LAB-to-FAB Transition of 2D FETs: Available Strategies and Future Trends
Abstract
:1. Introduction
Funding
Data Availability Statement
Conflicts of Interest
References
- Theis, T.; Wong, H.S. The End of Moore’s Law: A New Beginning for Information Technology. Comput. Sci. Eng. 2017, 19, 41–50. [Google Scholar] [CrossRef]
- IEEE. IRDS More Moore; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Uchida, K.; Watanabe, H.; Kinoshita, A.; Koga, J.; Numata, T.; Takagi, S. Experimental Study on Carrier Transport Mechanism in Ultrathin-Body SOI n- and p-MOSFETs with SOI Thickness Less than 5 nm. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 8–11 December 2002; pp. 47–50. [Google Scholar]
- Schwierz, F.; Pezoldt, J.; Granzner, R. Two-Dimensional Materials and Their Prospects in Transistor Electronics. Nanoscale 2015, 7, 8261–8283. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Sebastian, A.; Pop, E.; McClellan, C.; Franklin, A.; Grasser, T.; Knobloch, T.; Illarionov, Y.; Penumatcha, A.; Appenzeller, J.; et al. Transistors Based on Two-Dimensional Materials for Future Integrated Circuits. Nat. Electron. 2021, 4, 786–799. [Google Scholar] [CrossRef]
- Smithe, K.; Suryavanshi, S.; Munoz-Rojo, M.; Tedjarati, A.; Pop, E. Low Variability in Synthetic Monolayer MoS2 Devices. ACS Nano 2017, 11, 8456–8463. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, H.; Guo, Z.; Shan, Y.; Wu, S.; Wang, J.; Hu, W.; Liu, H.; Sun, Z.; Luo, C.; et al. High-Performance Wafer-Scale MoS2 Transistors Toward Practical Application. Small 2018, 14, 1803465. [Google Scholar] [CrossRef] [PubMed]
- Wachter, S.; Polyushkin, D.K.; Bethge, O.; Mueller, T. A Microprocessor Based on a Two-Dimensional Semiconductor. Nat. Commun. 2017, 8, 14948. [Google Scholar] [CrossRef] [PubMed]
- Illarionov, Y.; Banshchikov, A.; Polyushkin, D.; Wachter, S.; Knobloch, T.; Thesberg, M.; Waltl, M.; Stoeger-Pollach, M.; Steiger-Thirsfeld, A.; Vexler, M.; et al. Ultrathin Calcium Fluoride Insulators for Two-Dimensional Field-Effect Transistors. Nat. Electron. 2019, 2, 230–235. [Google Scholar] [CrossRef]
- Huang, J.K.; Wan, Y.; Shi, J.; Zhang, J.; Wang, Z.; Wang, W.; Yang, N.; Liu, Y.; Lin, C.H.; Guan, X.; et al. High-κ Perovskite Membranes as Insulators for Two-Dimensional Transistors. Nature 2022, 605, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Tu, T.; Sun, Y.; Fu, H.; Yu, J.; Xing, L.; Wang, Z.; Wang, H.; Jia, R.; Wu, J.; et al. A Native Oxide High-κ Gate Dielectric for Two-Dimensional Electronics. Nat. Electron. 2020, 3, 473–478. [Google Scholar] [CrossRef]
- Tan, C.; Yu, M.; Tang, J.; Gao, X.; Yin, Y.; Zhang, Y.; Wang, J.; Gao, X.; Zhang, C.; Zhou, X.; et al. 2D Fin Field-Effect Transistors Integrated with Epitaxial High-k Gate Oxide. Nature 2023, 616, 66–72. [Google Scholar] [CrossRef]
- Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Rasmussen, F.; Thygesen, K. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. J. Phys. Chem. C 2015, 119, 13169–13183. [Google Scholar] [CrossRef]
- Kang, T.; Tang, T.W.; Pan, B.; Liu, H.; Zhang, K.; Luo, Z. Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics. ACS Mater. Au 2022, 2, 665–685. [Google Scholar] [CrossRef]
