Quantum Prism—Nano Source of Light with Dispersive Spectrum and Optical Upconversion
Abstract
1. Introduction
2. Theory and Materials
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Motz, J.T.; Hunter, M.; Galindo, L.H.; Gardecki, J.A.; Kramer, J.R.; Dasari, R.R.; Feld, M.S. Optical fiber probe for biomedical Raman spectroscopy. Appl. Opt. 2004, 43, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Brus, L.E. Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4444. [Google Scholar] [CrossRef]
- Medvid’, A.; Fukuda, Y.; Michko, A.; Onufrievs, P.; Anma, Y. 2D lattice formation by YAG:Nd laser on the surface of Ge single crystal. Appl. Surf. Sci. 2005, 244, 120–123. [Google Scholar] [CrossRef]
- Medvid’, A.; Mychko, A.; Gnatyuk, V.; Levytskyi, S.; Naseka, Y. Mechanism of nano-cone formation on Cd0.9Zn0.1Te crystal by laser radiation. Opt. Mater. 2010, 32, 836–839. [Google Scholar] [CrossRef]
- Medvid’, A.; Dmytruk, I.; Onufrijevs, P.; Pundyk, I. Quantum confinement effect in nanohills formed on a surface of Ge by laser radiation. Phys. Status Solidi C 2007, 4, 3066–3069. [Google Scholar] [CrossRef]
- Medvid’, A.; Dmitruk, I.; Onufrijevs, P.; Pundyk, I. Properties of nanostructure formed on SiO2/Si interface by laser radiation. Solid State Phenom. 2008, 131–133, 559–562. [Google Scholar]
- Medvid’, A.; Onufrijevs, P. Properties of nanocones formed on a surface of semiconductors by laser radiation: QC effect of electrons, phonons, and excitons. Nanoscale Res. Lett. 2011, 6, 582. [Google Scholar] [CrossRef] [PubMed]
- Takahahara, T.; Takeda, K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B 1992, 46, 15578–15581. [Google Scholar] [CrossRef]
- Li, J.; Wang, L. Comparison between Quantum Confinement Effect of Quantum Wires and Dots. Chem. Mater. 2004, 16, 4012–4015. [Google Scholar] [CrossRef]
- Morozov, Y.V.; Draguta, S. Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion. J. Phys. Chem. C 2017, 121, 16607–16616. [Google Scholar] [CrossRef]
- Sellers, D.G.; Doty, M.F. Design, synthesis and photophysical properties of InP/CdS/CdSe and CdTe/CdS/CdSe (core/shelVshell) quantum dots for photon upconversion. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015. [Google Scholar] [CrossRef]
- Goldschmidt, J.C.; Fischer, S. Upconversion for Photovoltaics—A Review of Materials, Devices and Concepts for Performance Enhancement. Adv. Opt. Mater. 2015, 3, 510–535. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Epstein, R.I. Optical Refrigeration. Nat. Photonics 2007, 1, 693–699. [Google Scholar] [CrossRef]
- Kang, H. Crystalline Silicon vs. Amorphous Silicon: The Significance of Structural Differences in Photovoltaic Applications. IOP Conf. Ser. Earth Environ. Sci. 2021, 726, 012001. [Google Scholar] [CrossRef]
- Farr, E.P.; Quintana, J.C.; Reynoso, V.; Ruberry, J.D.; Shin, W.R.; Swartz, K.R. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B. J. Chem. Educ. 2018, 95, 864–871. [Google Scholar] [CrossRef]
- Chen, E.Y.; Li, Z.; Milleville, C.C.; Lennon, K.R.; Zide, J.M.O.; Doty, M.F. CdSe(Te)/CdS/CdSe Rods Versus CdTe/CdS/CdSe Spheres: Morphology-Dependent Carrier Dynamics for Photon Upconversion. IEEE J. Photovolt. 2018, 8, 746–751. [Google Scholar] [CrossRef]
- Skuja, L.; Ollier, N.; Kajihara, K.; Smits, K. Creation of glass-characteristic point defects in crystalline SiO2 by 2.5 MeV electrons and by fast neutrons. J. Non-Cryst. Solids 2019, 505, 252–259. [Google Scholar] [CrossRef]
- Skuja, L.; Ollier, N.; Kajihara, K. Luminescence of non-bridging oxygen hole centers as a marker of particle irradiation of α-quartz. Radiat. Meas. 2020, 135, 106373–106377. [Google Scholar] [CrossRef]
- Zwei, P.P. Bemerkungen uber Denunterschied von Lumineszenz- Und Temperaturatutstrahlung. Z. Fur Phys. 1929, 57, 739–746. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medvids, A.; Ščajev, P.; Miasojedovas, S.; Hara, K. Quantum Prism—Nano Source of Light with Dispersive Spectrum and Optical Upconversion. Nanomaterials 2024, 14, 1277. https://doi.org/10.3390/nano14151277
Medvids A, Ščajev P, Miasojedovas S, Hara K. Quantum Prism—Nano Source of Light with Dispersive Spectrum and Optical Upconversion. Nanomaterials. 2024; 14(15):1277. https://doi.org/10.3390/nano14151277
Chicago/Turabian StyleMedvids, Arturs, Patrik Ščajev, Saulius Miasojedovas, and Kazuhiko Hara. 2024. "Quantum Prism—Nano Source of Light with Dispersive Spectrum and Optical Upconversion" Nanomaterials 14, no. 15: 1277. https://doi.org/10.3390/nano14151277
APA StyleMedvids, A., Ščajev, P., Miasojedovas, S., & Hara, K. (2024). Quantum Prism—Nano Source of Light with Dispersive Spectrum and Optical Upconversion. Nanomaterials, 14(15), 1277. https://doi.org/10.3390/nano14151277