Less Is More: Selective-Atom-Removal-Derived Defective MnOx Catalyst for Efficient Propane Oxidation
Abstract
:1. Introduction
2. Experiment
2.1. Materials
2.2. Catalyst Preparation
2.3. Catalysts Characterizations
2.4. Catalytic Performance Evaluation
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, Z.; Guo, L.; Shen, Q.; Bi, F.; Li, C.; Zhang, X. The Application of Metal–Organic Frameworks and Their Derivatives in the Catalytic Oxidation of Typical Gaseous Pollutants: Recent Progress and Perspective. Sep. Purif. Technol. 2024, 340, 126772. [Google Scholar] [CrossRef]
- Bao, L.; Zhu, S.; Chen, Y.; Wang, Y.; Meng, W.; Xu, S.; Lin, Z.; Li, X.; Sun, M.; Guo, L. Anionic Defects Engineering of Co3O4 Catalyst for Toluene Oxidation. Fuel 2022, 314, 122774. [Google Scholar] [CrossRef]
- Moreno-Román, E.J.; Can, F.; Meille, V.; Guilhaume, N.; González-Cobos, J.; Gil, S. MnOx Catalysts Supported on SBA-15 and MCM-41 Silicas for a Competitive VOCs Mixture Oxidation: In-Situ DRIFTS Investigations. Appl. Catal. B Environ. 2024, 344, 123613. [Google Scholar] [CrossRef]
- Liu, J.; Su, H.; Hu, Y.; Gong, C.; Lu, J.; He, D.; Zhu, W.; Chen, D.; Cao, X.; Li, J.; et al. Highly Efficient Degradation of Sulfur-Containing Volatile Organic Compounds by Amorphous MnO2 at Room Temperature: Implications for Controlling Odor Pollutants. Appl. Catal. B Environ. 2023, 334, 122877. [Google Scholar] [CrossRef]
- Bi, F.; Wei, J.; Gao, B.; Liu, N.; Xu, J.; Liu, B.; Huang, Y.; Zhang, X. New Insight into the Antagonism Mechanism between Binary VOCs during Their Degradation over Pd/ZrO2 Catalysts. ACS EST Eng. 2024. [Google Scholar] [CrossRef]
- Bezkrovnyi, O.; Vorokhta, M.; Pawlyta, M.; Ptak, M.; Piliai, L.; Xie, X.; Dinhová, T.N.; Khalakhan, I.; Matolínová, I.; Kepinski, L. In Situ Observation of Highly Oxidized Ru Species in Ru/CeO2 Catalyst under Propane Oxidation. J. Mater. Chem. A 2022, 10, 16675–16684. [Google Scholar] [CrossRef]
- Wang, M.; Li, G.; Wang, S.; Liu, X.; Wang, A.; Cao, H.; Zhang, C. Catalytic Oxidation of Propane over Nanorod-like TiO2 Supported Ru Catalysts: Structure-Activity Dependence and Mechanistic Insights. Chem. Eng. J. 2024, 481, 148344. [Google Scholar] [CrossRef]
- Huang, Z.; Ding, J.; Yang, X.; Liu, H.; Song, P.; Guo, Y.; Guo, Y.; Wang, L.; Zhan, W. Highly Efficient Oxidation of Propane at Low Temperature over a Pt-Based Catalyst by Optimization Support. Environ. Sci. Technol. 2022, 56, 17278–17287. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, T.; Zhang, Q.; Gu, B.; Tang, Q.; Cao, Q.; Fang, W. Synergistic Catalysis in Loaded PtRu Alloy Nanoparticles to Boost Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural. Mater. Today Catal. 2023, 3, 100013. [Google Scholar] [CrossRef]
- Huang, Z.; He, D.; Deng, W.; Jin, G.; Li, K.; Luo, Y. Illustrating New Understanding of Adsorbed Water on Silica for Inducing Tetrahedral Cobalt(II) for Propane Dehydrogenation. Nat. Commun. 2023, 14, 100. [Google Scholar] [CrossRef]
- Lou, B.; Shakoor, N.; Adeel, M.; Zhang, P.; Huang, L.; Zhao, Y.; Zhao, W.; Jiang, Y.; Rui, Y. Catalytic Oxidation of Volatile Organic Compounds by Non-Noble Metal Catalyst: Current Advancement and Future Prospectives. J. Clean. Prod. 2022, 363, 132523. [Google Scholar] [CrossRef]