- Rahman, M.; Al Mamun, M.S. Future prospects of MXenes: Synthesis, functionalization, properties, and application in field effect transistors. Nanoscale Adv. 2024, 6, 367–385. [Google Scholar] [CrossRef]
- Radisavljevic, B.; Radenovic, A.; Berivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Lee, G.H.; Yu, Y.J.; Cui, X.; Petrone, N.; Lee, C.H.; Choi, M.; Lee, D.Y.; Lee, C.; Yoo, W.; Watanabe, K.; et al. Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano 2013, 7, 7931–7936. [Google Scholar] [CrossRef] [PubMed]
- Bolshakov, P.; Zhao, P.; Azcatl, A.; Hurley, P.; Wallace, R.; Young, C. Improvement in Top-Gate MoS2 Transistor Performance due to High Quality Backside Al2O3 Layer. Appl. Phys. Lett. 2017, 111, 032110. [Google Scholar] [CrossRef]
- Kumar, J.; Kuroda, M.A.; Bellus, M.Z.; Han, S.J.; Chiu, H.Y. Full-Range Electrical Characteristics of WS2 Transistors. Appl. Phys. Lett. 2015, 106, 123508. [Google Scholar] [CrossRef]
- Chang, Y.M.; Yang, S.H.; Lin, C.Y.; Chen, C.H.; Lien, C.H.; Jian, W.B.; Ueno, K.; Suen, Y.W.; Tsukagoshi, K.; Lin, Y.F. Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping. Adv. Mater. 2018, 30, 1706995. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, X.; Shu, J.; Liu, B.; Yin, J.; Guan, C.; Han, Y.; Gao, S.; Chen, Q. Charge Trapping at the MoS2-SiO2 Interface and its Effects on the Characteristics of MoS2 Metal-Oxide-Semiconductor Field Effect Transistors. Appl. Phys. Lett. 2015, 106, 103109. [Google Scholar] [CrossRef]
- Pan, Y.; Jia, K.; Huang, K.; Wu, Z.; Bai, G.; Yu, J.; Zhang, Z.; Zhang, Q.; Yin, H. Near-Ideal Subthreshold Swing MoS2 Back-Gate Transistors with an Optimized Ultrathin HfO2 Dielectric Layer. Nanotechnology 2019, 30, 095202. [Google Scholar] [CrossRef]
- Illarionov, Y.; Smithe, K.; Waltl, M.; Grady, R.; Deshmukh, S.; Pop, E.; Grasser, T. Annealing and Encapsulation of CVD-MoS2 FETs with 1010 On/Off Current Ratio. In Proceedings of the 76th Device Research Conference (DRC), Santa Barbara, CA, USA, 24–27 June 2018; pp. 1–2. [Google Scholar]
- Lee, G.H.; Cui, X.; Kim, Y.D.; Arefe, G.; Zhang, X.; Lee, C.H.; Ye, F.; Watanabe, K.; Taniguchi, T.; Kim, P.; et al. Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. ACS Nano 2015, 9, 7019–7026. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Xu, J.; Liu, L.; Wang, H.; Lai, P.; Tang, W.-M. Damage-Free Mica/MoS2 Interface for High-Performance Multilayer MoS2 Field-Effect Transistors. Nanotechnology 2019, 30, 345204. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, J.; Zhu, R.; Wang, M.; Tan, C.; Tu, T.; Zhou, X.; Zhang, C.; Yu, M.; Gao, X.; et al. A Single-Crystalline Native Dielectric for Two-Dimensional Semiconductors with an Equivalent Oxide Thickness below 0.5 nm. Nat. Electron. 2022, 5, 643–649. [Google Scholar] [CrossRef]
- Geim, A.; Grigorieva, I. Van der Waals Heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef]
- Knobloch, T.; Illarionov, Y.Y.; Ducry, F.; Schleich, C.; Wachter, S.; Watanabe, K.; Taniguchi, T.; Mueller, T.; Waltl, M.; Lanza, M.; et al. The Performance Limits of Hexagonal Boron Nitride as an Insulator for Scaled CMOS Devices Based on Two-Dimensional Materials. Nat. Electron. 2021, 4, 98–108. [Google Scholar] [CrossRef]
