Solid-State Construction of CuO–Cu2O@C with Synergistic Effects of Pseudocapacity and Carbon Coating for Enhanced Electrochemical Lithium Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Curled Sunflower Shaped CuO–Cu2O@C Composite Anode Material
2.2. Materials Characterization
2.3. Electrochemical Measurement
3. Results and Discussion
3.1. Characterization of the Formed Samples
3.2. Electrochemical Performance Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Bai, Z.; Li, X.; Wang, Q.; Du, J.; Lu, R.; Liu, X. In-situ synthesis of reduced graphene oxide wrapped Mn3O4 nanocomposite as anode materials for high-performance lithium-ion batteries. Ceram. Int. 2022, 48, 31923–31930. [Google Scholar] [CrossRef]
- Choi, C.; Ashby, D.S.; Butts, D.M.; DeBlock, R.H.; Wei, Q.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2019, 5, 5–19. [Google Scholar] [CrossRef]
- Gou, W.; Kong, X.; Wang, Y.; Ai, Y.; Liang, S.; Pan, A.; Cao, G. Yolk-shell structured V2O3 microspheres wrapped in N, S co-doped carbon as pea-pod nanofibers for high-capacity lithium ion batteries. Chem. Eng. J. 2019, 374, 545–553. [Google Scholar] [CrossRef]
- Trukawka, M.; Wenelska, K.; Singer, L.; Klingeler, R.; Chen, X.; Mijowska, E. Hollow carbon spheres loaded with uniform dispersion of copper oxide nanoparticles for anode in lithium- ion batteries. J. Alloys Compd. 2021, 853, 156700. [Google Scholar] [CrossRef]
- Yan, B.-L.; Jun, D.; Wang, J.; Yang, T.; Mao, X.-H. A simplified electrophoretic deposition route for sandwiched structure-based Mn3O4/G composite electrodes as high-capacity anodes for lithium-ion batteries. J. Alloys Compd. 2022, 905, 164121. [Google Scholar] [CrossRef]
- Dong, X.; Dong, F.; Zhang, Y.; Fu, C.; Cui, C.; Wang, L.; Zeng, S. Preparation of V2O5 porous microstructures with enhanced performances of lithium ion batteries. Mater. Chem. Phys. 2022, 277, 125489. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Kuo, C.-T.; Yew, T.-R. Investigation on the Voltage Hysteresis of Mn3O4 for Lithium-Ion Battery Applications. ACS Appl. Mater. Interfaces 2021, 13, 570–579. [Google Scholar] [CrossRef]
- Yan, P.; Ji, L.; Liu, X.; Guan, Q.; Guo, J.; Shen, Y.; Zhang, H.; Wei, W.; Cui, X.; Xu, Q. 2D amorphous-MoO3−x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries. Nano Energy 2021, 86, 106139. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Wang, H.; Nie, Y.; Yan, J. Porous Fe2O3 Nanoparticles as Lithium-Ion Battery Anode Materials. ACS Appl. Nano Mater. 2021, 4, 8744–8752. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Zhu, Y.; Zhang, Y.; Zhang, R.; Li, K.; Liu, G. Facile Self-Assembly Solvothermal Preparation of CuO/Cu2O/Coal-Based Reduced Graphene Oxide Nanosheet Composites as an Anode for High-Performance Lithium-Ion Batteries. Energy Fuels 2021, 35, 8961–8969. [Google Scholar] [CrossRef]
- Xu, Y.; Chu, K.; Li, Z.; Xu, S.; Yao, G.; Niu, P.; Zheng, F. Porous CuO@C composite as high-performance anode materials for lithium-ion batteries. Dalton Trans. 2020, 49, 11597–11604. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Jiang, X.; Mo, J.; Zhou, Y.; Zhou, J. Hollow CuO nanoparticles in carbon microspheres prepared from cellulose-cuprammonium solution as anode materials for Li-ion batteries. Chem. Eng. J. 2020, 381, 122614. [Google Scholar] [CrossRef]
- Kong, Y.; Jiao, R.; Li, H.; Xu, S.; Cui, C.; Zeng, S.; Wang, L. Enhanced lithium storage performance of binary cooperative complementary CuO-Mn3O4 nanocomposites directly synthesized by hydrothermally controlled method. J. Alloys Compd. 2020, 843, 156005. [Google Scholar] [CrossRef]