- Wang, Y.; Aghamohammadi, S.; Li, D.; Li, K.; Farrauto, R. Structure Dependence of Nb2O5-X Supported Manganese Oxide for Catalytic Oxidation of Propane: Enhanced Oxidation Activity for MnOx on a Low Surface Area Nb2O5-X. Appl. Catal. B Environ. 2019, 244, 438–447. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, M.; Li, G.; An, T. Recent Advances in VOC Elimination by Catalytic Oxidation Technology onto Various Nanoparticles Catalysts: A Critical Review. Appl. Catal. B Environ. 2021, 281, 119447. [Google Scholar] [CrossRef]
- Li, G.; He, K.; Zhang, F.; Jiang, G.; Zhao, Z.; Zhang, Z.; Cheng, J.; Hao, Z. Defect Enhanced CoMnNiOx Catalysts Derived from Spent Ternary Lithium-Ion Batteries for Low-Temperature Propane Oxidation. Appl. Catal. B Environ. 2022, 309, 121231. [Google Scholar] [CrossRef]
- Bi, F.; Feng, X.; Zhou, Z.; Zhang, Y.; Wei, J.; Yuan, L.; Liu, B.; Huang, Y.; Zhang, X. Mn-Based Catalysts Derived from the Non-Thermal Treatment of Mn-MIL-100 to Enhance Its Water-Resistance for Toluene Oxidation: Mechanism Study. Chem. Eng. J. 2024, 485, 149776. [Google Scholar] [CrossRef]
- Zhang, B.; Shen, Y.; Liu, B.; Ji, J.; Dai, W.; Huang, P.; Zhang, D.; Li, G.; Xie, R.; Huang, H. Boosting Ozone Catalytic Oxidation of Toluene at Room Temperature by Using Hydroxyl-Mediated MnOx/Al2O3 Catalysts. Environ. Sci. Technol. 2023, 57, 7041–7050. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, G.; Sun, Y.; Li, N.; Zhang, Z.; Cheng, J.; Ma, C.; Hao, Z. The Positive Effect of Water on Acetaldehyde Oxidation Depended on the Reaction Temperature and MnO2 Structure. Appl. Catal. B Environ. 2022, 303, 120886. [Google Scholar] [CrossRef]
- Xie, L.; Hao, J.; Wu, Y.; Xing, S. Non-Radical Activation of Peroxymonosulfate with Oxygen Vacancy-Rich Amorphous MnOx for Removing Sulfamethoxazole in Water. Chem. Eng. J. 2022, 436, 135260. [Google Scholar] [CrossRef]
- Zhang, B.; Ji, J.; Liu, B.; Zhang, D.; Liu, S.; Huang, H. Highly Efficient Ozone Decomposition against Harsh Environments over Long-Term Stable Amorphous MnOx Catalysts. Appl. Catal. B Environ. 2022, 315, 121552. [Google Scholar] [CrossRef]
- Cai, T.; Liu, Z.; Yuan, J.; Xu, P.; Zhao, K.; Tong, Q.; Lu, W.; He, D. The Structural Evolution of MnOx with Calcination Temperature and Their Catalytic Performance for Propane Total Oxidation. Appl. Surf. Sci. 2021, 565, 150596. [Google Scholar] [CrossRef]
- Gu, H.; Lan, J.; Hu, H.; Jia, F.; Ai, Z.; Zhang, L.; Liu, X. Surface Oxygen Vacancy-Dependent Molecular Oxygen Activation for Propane Combustion over α-MnO2. J. Hazard. Mater. 2023, 460, 132499. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Zhang, Q.; Li, J.; Sun, Y.; Ren, Q.; Zou, S.; Zhang, Q.; Lu, J.; Fu, M.; Mo, D.; et al. Highly Efficient Mesoporous MnO2 Catalysts for the Total Toluene Oxidation: Oxygen-Vacancy Defect Engineering and Involved Intermediates Using in Situ DRIFTS. Appl. Catal. B Environ. 2020, 264, 118464. [Google Scholar] [CrossRef]
- Liao, W.-H.; Zhang, S.; Qin, Y.-H.; Chen, Z.; Yang, L.; Wang, T.; Wang, C.-W. Highly Disordered MnOx Catalyst for NO Oxidation at Medium–Low Temperatures. Chem. Eng. J. 2024, 483, 149275. [Google Scholar] [CrossRef]
- Dai, J.; Wang, R.; Shi, Z.; Yang, X.; Zhang, L. Modulating the Steric Effect over High-Index Facet of MnOx Catalysts to Enhance Toluene Oxidation. Chem. Eng. J. 2024, 486, 150328. [Google Scholar] [CrossRef]