- Jang, S.; Youn, J.; Song, Y.; Lee, S. Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric. Sci. Rep. 2016, 6, 30449. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.; Hilse, M.; Huet, B.; Wang, K.; Kozhakhmetov, A.; Kim, J.H.; Bachu, S.; Alem, N.; Collazo, R.; Robinson, J.A.; et al. Substrate Modification during Chemical Vapor Deposition of hBN on Sapphire. ACS Appl. Mater. Interfaces 2021, 13, 54516–54526. [Google Scholar] [CrossRef]
- Xu, F.; Wu, Z.; Liu, G.; Chen, F.; Guo, J.; Zhou, H.; Huang, J.; Zhang, Z.; Fei, L.; Liao, X.; et al. Few-Layered MnAl2S4 Dielectrics for High-Performance van der Waals Stacked Transistors. ACS Appl. Mater. Interfaces 2022, 14, 25920–25927. [Google Scholar] [CrossRef]
- Koma, A.; Saiki, K.; Sato, Y. Heteroepitaxy of a Two-Dimensional Material on a Three-Dimensional Material. Appl. Surf. Sci. 1990, 41, 451–456. [Google Scholar] [CrossRef]
- Illarionov, Y.; Banshchikov, A.; Knobloch, T.; Polyushkin, D.; Wachter, S.; Fedorov, V.; Suturin, S.; Stöger-Pollach, M.; Mueller, T.; Vexler, M.; et al. Crystalline Calcium Fluoride: A Record-Thin Insulator for Nanoscale 2D Electronics. In Proceedings of the Device Research Conference (DRC), Columbus, OH, USA, 21–24 June 2020; pp. 1–2. [Google Scholar]
- Zhu, H.; Qin, X.; Cheng, L.; Azcatl, A.; Kim, J.; Wallace, R.M. Remote Plasma Oxidation and Atomic Layer Etching of MoS2. ACS Appl. Mater. Interfaces 2016, 8, 19119–19126. [Google Scholar] [CrossRef]
- Yamamoto, M.; Dutta, S.; Aikawa, S.; Nakaharai, S.; Wakabayashi, K.; Fuhrer, M.S.; Ueno, K.; Tsukagoshi, K. Self-Limiting Layer-by-Layer Oxidation of Atomically Thin WSe2. Nano Lett. 2015, 15, 2067–2073. [Google Scholar] [CrossRef]
- Gong, G.; Li, M.; Sun, N.; Zhi, T.; He, Y.; Pan, J.; Cai, Y.; Wang, L. Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chin. Chem. Lett. 2023, 35, 108705. [Google Scholar] [CrossRef]
- Schram, T.; Smets, Q.; Groven, B.; Heyne, M.; Kunnen, E.; Thiam, A.; Devriendt, K.; Delabie, A.; Lin, D.; Lux, M.; et al. WS2 Transistors on 300 mm Wafers with BEOL Compatibility. In Proceedings of the 47th European Solid-State Device Research Conference (ESSDERC), Leuven, Belgium, 11–14 September 2017; pp. 212–215. [Google Scholar]
- Dragoi, V.; Pabo, E.; Burggraf, J.; Mittendorfer, G. CMOS: Compatible Wafer Bonding for MEMS and Wafer-Level 3D Integration. Microsyst. Technol. 2012, 18, 1065–1075. [Google Scholar] [CrossRef]
- Caymax, M.; El Kazzi, S.; Huyghebaert, C. MOCVD Growth of 2D WS2 on SiO2: Nucleation Mechanism and Kinetics. In Proceedings of the International Conference on Solid State Devices and Materials, Aichi, Japan, 2–5 September 2019; pp. 159–160. [Google Scholar]
- Asselberghs, I.; Smets, Q.; Schram, T.; Groven, B.; Verreck, D.; Afzalian, A.; Arutchelvan, G.; Gaur, A.; Cott, D.; Maurice, T.; et al. Wafer-Scale Integration of Double Gated WS2 Transistors in 300 mm Si CMOS Fab. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 12–18 December 2020; pp. 40–42. [Google Scholar]
