffel, T. Rapid processing of perovskite solar cells through pulsed photonic annealing: A review. J. Coatings Technol. Res. 2019, 16, 1637–1642. [Google Scholar] [CrossRef]
- Qiu, L.; He, S.; Yang, J.; Deng, J.; Peng, H. Fiber-shaped perovskite solar cells with high power conversion efficiency. Small 2016, 12, 2419–2424. [Google Scholar] [CrossRef]
- Sanchez, S.; Hua, X.; Phung, N.; Steiner, U.; Abate, A. Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells. Adv. Energy Mater. 2018, 8, 1702915. [Google Scholar] [CrossRef]
- Nayak, P.K.; Moore, D.T.; Wenger, B.; Nayak, S.; Haghighirad, A.A.; Fineberg, A.; Noel, N.K.; Reid, O.G.; Rumbles, G.; Kukura, P. Mechanism for rapid growth of organic–inorganic halide perovskite crystals. Nat. Commun. 2016, 7, 13303. [Google Scholar] [CrossRef] [PubMed]
- Ankireddy, K.; Ghahremani, A.H.; Martin, B.; Gupta, G.; Druffel, T. Rapid thermal annealing of CH 3 NH 3 PbI 3 perovskite thin films by intense pulsed light with aid of diiodomethane additive. J. Mater. Chem. A 2018, 6, 9378–9383. [Google Scholar] [CrossRef]
- Liang, P.; Liao, C.; Chueh, C.; Zuo, F.; Williams, S.T.; Xin, X.; Lin, J.; Jen, A.K. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754. [Google Scholar] [CrossRef] [PubMed]
- Matacena, I. Equivalent circuit extraction procedure from Nyquist plots for graphene-silicon solar cells. In Proceedings of the 2019 15th Conference on Ph. D Research in Microelectronics and Electronics (PRIME), Lausanne, Switzerland, 15–18 July 2019; pp. 273–276. [Google Scholar]
- Kay, A.M.; Riley, D.B.; Meredith, P.; Armin, A.; Sandberg, O.J. A New Framework for Understanding Recombination-Limited Charge Extraction in Disordered Semiconductors. J. Phys. Chem. Lett. 2024, 15, 4416–4421. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Piper, R.T.; Zheng, Y.; Malko, A.V.; Hsu, J.W. Elucidating Diiodomethane-Induced Improvement in Photonically Cured MAPbI3 Solar Cells. ACS Appl. Energy Mater. 2022, 5, 7328–7334. [Google Scholar] [CrossRef]
- Troughton, J.; Charbonneau, C.; Carnie, M.J.; Davies, M.L.; Worsley, D.A.; Watson, T.M. Rapid processing of perovskite solar cells in under 2.5 s. J. Mater. Chem. A 2015, 3, 9123–9127. [Google Scholar] [CrossRef]
- Troughton, J.; Carnie, M.J.; Davies, M.L.; Charbonneau, C.; Jewell, E.H.; Worsley, D.A.; Watson, T.M. Photonic flash-annealing of lead halide perovskite solar cells in 1 ms. J. Mater. Chem. A 2016, 4, 3471–3476. [Google Scholar] [CrossRef]
- Hilt, F.; Hovish, M.Q.; Rolston, N.; Brüning, K.; Tassone, C.J.; Dauskardt, R.H. Rapid route to efficient, scalable, and robust perovskite photovoltaics in air. Energy Environ. Sci. 2018, 11, 2102–2113. [Google Scholar] [CrossRef]
- Kim, S.U.; Kwon, M.J.; Yu, J.W. Recrystallization and grain growth by intense pulsed light with mixed solvent annealing for efficient perovskite solar cells. Org. Electron. 2022, 110, 106637. [Google Scholar] [CrossRef]
- de Boode, B.; Phillips, C.; Lau, Y.C.; Adomkevicius, A.; McGettrick, J.; Deganello, D. Glassy carbon manufacture using rapid photonic curing. J. Mater. Sci. 2022, 57, 299–310. [Google Scholar] [CrossRef]
- Wu, W. Inorganic nanomaterials for printed electronics: A review. Nanoscale 2017, 9, 7342–7372. [Google Scholar] [CrossRef]
- Garlapati, S.K.; Marques, G.C.; Gebauer, J.S.; Dehm, S.; Bruns, M.; Winterer, M.; Tahoori, M.B.; Aghassi-Hagmann, J.; Hahn, H.; Dasgupta, S. High performance printed oxide field-effect transistors processed using photonic curing. Nanotechnology 2018, 29, 235205. [Google Scholar] [CrossRef]
- Schroder, K.; Farnsworth, S. Photonic Curing: Broad Implications in Printed Electronics. Available online: https://www.ipc.org/system/files/technical_resource/E2%26S24_02.pdf (accessed on 13 May 2024).