- Sun, L.; Liang, X.; Liu, H.; Cao, H.; Liu, X.; Jin, Y.; Li, X.; Chen, S.; Wu, X. Activation of Co-O Bond in (110) Facet Exposed Co3O4 by Cu Doping for the Boost of Propane Catalytic Oxidation. J. Hazard. Mater. 2023, 452, 131319. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Wang, X.; Liu, Y.; Kim, M.; Cao, M.; Xie, H.; Liu, S.; Wang, X.; Huang, W.; Nanjundan, A.K.; et al. Nitrogen and Sulfur Co-Doped Hierarchically Porous Carbon Nanotubes for Fast Potassium Ion Storage. Small 2022, 18, 2203545. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Shi, L.; Liu, D.; Wang, X.; Gao, F.; Ha, Y.; Yin, J.; Liu, M.; Pan, H.; Wu, R. Fe-Doping-Induced Cation Substitution and Anion Vacancies Promoting Co3O4 Hexagonal Nanosheets for Efficient Overall Water Splitting. Mater. Today Catal. 2023, 1, 100002. [Google Scholar] [CrossRef]
- Meng, W.; Sun, S.; Xie, D.; Dai, S.; Shao, W.; Zhang, Q.; Qin, C.; Liang, G.; Li, X. Engineering Defective Co3O4 Containing Both Metal Doping and Vacancy in Octahedral Cobalt Site as High Performance Catalyst for Methane Oxidation. Mol. Catal. 2024, 553, 113768. [Google Scholar] [CrossRef]
- Xing, Y.; Feng, S.; Shen, B.; Li, Z.; Gao, P.; Zhang, C.; Shi, G. Simultaneous Removal NO and Toluene over the Sb Enhanced MnOx Catalysts. Fuel 2024, 360, 130533. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Z.; Li, Y.; Leng, X.; Zhang, T.; Yuan, F.; Niu, X.; Zhu, Y. Synthesis of CeaMnOx Hollow Microsphere with Hierarchical Structure and Its Excellent Catalytic Performance for Toluene Combustion. Appl. Catal. B Environ. 2019, 245, 502–512. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Deng, W.; Han, J.; Qin, L.; Zhao, B.; Guo, L.; Xing, F. Study on the Structure-Activity Relationship of Fe-Mn Oxide Catalysts for Chlorobenzene Catalytic Combustion. Chem. Eng. J. 2020, 395, 125172. [Google Scholar] [CrossRef]
- Chen, G.; Hong, D.; Xia, H.; Sun, W.; Shao, S.; Gong, B.; Wang, S.; Wu, J.; Wang, X.; Dai, Q. Amorphous and Homogeneously Zr-Doped MnOx with Enhanced Acid and Redox Properties for Catalytic Oxidation of 1,2-Dichloroethane. Chem. Eng. J. 2022, 428, 131067. [Google Scholar] [CrossRef]
- Dong, C.; Wang, H.; Ren, Y.; Qu, Z. Effect of Alkaline Earth Metal Promoter on Catalytic Activity of MnO2 for the Complete Oxidation of Toluene. J. Environ. Sci. 2021, 104, 102–112. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Xu, T.; Zhang, P. Atomically Dispersed Y or La on Birnessite-Type MnO2 for the Catalytic Decomposition of Low-Concentration Toluene at Room Temperature. ACS Appl. Mater. Interfaces 2021, 13, 17532–17542. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Cui, Z.; Guo, P.; Wang, X.; Li, J.; Liu, X.; Wang, W.; Li, Z. Fabrication of Ru/WO3-W2N/N-Doped Carbon Sheets for Hydrogen Evolution Reaction. J. Colloid Interface Sci. 2023, 636, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Lin, M.; Qi, P.; Shi, J.; Song, G.; Fan, W.; Sui, K.; Gao, C. Interfacial and Build-in Electric Fields Rooting in Gradient Polyelectrolyte Hydrogel Boosted Heavy Metal Removal. Chem. Eng. J. 2022, 444, 136541. [Google Scholar] [CrossRef]
- Chen, B.; Wu, B.; Yu, L.; Crocker, M.; Shi, C. Investigation into the Catalytic Roles of Various Oxygen Species over Different Crystal Phases of MnO2 for C6H6 and HCHO Oxidation. ACS Catal. 2020, 10, 6176–6187. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Y.; Cheng, Y.; Cen, W. Mechanism of Ce-Modified Birnessite-MnO2 in Promoting SO2 Poisoning Resistance for Low-Temperature NH3-SCR. ACS Catal. 2021, 11, 4125–4135. [Google Scholar] [CrossRef]