- O’Brien, K.P.; Dorow, C.; Penumatcha, A.; Maxey, K.; Lee, S.; Naylor, C.; Hsiao, A.; Holybee, B.; Rogan, C.; Adams, D.; et al. Advancing 2D Monolayer CMOS through Contact, Channel and Interface Engineering. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 11–16 December 2021; pp. 7.1.1–7.1.4. [Google Scholar]
- Cheng, C.C.; Chung, Y.Y.; Li, U.Y.; Lin, C.T.; Li, C.F.; Chen, J.H.; Lai, T.Y.; Li, K.S.; Shieh, J.M.; Su, S.K.; et al. First Demonstration of 40-nm Channel Length Top-Gate WS2 pFET Using Channel Area-Selective CVD Growth Directly on SiOx/Si Substrate. In Proceedings of the 2019 Symposium on VLSI Technology, Kyoto, Japan, 9–14 June 2019; pp. T244–T245. [Google Scholar]
- Chung, Y.Y.; Chou, B.J.; Hsu, C.F.; Yun, W.S.; Li, M.Y.; Su, S.K.; Liao, Y.T.; Lee, M.C.; Huang, G.W.; Liew, S.L.; et al. First Demonstration of GAA Monolayer-MoS2 Nanosheet nFET with 410 µA/µm ID at 1 V VD at 40 nm Gate Length. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 34–35. [Google Scholar]
- Dorow, C.; Penumatcha, A.; Kitamura, A.; Rogan, C.; O’Brien, K.; Lee, S.; Ramamurthy, R.; Cheng, C.Y.; Maxey, K.; Zhong, T.; et al. Gate Length Scaling beyond Si: Mono-Layer 2D Channel FETs Robust to Short Channel Effects. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 7.5.1–7.5.4. [Google Scholar]
- Chou, A.S.; Lin, Y.T.; Lin, Y.C.; Hsu, C.H.; Li, M.Y.; Liew, S.L.; Chou, S.A.; Chen, H.Y.; Chiu, H.Y.; Ho, P.H.; et al. High-Performance Monolayer WSe2 p/n FETs via Antimony-Platinum Modulated Contact Technology Towards 2D CMOS Electronics. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 7.2.1–7.2.4. [Google Scholar]
- Wang, Y.; Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 2022, 4, 101–112. [Google Scholar] [CrossRef]
- Dorow, C.; O’Brien, K.; Naylor, C.; Lee, S.; Penumatcha, A.; Hsiao, A.; Tronic, T.; Christenson, M.; Maxey, K.; Zhu, H.; et al. Advancing Monolayer 2-D nMOS and pMOS transistor integration from growth to van der Waals interface engineering for ultimate CMOS scaling. IEEE Trans. Electron Devices 2021, 68, 6592–6598. [Google Scholar] [CrossRef]
- Schram, T.; Celiker, H.; Smets, Q.; Asselbergs, I.; Kar, G.; Myny, K. Wafer Scale Integration of MX2 Based NMOS Only Ring Oscillators on 300 mm Wafers. In Proceedings of the IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 11–12 June 2022; pp. 1–2. [Google Scholar]
- Lee, T.E.; Su, Y.C.; Lin, B.J.; Chen, Y.X.; Yun, W.S.; Ho, P.H.; Wang, J.F.; Su, S.K.; Hsu, C.F.; Mao, P.S.; et al. Nearly Ideal Subthreshold Swing in Monolayer MoS2 Top-Gate nFETs with Scaled EOT of 1 nm. In Proceedings of the International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2022; pp. 7.4.1–7.4.4. [Google Scholar]
- Illarionov, Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M.; Mueller, T.; Lemme, M.; Fiori, G.; Schwierz, F.; et al. Insulators for 2D nanoelectronics: The gap to bridge. Nat. Commun. 2020, 11, 3385. [Google Scholar] [CrossRef]
- Illarionov, Y.; Karl, A.; Smets, Q.; Kaczer, B.; Knobloch, T.; Panarella, L.; Schram, T.; Brems, S.; Cott, D.; Asselberghs, I.; et al. Process implications on the stability and reliability of 300 mm FAB MoS2 field-effect transistors. Npj 2D Mater. Appl. 2024, 8, 8. [Google Scholar] [CrossRef]
