Fabrication and Enhanced Performance Evaluation of TiO2@Zn/Al-LDH for DSSC Application: The Influence of Post-Processing Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of TiO2 and TiO2@LDH
2.2. Fabrication of DSSC
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohammed, M.K.; Al-Mousoi, A.K.; Majeed, S.M.; Singh, S.; Kumar, A.; Pandey, R.; Madan, J.; Ahmed, D.S.; Dastan, D. Stable Hole-Transporting Material-Free Perovskite Solar Cells with Efficiency Exceeding 14% via the Introduction of a Malonic Acid Additive for a Perovskite Precursor. Energy Fuels 2022, 36, 13187–13194. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, S.; Mohammed, M.K.; Shalan, A.E. Effect of 2D perovskite layer and multivalent defect on the performance of 3D/2D bilayered perovskite solar cells through computational simulation studies. Sol. Energy 2021, 223, 193–201. [Google Scholar] [CrossRef]
- Albdiri, A.D.; Mohammed, A.A.; Hussein, M.; Koter, S. Modeling of lead ions transport through a bulk liquid membrane. Desalination Water Treat. 2020, 181, 213–220. [Google Scholar] [CrossRef]
- Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya, R.; Koide, N.; Han, L. Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn. J. Appl. Phys. 2006, 45, L638. [Google Scholar] [CrossRef]
- Abdulghani, S.O.; Salih, E.Y.; Mohammed, A.S. Fabrication and photo-responsive characteristics of GeO2 doped SnO2/porous Si film for ultraviolet photodetector application. Mater. Chem. Phys. 2023, 303, 127859. [Google Scholar] [CrossRef]
- O’regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Najm, A.S.; Alwash, S.A.; Sulaiman, N.H.; Chowdhury, M.; Techato, K. N719 dye as a sensitizer for dye-sensitized solar cells (DSSCs): A review of its functions and certain rudimentary principles. Environ. Prog. Sustain. Energy 2023, 42, e13955. [Google Scholar] [CrossRef]
- Sekaran, P.D.; Marimuthu, R. An extensive analysis of dye-sensitized solar cell (DSSC). Braz. J. Phys. 2024, 54, 28. [Google Scholar] [CrossRef]
- Richhariya, G.; Meikap, B.C.; Kumar, A. Review on fabrication methodologies and its impacts on performance of dye-sensitized solar cells. Environ. Sci. Pollut. Res. 2022, 29, 15233–15251. [Google Scholar] [CrossRef]
- Fasolini, A.; Sangiorgi, N.; Brandi, E.T.; Sangiorgi, A.; Mariani, F.; Scavetta, E.; Sanson, A.; Basile, F. Increased efficiency and stability of Dye-Sensitized Solar Cells (DSSC) photoanode by intercalation of Eosin Y into Zn/Al layered double hydroxide. Appl. Clay Sci. 2021, 212, 106219. [Google Scholar] [CrossRef]
- Salih, E.Y.; Abbas, Z.; Al Ali, S.H.H.; Hussein, M.Z. Dielectric behaviour of Zn/Al-NO3 LDHs filled with polyvinyl chloride composite at low microwave frequencies. Adv. Mater. Sci. Eng. 2014, 2014, 647120. [Google Scholar] [CrossRef]
- Feng, X.; Long, R.; Wang, L.; Liu, C.; Bai, Z.; Liu, X. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites. Sep. Purif. Technol. 2022, 284, 120099. [Google Scholar] [CrossRef]
- Salih, E.Y.; Sabri, M.F.M.; Sulaiman, K.; Hussein, M.Z.; Said, S.M.; Usop, R.; Salleh, M.F.M.; Bashir, M.B.A. Thermal, structural, textural and optical properties of ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide. Mater. Res. Express 2018, 5, 116202. [Google Scholar] [CrossRef]
- Abdelrahman, A.A.; Bendary, S.H.; Mahmoud, S.A. Synthesis and electrochemical properties of NiAl LDH@ RGO hierarchical nanocomposite as a potential counter electrode in dye sensitized solar cells. Diam. Relat. Mater. 2023, 134, 109738. [Google Scholar] [CrossRef]
- Gabriel, R.; De Carvalho, S.H.; da Silva Duarte, J.L.; Oliveira, L.M.; Giannakoudakis, D.A.; Triantafyllidis, K.S.; Soletti, J.I.; Meili, L. Mixed metal oxides derived from layered double hydroxide as catalysts for biodiesel production. Appl. Catal. A Gen. 2022, 630, 118470. [Google Scholar] [CrossRef]
