Self-Reconstructed Metal–Organic Framework-Based Hybrid Electrocatalysts for Efficient Oxygen Evolution
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of MET-Fe/NF
2.3. Preparation of MET-Co/NF and MET-Cu/NF
2.4. Preparation of RuO2/NF and Pt/C/NF
2.5. Characterization
2.6. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Zhou, Z.; Xu, H.; Wang, C.; Hata, S.; Dai, Z.; Shiraishi, Y.; Du, Y. In situ nanopores enrichment of Mesh-like palladium nanoplates for bifunctional fuel cell reactions: A joint etching strategy. J. Colloid Interface Sci. 2022, 611, 523–532. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, J.; Hu, Y.; Jin, Z.; Hu, K.; Reddy, K.M.; Yuan, Q.; Lin, X.; Qiu, H.-J. Theoretically Revealed and Experimentally Demonstrated Synergistic Electronic Interaction of CoFe Dual-Metal Sites on N-doped Carbon for Boosting Both Oxygen Reduction and Evolution Reactions. Nano Lett. 2022, 22, 3392–3399. [Google Scholar] [CrossRef] [PubMed]
- Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; et al. Engineering single-atomic ruthenium catalytic sites on defective nickel-iron layered double hydroxide for overall water splitting. Nat. Commun. 2021, 12, 4587. [Google Scholar] [CrossRef]
- Li, T.-M.; Hu, B.-Q.; Han, J.-H.; Lu, W.; Yu, F.; Li, B. Highly Effective OER Electrocatalysts Generated from a Two-Dimensional Metal–Organic Framework Including a Sulfur-Containing Linker without Doping. Inorg. Chem. 2022, 61, 7051–7059. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wang, J.; Guo, S.; Xiao, Y.; Zeng, Q.; He, W.; Gan, L.; Zhang, Q.; Huang, S. Molecular-Scale Interface Engineering of Metal–Organic Frameworks toward Ion Transport Enables High-Performance Solid Lithium Metal Battery. Adv. Funct. Mater. 2020, 30, 2003945. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yuan, J.; He, G.; Chen, H. Current and future trends for spinel-type electrocatalysts in electrocatalytic oxygen evolution reaction. Coord. Chem. Rev. 2023, 475, 214869. [Google Scholar] [CrossRef]
- Roger, I.; Shipman, M.A.; Symes, M.D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003. [Google Scholar] [CrossRef]
- Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catal. 2012, 2, 1765–1772. [Google Scholar] [CrossRef]
- Seitz, L.C.; Dickens, C.F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H.Y.; Norskov, J.K.; et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Suntivich, J.; May, K.J.; Perry, E.E.; Shao-Horn, Y. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J. Phys. Chem. Lett. 2012, 3, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Z.; Shen, H.; Tang, Y.; Liang, Z.; Zou, R. Electronic modulation of Ni2P through anion and cation substitution toward highly efficient oxygen evolution. Sci. China Mater. 2022, 65, 1522–1530. [Google Scholar] [CrossRef]
- Liang, Z.; Zhou, W.; Gao, S.; Zhao, R.; Zhang, H.; Tang, Y.; Cheng, J.; Qiu, T.; Zhu, B.; Qu, C.; et al. Fabrication of Hollow CoP/TiOx Heterostructures for Enhanced Oxygen Evolution Reaction. Small 2020, 16, 1905075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, X.; Zhang, S.; Huang, S. Building up the “Genome” of bi-atom catalysts toward efficient HER/OER/ORR. J. Mater. Chem. A 2022, 10, 11600–11612. [Google Scholar] [CrossRef]
- Xu, H.; Shang, H.; Wang, C.; Du, Y. Low-Dimensional Metallic Nanomaterials for Advanced Electrocatalysis. Adv. Funct. Mater. 2020, 30, 2006317. [Google Scholar] [CrossRef]
- Zheng, S.; Li, Q.; Xue, H.; Pang, H.; Xu, Q. A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl. Sci. Rev. 2019, 7, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wöll, C. Surface-supported metal–organic framework thin films: Fabrication methods, applications, and challenges. Chem. Soc. Rev. 2017, 46, 5730–5770. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef]