- Fleetwood, D. “Border Traps” in MOS Devices. IEEE Trans. Nucl. Sci. 1992, 39, 269–271. [Google Scholar] [CrossRef]
- Illarionov, Y.; Rzepa, G.; Waltl, M.; Knobloch, T.; Grill, A.; Furchi, M.; Mueller, T.; Grasser, T. The Role of Charge Trapping in MoS2/SiO2 and MoS2/hBN Field-Effect Transistors. 2D Mater. 2016, 3, 035004. [Google Scholar] [CrossRef]
- Knobloch, T.; Uzlu, B.; Illarionov, Y.; Wang, Z.; Otto, M.; Filipovic, L.; Waltl, M.; Neumaier, D.; Lemme, M.; Grasser, T. Improving Stability in Two-Dimensional Transistors with Amorphous Gate Oxides by Fermi-Level Tuning. Nat. Electron. 2022, 4, 98–108. [Google Scholar] [CrossRef]
- Rzepa, G.; Waltl, M.; Goes, W.; Kaczer, B.; Franco, J.; Chiarella, T.; Horiguchi, N.; Grasser, T. Complete Extraction of Defect Bands Responsible for Instabilities in n and pFinFETs. In Proceedings of the IEEE Symposium on VLSI Technologies, Honolulu, HI, USA, 14–16 June 2016; pp. 208–209. [Google Scholar]
- Franco, J.; Kaczer, B.; Eneman, G.; Roussel, P.; Grasser, T.; Mitard, J.; Ragnarsson, L.; Cho, M.; Witters, L.; Chiarella, T.; et al. Superior NBTI Reliability of SiGe Channel pMOSFETs: Replacement Gate, FinFETs, and Impact of Body Bias. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 5–7 December 2011; pp. 18.5.1–18.5.4. [Google Scholar]
- Zhang, Y.; Feng, D.; Xu, Y.; Yin, Z.; Dou, W.; Habiba, U.E.; Pan, C.; Zhang, Z.; Mou, H.; Deng, H.; et al. DNA-Based Functionalization of Two-Dimensional MoS2 FET Biosensor for Ultrasensitive Detection of PSA. Appl. Surf. Sci. 2021, 548, 149169. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Li, S.; Sun, J.; Fang, Y.; Deng, T. Highly Sensitive Photodetectors Based on Monolayer MoS2 Field-Effect Transistors. ACS Omega 2022, 7, 13615–13621. [Google Scholar] [CrossRef]
- Nazzari, D.; Genser, J.; Ritter, V.; Bethge, O.; Bertagnolli, E.; Grasser, T.; Weber, W.M.; Lugstein, A. Epitaxial Growth of Crystalline CaF2 on Silicene. ACS Appl. Mater. Interfaces 2022, 14, 32675–32682. [Google Scholar] [CrossRef]
- Illarionov, Y.; Knobloch, T.; Uzlu, B.; Banshchikov, A.; Ivanov, I.; Sverdlov, V.; Otto, M.; Stoll, S.; Vexler, M.; Waltl, M.; et al. Variability and high temperature reliability of graphene field-effect transistors with thin epitaxial CaF2 insulators. Npj 2D Mater. Appl. 2024, 8, 23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Illarionov, Y.; Lv, Y.; Wu, Y.; Chai, Y. LAB-to-FAB Transition of 2D FETs: Available Strategies and Future Trends. Nanomaterials 2024, 14, 1237. https://doi.org/10.3390/nano14151237
Illarionov Y, Lv Y, Wu Y, Chai Y. LAB-to-FAB Transition of 2D FETs: Available Strategies and Future Trends. Nanomaterials. 2024; 14(15):1237. https://doi.org/10.3390/nano14151237
Chicago/Turabian StyleIllarionov, Yury, Yezhu Lv, Yehao Wu, and Yajing Chai. 2024. "LAB-to-FAB Transition of 2D FETs: Available Strategies and Future Trends" Nanomaterials 14, no. 15: 1237. https://doi.org/10.3390/nano14151237
APA StyleIllarionov, Y., Lv, Y., Wu, Y., & Chai, Y. (2024). LAB-to-FAB Transition of 2D FETs: Available Strategies and Future Trends. Nanomaterials, 14(15), 1237. https://doi.org/10.3390/nano14151237