- Lahkale, R.; Sadik, R.; Elhatimi, W.; Bouragba, F.; Assekouri, A.; Chouni, K.; Rhalmi, O.; Sabbar, E. Optical, electrical and dielectric properties of mixed metal oxides derived from Mg-Al Layered Double Hydroxides based solid solution series. Phys. B Condens. Matter 2022, 626, 413367. [Google Scholar] [CrossRef]
- Mohammed, M.K.; Al-Mousoi, A.K.; Singh, S.; Younis, U.; Kumar, A.; Dastan, D.; Ravi, G. Ionic liquid passivator for mesoporous titanium dioxide electron transport layer to enhance the efficiency and stability of hole conductor-free perovskite solar cells. Energy Fuels 2022, 36, 12192–12200. [Google Scholar] [CrossRef]
- Mohammed, M.K.; Jabir, M.S.; Abdulzahraa, H.G.; Mohammed, S.H.; Al-Azzawi, W.K.; Ahmed, D.S.; Singh, S.; Kumar, A.; Asaithambi, S.; Shekargoftar, M. Introduction of cadmium chloride additive to improve the performance and stability of perovskite solar cells. RSC Adv. 2022, 12, 20461–20470. [Google Scholar] [CrossRef] [PubMed]
- Naji, A.M.; Kareem, S.H.; Faris, A.H.; Mohammed, M.K. Polyaniline polymer-modified ZnO electron transport material for high-performance planar perovskite solar cells. Ceram. Int. 2021, 47, 33390–33397. [Google Scholar] [CrossRef]
- Bashir, M.B.A.; Said, S.M.; Sabri, M.F.M.; Miyazaki, Y.; Shnawah, D.A.; Shimada, M.; Salleh, M.F.M.; Mahmood, M.S.; Salih, E.Y.; Fitriani, F. In-filled La0.5Co4Sb12 skutterudite system with high thermoelectric figure of merit. J. Electron. Mater. 2018, 47, 2429–2438. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Xiao, H.; Liu, D.; Qin, Y.; Wu, H.; Li, H.; Du, N.; Hou, W. Preparation and properties of mixed metal oxides based layered double hydroxide as anode materials for dye-sensitized solar cell. Chem. Eng. J. 2014, 250, 1–5. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, J.; Haroone, M.S.; Chen, W.; Zheng, S.; Lu, J. Zinc-aluminum oxide solid solution nanosheets obtained by pyrolysis of layered double hydroxide as the photoanodes for dye-sensitized solar cells. J. Colloid Interface Sci. 2018, 515, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, J.; Wang, T.; Wang, C.; Ge, Z.; Liu, J.; Hao, X.; Du, N.; Xiao, H. Preparation and photovoltaic properties of dye-sensitized solar cells based on zinc titanium mixed metal oxides. Colloids Surf. A Physicochem. Eng. Asp. 2019, 568, 59–65. [Google Scholar] [CrossRef]
- Foruzin, L.J.; Rezvani, Z.; Nejati, K. Fabrication of TiO2@ ZnAl-layered double hydroxide based anode material for dye-sensitized solar cell. RSC Adv. 2016, 6, 10912–10918. [Google Scholar] [CrossRef]
- Bashir, M.B.A.; Rajpar, A.H.; Salih, E.Y.; Ahmed, E.M. Preparation and Photovoltaic Evaluation of CuO@Zn(Al)O-Mixed Metal Oxides for Dye Sensitized Solar Cell. Nanomaterials 2023, 13, 802. [Google Scholar] [CrossRef]
- Ge, Z.; Wang, C.; Chen, T.; Chen, Z.; Wang, T.; Guo, L.; Qi, G.; Liu, J. Preparation of Cu-doped ZnO nanoparticles via layered double hydroxide and application for dye-sensitized solar cells. J. Phys. Chem. Solids 2021, 150, 109833. [Google Scholar] [CrossRef]
- Ge, Z.; Zhu, Y.; Wang, C.; Xia, L.; Guo, L.; Wu, Y.; Liu, J. Investigation of the photoanode based on graphene/zinc aluminum mixed metal oxide for dye-sensitized solar cell. J. Sol-Gel Sci. Technol. 2020, 95, 432–438. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Y.; Ge, Z.; Shi, R.; Chen, T.; Chen, Z.; Liu, J. The feasible photoanode of graphene oxide/zinc aluminum mixed metal oxides for the dye-sensitized solar cell. Colloid Interface Sci. Commun. 2020, 39, 100313. [Google Scholar] [CrossRef]