- Qian, Q.; Li, Y.; Liu, Y.; Yu, L.; Zhang, G. Ambient Fast Synthesis and Active Sites Deciphering of Hierarchical Foam-Like Trimetal–Organic Framework Nanostructures as a Platform for Highly Efficient Oxygen Evolution Electrocatalysis. Adv. Mater. 2019, 31, 1901139. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Zhang, X.; Yan, X.-C.; Wang, Y.-X.; Sun, X.; Zhang, G.; Feng, Y.; Zhang, F.-M. Mixed-Metal-Cluster Strategy for Boosting Electrocatalytic Oxygen Evolution Reaction of Robust Metal–Organic Frameworks. ACS Appl. Mater. Interfaces 2019, 11, 45080–45086. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zheng, Y.; Ma, T.; Yang, C.; Peng, Y.; Zhou, Z.; Zhou, M.; Li, S.; Wang, Y.; Cheng, C. Designing MOF Nanoarchitectures for Electrochemical Water Splitting. Adv. Mater. 2021, 33, 2006042. [Google Scholar] [CrossRef]
- Poudel, M.B.; Vijayapradeep, S.; Sekar, K.; Kim, J.S.; Yoo, D.J. Pyridinic-N exclusively enriched CNT-encapsulated NiFe interfacial alloy nanoparticles on knitted carbon fiber cloth as bifunctional oxygen catalysts for biaxially flexible zinc–air batteries. J. Mater. Chem. A 2024, 12, 10185–10195. [Google Scholar] [CrossRef]
- Xu, X.; Sun, H.; Jiang, S.P.; Shao, Z. Modulating metal–organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 2021, 1, 460–481. [Google Scholar] [CrossRef]
- Pan, S.; Ma, Z.; Yang, W.; Dongyang, B.; Yang, H.; Lai, S.; Dong, F.; Yang, X.; Lin, Z. Magnesium incorporation activates perovskite cobaltites toward efficient and stable electrocatalytic oxygen evolution. Mater. Rep. Energy 2023, 3, 100212. [Google Scholar] [CrossRef]
- Wang, H.-F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.F.; Xia, B.Y.; Zang, S.-Q.; Lou, X.W. Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2020, 59, 4634–4650. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Wang, T.; Zhao, X.; Jiang, W.-J.; Pan, H.; Gao, D.; Xu, C. Expediting in-Situ Electrochemical Activation of Two-Dimensional Metal–Organic Frameworks for Enhanced OER Intrinsic Activity by Iron Incorporation. ACS Catal. 2019, 9, 7356–7364. [Google Scholar] [CrossRef]
- Gándara, F.; Uribe-Romo, F.J.; Britt, D.K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O’Keeffe, M.; Yaghi, O.M. Porous, Conductive Metal-Triazolates and Their Structural Elucidation by the Charge-Flipping Method. Chem.—Eur. J. 2012, 18, 10595–10601. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Ma, D.-D.; Xu, Q.; Wu, X.-T.; Zhu, Q.-L. Semisacrificial Template Growth of Self-Supporting MOF Nanocomposite Electrode for Efficient Electrocatalytic Water Oxidation. Adv. Funct. Mater. 2019, 29, 1807418. [Google Scholar] [CrossRef]
- Song, X.Z.; Zhang, N.; Wang, X.F.; Tan, Z. Recent advances of metal-organic frameworks and their composites toward oxygen evolution electrocatalysis. Mater. Today Energy 2021, 19, 100597. [Google Scholar] [CrossRef]
- Rui, K.; Zhao, G.; Chen, Y.; Lin, Y.; Zhou, Q.; Chen, J.; Zhu, J.; Sun, W.; Huang, W.; Dou, S.X. Hybrid 2D Dual-Metal–Organic Frameworks for Enhanced Water Oxidation Catalysis. Adv. Funct. Mater. 2018, 28, 1801554. [Google Scholar] [CrossRef]
- Cheng, W.; Xi, S.; Wu, Z.-P.; Luan, D.; Lou, X.W. In situ activation of Br-confined Ni-based metal-organic framework hollow prisms toward efficient electrochemical oxygen evolution. Sci. Adv. 2021, 7, eabk0919. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Jiang, F.; Yuan, D.; Zhang, L.; Chen, Q.; Hong, M. Electric-Field Assisted In Situ Hydrolysis of Bulk Metal–Organic Frameworks (MOFs) into Ultrathin Metal Oxyhydroxide Nanosheets for Efficient Oxygen Evolution. Angew. Chem. Int. Ed. 2020, 59, 13101–13108. [Google Scholar] [CrossRef] [PubMed]