- Gamal, K.; Gamal, M.; Okaz, A.; Shehata, N.; Kandas, I. Comprehensive performance analysis of perovskite solar cells based on different crystalline structures of MAPbI3. Opt. Quantum Electron. 2024, 56, 827. [Google Scholar] [CrossRef]
- Serafini, P.; Boix, P.P.; Barea, E.M.; Edvinson, T.; Sánchez, S.; Mora-Seró, I. Photonic Processing of MAPbI3 Films by Flash Annealing and Rapid Growth for High-Performance Perovskite Solar Cells. Solar Rrl 2022, 6, 2200641. [Google Scholar] [CrossRef]
- Iqbal, Z.; Zu, F.; Musiienko, A.; Gutierrez-Partida, E.; Kobler, H.; Gries, T.W.; Sannino, G.V.; Canil, L.; Koch, N.; Stolterfoht, M.; et al. Interface modification for energy level alignment and charge extraction in CsPbI3 perovskite solar cells. ACS Energy Lett. 2023, 8, 4304–4314. [Google Scholar] [CrossRef]
- Zhao, Y.; Xiang, H.; Ran, R.; Zhou, W.; Wang, W.; Shao, Z. Beyond two-dimension: One-and zero-dimensional halide perovskites as new-generation passivators for high-performance perovskite solar cells. J. Energy Chem. 2023, 83, 189–208. [Google Scholar] [CrossRef]
- Song, L. Perovskite solar cells toward industrialization: Screen printed perovskite films. Mater. Rep. Energy 2022, 2, 100171. [Google Scholar] [CrossRef]
- Wang, D.L.; Cui, H.J.; Hou, G.J.; Zhu, Z.G.; Yan, Q.B.; Su, G. Highly efficient light management for perovskite solar cells. Sci. Rep. 2016, 6, 18922. [Google Scholar] [CrossRef]
- Xu, Y.; Xia, R.; Gao, J.; Wang, S.; Zhu, J.; Xiong, W.; Yuan, N.; Ding, J. A Facile Approach for the Encapsulation of Perovskite Solar Cells. Energies 2023, 16, 598. [Google Scholar] [CrossRef]
- Li, W.; Ning, Z. Performance enhancement of perovskite solar cells: Surface is the key. Sci. China Mater. 2024, 67, 375–376. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, R.; Li, M.; Yu, R.; Wang, F.; Tan, Z. Synergistic electrical and light management enables efficient monolithic inorganic perovskite/organic tandem solar cells with over 24% efficiency. Energy Environ. Sci. 2024, 17, 219–226. [Google Scholar] [CrossRef]
Annealing Process | NiOx | MAPI | PCEmax (%) |
---|---|---|---|
TA/TA | TA | TA | 11.5 |
TA/PC | TA | PC | 12.5 |
PC/PC | PC | PC | 11.7 |
Annealing Process | Energy Density Tension Energy | Pulse Length (ms) | (V) | (mA cm−2) | FF (%) | PCE (%) | Configuration | Ref |
---|---|---|---|---|---|---|---|---|
Glass-PC | 12.3 J.cm−2 | 2 | 1.05 | 20.2 | 78.5 | 16.7 | ITO/compact/MAPI Spiro-OMetad/ Au | [28] |
Glass-TA | - | - | 1.05 | 20.2 | 76.5 | 16.3 | ||
PEN-PC | 2.35 J.cm−2 | 2 | 1.05 | 18.2 | 64.1 | 12.3 | ||
Glass-PC | 200 | 7 | 1.04 | 19.9 | 60.9 | 15 | ITO/// Spiro-OMetad/Au | [29] |
Glass-FA | - | - | 1.04 | 19.4 | 65.7 | 15.1 | ||
PET-PC | 200 | 7 | 1.09 | 16.9 | 61 | 11.2 | ||
Glass-TA | - | 2 | 1 | 18 | 61.2 | 11.5 | ITO/// Spiro-OMetad/Ag | [17] |
PET-PC | 17.3 J.cm−2 | 2 | 1.03 | 15.3 | 51.4 | 8.1 | ||
Glass-PC | 46 J.cm−2 | 20 | 1.06 | 21.4 | 67 | 15.3 | FTO//MAPI/PTAA/Au | [31] |
Glass-PC | 2100 J | 2 | 1.02 | 15.78 | 78.3 | 12.56 | FTO//MAPI/PTAA/Au | [32] |
PET-PC | 2100 J | 2 | 0.99 | 11.33 | 64.75 | 7.6 | ITO//MAPI/PTAA/Au | |
Glass-PC | 11.3 J.cm−2 | 7 | 1.14 | 22.7 | 80.4 | 21.1 | FTO//( / Spiro-OMetad/Au | [12] |
Glass-TA | - | - | 1.12 | 22.5 | 79.8 | 20.2 |
Aspect | PC | TA | Ref |
---|---|---|---|
Advantages | |||
Speed processing | Rapid (-) | Longer (-) | [66] |
Heat exposure reduction | Significantly reduces | High temperature requierd | [7] |
Heat sensitive substrat | Minimal risk | Potentiel risk | [2] |
Temperature control | More presice | Must be carfully regulated to avoid damage | [67] |
Selective processing | Yes | No | [68] |
Equilibrated heating | No | Yes | [10] |
Disadvantages | |||
Initial cost | Higher due to specialized equipment | Lower | [69] |
Process complexity | May require additional technical expertise | Process may be simpler |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slimani, M.A.; Cloutier, S.G.; Izquierdo, R. Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells. Nanomaterials 2024, 14, 886. https://doi.org/10.3390/nano14100886
Slimani MA, Cloutier SG, Izquierdo R. Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells. Nanomaterials. 2024; 14(10):886. https://doi.org/10.3390/nano14100886
Chicago/Turabian StyleSlimani, Moulay Ahmed, Sylvain G. Cloutier, and Ricardo Izquierdo. 2024. "Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells" Nanomaterials 14, no. 10: 886. https://doi.org/10.3390/nano14100886
APA StyleSlimani, M. A., Cloutier, S. G., & Izquierdo, R. (2024). Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells. Nanomaterials, 14(10), 886. https://doi.org/10.3390/nano14100886