- Antoniak-Jurak, K.; Kowalik, P.; Bicki, R.; Michalska, K.; Próchniak, W.; Wiercioch, P. Cu substituted ZnAl2O4 ex-LDH catalysts for medium-temperature WGS–effect of Cu/Zn ratio and thermal treatment on catalyst efficiency. Int. J. Hydrog. Energy 2019, 44, 27390–27400. [Google Scholar] [CrossRef]
- Mohammad, M.R.; Ahmed, D.S.; Mohammed, M.K. Synthesis of Ag-doped TiO2 nanoparticles coated with carbon nanotubes by the sol–gel method and their antibacterial activities. J. Sol-Gel Sci. Technol. 2019, 90, 498–509. [Google Scholar] [CrossRef]
- Mohammad, M.R.; Ahmed, D.S.; Mohammed, M.K. ZnO/Ag nanoparticle-decorated single-walled carbon nanotubes (SWCNTs) and their properties. Surf. Rev. Lett. 2020, 27, 1950123. [Google Scholar] [CrossRef]
- Bashir, M.B.A.; Salih, E.Y.; Sabri, M.F.M.; Rajpar, A.H.; Badruddin, I.A.; Hussein, M.Z.; Al-Jumaili, B.E. In-depth thermal, microstructural and photoluminescence analysis of mesoporous ZnO/ZnAl2O4-MMO: The effect of molar ratio. ECS J. Solid State Sci. Technol. 2021, 10, 106006. [Google Scholar] [CrossRef]
- Ahmed, N.M.; Ramizy, A.; Hassan, Z.; Amer, A.; Omar, K.; Al-Douri, Y.; Alattas, O.S. Nano and micro porous GaN characterization using image processing method. Optik 2012, 123, 1074–1078. [Google Scholar] [CrossRef]
- Ramizy, A.; Aziz, W.J.; Hassan, Z.; Omar, K.; Ibrahim, K. The effect of porosity on the properties of silicon solar cell. Microelectron. Int. 2010, 27, 117–120. [Google Scholar] [CrossRef]
- Boro, B.; Gogoi, B.; Rajbongshi, B.; Ramchiary, A. Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: A review. Renew. Sustain. Energy Rev. 2018, 81, 2264–2270. [Google Scholar] [CrossRef]
- Tao, R.; Tomita, T.; Wong, R.A.; Waki, K. Electrochemical and structural analysis of Al-doped ZnO nanorod arrays in dye-sensitized solar cells. J. Power Sources 2012, 214, 159–165. [Google Scholar] [CrossRef]
Material | 2θ (deg.) | FWHM (deg.) | Crystallite Size (nm) | |
---|---|---|---|---|
ZnO (100) | MMO-550° | 32.05° | 0.201 | 41.29 |
TiO2@MMO-450° | 32.05° | 0.333 | 24.89 | |
TiO2@MMO-550° | 32.10° | 0.307 | 26.95 | |
TiO2@MMO-650° | 32.08° | 0.331 | 25.04 | |
TiO2 (101) | TiO2@MMO-450° | 26.48° | 0.493 | 16.59 |
TiO2@MMO-550° | 26.35° | 0.481 | 17.00 | |
TiO2@MMO-650° | 26.51° | 0.487 | 16.81 |
Sample | Jsc (mA/cm−2) | Voc (V) | FF | PCE (%) | Dye Load (mM/cm−2) |
---|---|---|---|---|---|
MMO-550° | 1.74 | 0.76 | 0.69 | 0.91 | |
TiO2@MMO-450° | 2.47 | 0.80 | 0.71 | 1.41 | |
TiO2@MMO-550° | 3.29 | 0.81 | 0.72 | 1.91 | |
TiO2@MMO-650° | 2.74 | 0.80 | 0.73 | 1.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajpar, A.H.; Bashir, M.B.A.; Salih, E.Y.; Ahmed, E.M. Fabrication and Enhanced Performance Evaluation of TiO2@Zn/Al-LDH for DSSC Application: The Influence of Post-Processing Temperature. Nanomaterials 2024, 14, 920. https://doi.org/10.3390/nano14110920
Rajpar AH, Bashir MBA, Salih EY, Ahmed EM. Fabrication and Enhanced Performance Evaluation of TiO2@Zn/Al-LDH for DSSC Application: The Influence of Post-Processing Temperature. Nanomaterials. 2024; 14(11):920. https://doi.org/10.3390/nano14110920
Chicago/Turabian StyleRajpar, Altaf Hussain, Mohamed Bashir Ali Bashir, Ethar Yahya Salih, and Emad M. Ahmed. 2024. "Fabrication and Enhanced Performance Evaluation of TiO2@Zn/Al-LDH for DSSC Application: The Influence of Post-Processing Temperature" Nanomaterials 14, no. 11: 920. https://doi.org/10.3390/nano14110920
APA StyleRajpar, A. H., Bashir, M. B. A., Salih, E. Y., & Ahmed, E. M. (2024). Fabrication and Enhanced Performance Evaluation of TiO2@Zn/Al-LDH for DSSC Application: The Influence of Post-Processing Temperature. Nanomaterials, 14(11), 920. https://doi.org/10.3390/nano14110920