- Zhe, T.; Li, F.; Ma, K.; Liu, M.; Li, R.; Li, M.; Wang, C.; Luo, Q.; Lü, X.; Wang, L. Accelerated Oxygen Evolution Kinetics by Engineering Heterojunction Coupling of Amorphous NiFe Hydr(oxy)oxide Nanosheet Arrays on Self-Supporting Ni-MOFs. Small 2023, 19, 2303303. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Liu, M.; Lee, L.Y.S. Electrochemical Instability of Metal–Organic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites. ACS Catal. 2020, 10, 81–92. [Google Scholar] [CrossRef]
- Zhao, S.; Tan, C.; He, C.-T.; An, P.; Xie, F.; Jiang, S.; Zhu, Y.; Wu, K.-H.; Zhang, B.; Li, H.; et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, Q.; Yu, J.; Zhang, X.; Wu, C.; Ma, Y.; An, H.; Wang, H.; Zhang, J.; Wang, X.; et al. Fundamental Understanding of Structural Reconstruction Behaviors in Oxygen Evolution Reaction Electrocatalysts. Adv. Energy Mater. 2023, 13, 2301391. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Zhang, Y.; Rao, G.; Wu, C.; Hu, Y.; Wang, X.; Lu, R.; Li, Y.; Xiong, J. Identification of Key Reversible Intermediates in Self-Reconstructed Nickel-Based Hybrid Electrocatalysts for Oxygen Evolution. Angew. Chem. Int. Ed. 2019, 58, 17458–17464. [Google Scholar] [CrossRef]
- Li, X.; Fang, Y.; Lin, X.; Tian, M.; An, X.; Fu, Y.; Li, R.; Jin, J.; Ma, J. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR. J. Mater. Chem. A 2015, 3, 17392–17402. [Google Scholar] [CrossRef]
- Chen, P.; Zhou, T.; Xing, L.; Xu, K.; Tong, Y.; Xie, H.; Zhang, L.; Yan, W.; Chu, W.; Wu, C.; et al. Atomically Dispersed Iron–Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions. Angew. Chem. Int. Ed. 2017, 56, 610–614. [Google Scholar] [CrossRef]
- Zhang, N.; Hu, Y.; An, L.; Li, Q.; Yin, J.; Li, J.; Yang, R.; Lu, M.; Zhang, S.; Xi, P.; et al. Surface Activation and Ni-S Stabilization in NiO/NiS2 for Efficient Oxygen Evolution Reaction. Angew. Chem. Int. Ed. 2022, 61, e202207217. [Google Scholar] [CrossRef] [PubMed]
- Guan, D.; Ryu, G.; Hu, Z.; Zhou, J.; Dong, C.-L.; Huang, Y.-C.; Zhang, K.; Zhong, Y.; Komarek, A.C.; Zhu, M.; et al. Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors. Nat. Commun. 2020, 11, 3376. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Sun, H.; Chen, G.; Chen, Y.; Zhou, W.; Shao, Z. Rationally designed Water-Insertable Layered Oxides with Synergistic Effect of Transition-Metal Elements for High-Performance Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2019, 11, 25227–25235. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Zhao, L.; Zhang, H.; Liu, M.; Zhang, C.; Liu, S. Self-reconstruction of cationic activated Ni-MOFs enhanced the intrinsic activity of electrocatalytic water oxidation. Inorg. Chem. Front. 2022, 9, 179–185. [Google Scholar] [CrossRef]
- Chang, J.; Chen, L.; Zang, S.; Wang, Y.; Wu, D.; Xu, F.; Jiang, K.; Gao, Z. The effect of Fe(III) cations in electrolyte on oxygen evolution catalytic activity of Ni(OH)2 electrode. J. Colloid Interface Sci. 2020, 569, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yeh, C.-L.; Jiang, Y.; Yun, X.; Li, C.-T.; Ho, K.-C.; Lin, J.T.; Lin, R.Y.-Y. Orientation-Adjustable Metal–Organic Framework Nanorods for Efficient Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2021, 13, 28242–28251. [Google Scholar] [CrossRef]
- Trotochaud, L.; Young, S.L.; Ranney, J.K.; Boettcher, S.W. Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753. [Google Scholar] [CrossRef]