- Jiang, S.; Li, C.; Muhammad, Y.; Tang, Y.; Wang, R.; Li, J.; Li, J.; Zhao, Z.; Zhao, Z. Solvent-Induced Fabrication of Cu/MnOx Nanosheets with Abundant Oxygen Vacancies for Efficient and Long-Lasting Photothermal Catalytic Degradation of Humid Toluene Vapor. Appl. Catal. B Environ. 2023, 328, 122509. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, P.; Rong, S.; Jia, J. Creating Water-Resistant Oxygen Vacancies in δ-MnO2 by Chlorine Introduction for Catalytic Ozone Decomposition at Ambient Temperature. Appl. Catal. B Environ. 2023, 335, 122900. [Google Scholar] [CrossRef]
- Xue, H.; Guo, X.; Mao, D.; Meng, T.; Yu, J.; Ma, Z. Unveiling the Temperature-Dependent Effect of Zn on Phosphotungstic Acid-Modified MnOx Catalyst for Selective Catalytic Reduction of NOx: A Poison at <180 °C or a Promoter at >180 °C. Chem. Eng. J. 2023, 470, 144170. [Google Scholar] [CrossRef]
- Shan, C.; Zhang, Y.; Zhao, Q.; Fu, K.; Zheng, Y.; Han, R.; Liu, C.; Ji, N.; Wang, W.; Liu, Q. Acid Etching-Induced In Situ Growth of λ-MnO2 over CoMn Spinel for Low-Temperature Volatile Organic Compound Oxidation. Environ. Sci. Technol. 2022, 56, 10381–10390. [Google Scholar] [CrossRef] [PubMed]
- Rong, S.; Zhang, P.; Liu, F.; Yang, Y. Engineering Crystal Facet of α-MnO2 Nanowire for Highly Efficient Catalytic Oxidation of Carcinogenic Airborne Formaldehyde. ACS Catal. 2018, 8, 3435–3446. [Google Scholar] [CrossRef]
- Kang, L.; Wang, B.; Bing, Q.; Zalibera, M.; Büchel, R.; Xu, R.; Wang, Q.; Liu, Y.; Gianolio, D.; Tang, C.C.; et al. Adsorption and Activation of Molecular Oxygen over Atomic Copper(I/II) Site on Ceria. Nat. Commun. 2020, 11, 4008. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, C.; Yang, X.; Kong, F.; Wu, C.; Duan, H.; Yang, D. Pt-Stabilized Electron-Rich Ir Structures for Low Temperature Methane Combustion with Enhanced Sulfur-Resistance. Chem. Eng. J. 2023, 466, 143044. [Google Scholar] [CrossRef]
- Feng, C.; Jiang, F.; Xiong, G.; Chen, C.; Wang, Z.; Pan, Y.; Fei, Z.; Lu, Y.; Li, X.; Zhang, R.; et al. Revelation of Mn4+-Osur-Mn3+ Active Site and Combined Langmuir-Hinshelwood Mechanism in Propane Total Oxidation at Low Temperature over MnO2. Chem. Eng. J. 2023, 451, 138868. [Google Scholar] [CrossRef]
- Hu, Z.-P.; Wang, Y.; Yang, D.; Yuan, Z.-Y. CrOx Supported on High-Silica HZSM-5 for Propane Dehydrogenation. J. Energy Chem. 2020, 47, 225–233. [Google Scholar] [CrossRef]
Samples | Texture Property | Mn | O | Mg | ||
---|---|---|---|---|---|---|
SBET a (m2/g) | Vt b (cm3/g) | Mn4+/Mn3+ d | AOS c | Oads d (%) | Content e (wt.%) | |
MnOx | 163.8 | 0.27 | 0.95 | 3.40 | 32 | - |
MgMnOx | 126.8 | 0.35 | 1.21 | 3.48 | 40 | 0.54 |
MgMnOx-H | 110.3 | 0.38 | 1.12 | 3.43 | 57 | 0.17 |
Samples | T50 (°C) | T90 (°C) | Reaction Rate (μmol·gcat. −1·h−1) | Ea (kJ·mol−1) |
---|---|---|---|---|
MnOx | 242 | 339 | 0.06 | 179.3 |
MgMnOx | 208 | 257 | 0.10 | 166.1 |
MgMnOx-H | 185 | 226 | 0.29 | 85.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Zhou, L.; Liu, L.; Duan, H.; Ben, H.; Chen, S.; Li, X. Less Is More: Selective-Atom-Removal-Derived Defective MnOx Catalyst for Efficient Propane Oxidation. Nanomaterials 2024, 14, 907. https://doi.org/10.3390/nano14110907
Xu W, Zhou L, Liu L, Duan H, Ben H, Chen S, Li X. Less Is More: Selective-Atom-Removal-Derived Defective MnOx Catalyst for Efficient Propane Oxidation. Nanomaterials. 2024; 14(11):907. https://doi.org/10.3390/nano14110907
Chicago/Turabian StyleXu, Wenfan, Limei Zhou, Lining Liu, Huimei Duan, Haoxi Ben, Sheng Chen, and Xingyun Li. 2024. "Less Is More: Selective-Atom-Removal-Derived Defective MnOx Catalyst for Efficient Propane Oxidation" Nanomaterials 14, no. 11: 907. https://doi.org/10.3390/nano14110907