- Corrigan, D.A. The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. J. Electrochem. Soc. 1987, 134, 377. [Google Scholar] [CrossRef]
- Ou, Y.; Twight, L.P.; Samanta, B.; Liu, L.; Biswas, S.; Fehrs, J.L.; Sagui, N.A.; Villalobos, J.; Morales-Santelices, J.; Antipin, D.; et al. Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base. Nat. Commun. 2023, 14, 7688. [Google Scholar] [CrossRef]
- Hu, J.; Guo, T.; Zhong, X.; Li, J.; Mei, Y.; Zhang, C.; Feng, Y.; Sun, M.; Meng, L.; Wang, Z.; et al. In Situ Reconstruction of High-Entropy Heterostructure Catalysts for Stable Oxygen Evolution Electrocatalysis under Industrial Conditions. Adv. Mater. 2024, 36, 2310918. [Google Scholar] [CrossRef]
- Zhou, J.; Dou, Y.; Wu, X.-Q.; Zhou, A.; Shu, L.; Li, J.-R. Alkali-Etched Ni(II)-Based Metal–Organic Framework Nanosheet Arrays for Electrocatalytic Overall Water Splitting. Small 2020, 16, 1906564. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, J.; Yang, J.; Xue, Y.; Dai, L. Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chem. Eng. J. 2022, 427, 131498. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, T.-Y.; Chen, J.-L.; Liu, Y.; Yuan, X.; Yan, J.; Sun, Q.; Xu, Z.; Zhang, D.; Wang, X.; et al. Heterostructured Bimetallic MOF-on-MOF Architectures for Efficient Oxygen Evolution Reaction. Adv. Mater. 2023, 36, 2306910. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Feng, J.; Zou, Z.; Song, K.; Zeng, C. Formation of feathery-shaped dual-function S-doped FeNi-MOFs to achieve advanced electrocatalytic activity for OER and HER. J. Electroanal. Chem. 2023, 935, 117365. [Google Scholar] [CrossRef]
- Wei, L.; Meng, D.; Mao, J.; Jiang, Q.; Huang, H.; Tang, J. Assembly of NiFe-PBA nanoparticles on nanoflower-like NiFe-PBA@IF as enhanced oxygen evolution electrocatalyst at room temperature. Mol. Catal. 2023, 544, 113126. [Google Scholar] [CrossRef]
- Hu, F.; Yu, D.; Zeng, W.-J.; Lin, Z.-Y.; Han, S.; Sun, Y.; Wang, H.; Ren, J.; Hung, S.-F.; Li, L.; et al. Active Site Tailoring of Metal-Organic Frameworks for Highly Efficient Oxygen Evolution. Adv. Energy Mater. 2023, 13, 2301224. [Google Scholar] [CrossRef]
- Li, W.; Jia, S.; Liu, X.; Li, Y.; Chen, T.; Yang, F.; Zhang, X. Exploration and Application of the Self-Optimization Phenomenon of a Trimetal-Based MOF Electrocatalyst in the Oxygen Evolution Reaction. Energy Fuels 2023, 37, 8563–8572. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, X.; Ma, P.; Bi, R.; Song, S. Defect-Rich, Rose-Shaped Fe2Ni1-Metal–Organic Framework Nanoarrays for Efficient Oxygen Evolution Reaction. ACS Appl. Nano Mater. 2023, 6, 9339–9350. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wang, T.; Yang, Y.; Xiao, Y.; Tian, Y.; Zhu, H.; Jing, X.; Zhu, G. Preparation of Trimetallic-Organic Framework Film Electrodes via Secondary Growth for Efficient Oxygen Evolution Reaction. Chem.—Eur. J. 2023, 29, e202301129. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Li, Q.; Guo, H.; Wang, S.; Hao, G.; Hu, Y.; Zhang, G.; Jiang, W. Modulating crystal and electronic structure of NiFe-MOFs by inorganic acid for highly efficient electrochemical water oxidation. Dalton Trans. 2023, 52, 2027–2035. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Choi, S.; Park, H.; Lee, T.H.; Lee, S.A.; Yang, J.W.; Ji, S.G.; Cheon, W.S.; Ahn, S.H.; Kim, S.Y.; et al. 2D Ni-Naphthalene-2,6-Dicarboxylic Acid Metal-Organic Framework as Electrocatalysts for Efficient Overall Water Splitting. Energy Technol. 2023, 11, 2201203. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Uhlig, I.; Szargan, R.; Nesbitt, H.W.; Laajalehto, K. Surface states and reactivity of pyrite and marcasite. Appl. Surf. Sci. 2001, 179, 222–229. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Y.; Yu, Z.; Hou, Y.; Jiang, R.; Li, S.; Chen, J.; Tang, W.; Pang, H.; Xie, W. Unraveling the π-interaction of NiFe-based metal–organic frameworks with enhanced oxygen evolution: Optimizing electronic structure and facilitating electron transfer modulation. J. Colloid Interface Sci. 2023, 640, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shchukarev, A.V.; Korolkov, D.V. XPS Study of group IA carbonates. Cent. Eur. J. Chem. 2004, 2, 347–362. [Google Scholar] [CrossRef]
- Tang, P.; Di Vizio, B.; Yang, J.; Patil, B.; Cattelan, M.; Agnoli, S. Fe,Ni-Based Metal–Organic Frameworks Embedded in Nanoporous Nitrogen-Doped Graphene as a Highly Efficient Electrocatalyst for the Oxygen Evolution Reaction. Nanomaterials 2024, 14, 751. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yu, Z.; Huang, J.; Yao, S.; Jiang, R.; Hou, Y.; Tang, W.; Sun, P.; Huang, H.; Wang, M. Redox-active ligands enhance oxygen evolution reaction activity: Regulating the spin state of ferric ions and accelerating electron transfer. J. Colloid Interface Sci. 2023, 650, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Deng, L.; Xiong, Y.; Hu, F.; Yin, L.; Yu, D.; Li, L.; Peng, S. Engineering metal-organic framework nanosheets with electronically modulated in-plane heterojunctions for robust high-current-density water splitting. Sci. China Mater. 2023, 66, 1373–1382. [Google Scholar] [CrossRef]
- Yin, Z.; Liang, J.; Zhang, Z.; Luo, H.; Zhou, J. Construction of superhydrophilic metal-organic frameworks with hierarchical microstructure for efficient overall water splitting. J. Colloid Interface Sci. 2022, 623, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Van Phuc, T.; Jana, J.; Ravi, N.; Kang, S.G.; Chung, J.S.; Choi, W.M.; Hur, S.H. Highly active Ni/Co-metal organic framework bifunctional electrocatalyst for water splitting reaction. Int. J. Hydrog. Energy 2022, 47, 22787–22795. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, T.; Cui, D.; Zheng, Y.; Cheng, Y.; Wang, G.; Chen, L. Defective ferrocene-based metal–organic frameworks for efficient solar-powered water oxidation via the ligand competition and etching effect. J. Colloid Interface Sci. 2024, 657, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, Z.; Isimjan, T.T.; Cai, D.; Yang, X. Accurately substituting Fe for Ni2 atom in Ni-MOF with defect-rich for efficient oxygen evolution reaction: Electronic reconfiguration and mechanistic study. Appl. Catal. B Environ. 2024, 343, 123448. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, K.; Chen, W.; Wan, Y.; Chu, H.; Hai, X.; Zou, R. Self-Reconstructed Metal–Organic Framework-Based Hybrid Electrocatalysts for Efficient Oxygen Evolution. Nanomaterials 2024, 14, 1168. https://doi.org/10.3390/nano14141168
Cai K, Chen W, Wan Y, Chu H, Hai X, Zou R. Self-Reconstructed Metal–Organic Framework-Based Hybrid Electrocatalysts for Efficient Oxygen Evolution. Nanomaterials. 2024; 14(14):1168. https://doi.org/10.3390/nano14141168
Chicago/Turabian StyleCai, Kunting, Weibin Chen, Yinji Wan, Hsingkai Chu, Xiao Hai, and Ruqiang Zou. 2024. "Self-Reconstructed Metal–Organic Framework-Based Hybrid Electrocatalysts for Efficient Oxygen Evolution" Nanomaterials 14, no. 14: 1168. https://doi.org/10.3390/nano14141168
APA StyleCai, K., Chen, W., Wan, Y., Chu, H., Hai, X., & Zou, R. (2024). Self-Reconstructed Metal–Organic Framework-Based Hybrid Electrocatalysts for Efficient Oxygen Evolution. Nanomaterials, 14(14), 1168. https://doi.org/10.3390/nano14141168