- Hossain, S.; Abdalla, A.M.; Suhaili, S.B.; Kamal, I.; Shaikh, S.P.; Dawood, M.K.; Azad, A.K. Nanostructured graphene materials utilization in fuel cells and batteries: A review. J. Energy Storage 2020, 29, 101386. [Google Scholar] [CrossRef]
- Song, X.; Zhu, J.; Hu, G. Facile one-step synthesis of three-dimensional porous Cu2O electrode for lithium-ion batteries. Mater. Lett. 2021, 303, 130578. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, P.; Wang, B.; Wu, J.; Ning, S.; Xie, A.; Shen, Y. Hollow porous CuO/C nanorods as a high-performance anode for lithium ion batteries. J. Alloys Compd. 2018, 750, 77–84. [Google Scholar] [CrossRef]
- Lin, X.; Lin, J.; Niu, J.; Lan, J.; Reddy, R.C.K.; Cai, Y.; Liu, J.; Zhang, G. In situ synthesis of Cu2O–CuO–C supported on copper foam as a superior binder-free anode for long-cycle lithium-ion batteries. Mater. Chem. Front. 2018, 2, 2254–2262. [Google Scholar] [CrossRef]
- Jiao, R.; Xiao, X.; Zhou, S.; Zhu, K.; Zhang, Y.; Wei, D.; Zeng, S. Solid-State Fabrication of Co3V2O8@C Anode Materials with Outstanding Rate Performance and Cycling Stability by Synergistic Effects of Pseudocapacity and Carbon Coating. J. Phys. Chem. C 2022, 126, 903–911. [Google Scholar] [CrossRef]
- Hu, L.; Huang, Y.; Zhang, F.; Chen, Q. CuO/Cu2O composite hollow polyhedrons fabricated from metal–organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190. [Google Scholar] [CrossRef]
- Pol, V.G.; Thackeray, M.M. Spherical carbon particles and carbon nanotubes prepared by autogenic reactions: Evaluation as anodes in lithium electrochemical cells. Energy Environ. Sci. 2011, 4, 1904–1912. [Google Scholar] [CrossRef]
- Zhu, S.; Li, J.; He, C.; Zhao, N.; Liu, E.; Shi, C.; Zhang, M. Soluble salt self-assembly-assisted synthesis of three-dimensional hierarchical porous carbon networks for supercapacitors. J. Mater. Chem. A 2015, 3, 22266–22273. [Google Scholar] [CrossRef]
- Hao, Z.; Qin, M.; Li, Y.; Lv, X.; Zhang, D.; Wang, Q. Carbon Nano-Onions Embedded CuO Nanosheets: An Excellent Stable Anode Material for Lithium Ion Battery. IOP Conf. Ser. Mater. Sci. Eng. 2019, 484, 012005. [Google Scholar] [CrossRef]
- Song, Y.Z.; Liu, Z.J.; Qi, B.X.; Li, M.; Xie, J.; Song, W.H. Facile Synthesis of Micro CuO Crystals for Li Ion Full Battery. J. Inorg. Organomet. Polym. Mater. 2021, 31, 4434–4439. [Google Scholar] [CrossRef]
- Dong, F.; Dong, X.; Xu, S.; Li, H.; Zeng, S.; Fu, C.; Wang, L. Study for the preparation of Cu2+-doped twin spherical MnCO3 structure as an anode material for high-performance lithium-ion batteries. CrystEngComm 2021, 23, 6486–6489. [Google Scholar] [CrossRef]
- Sekhar, S.C.; Nagaraju, G.; Yu, J.S. Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors. Appl. Surf. Sci. 2018, 435, 398–405. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Ni, L.; Xie, A.; Li, P.; Shen, Y.; Lao, L. Octagonal Flower-like CuO/C/NF Nanocomposite as a Self-Supporting Anode for High-Performance Lithium-Ion Batteries. ChemElectroChem 2020, 7, 4038–4046. [Google Scholar] [CrossRef]
- Liu, S.; Hou, H.; Liu, X.; Duan, J.; Yao, Y.; Liao, Q. High-performance hierarchical cypress-like CuO/Cu2O/Cu anode for lithium ion battery. Ionics 2016, 23, 1075–1082. [Google Scholar] [CrossRef]
- Hu, P.; Meng, C.; Li, F.; Wang, P.; Zhou, H.; Li, X.; Yuan, A. Hierarchical multi-yolk-shell copper oxide@copper-1, 3, 5-benzenetricarboxylate as an ultrastable anode for lithium ion batteries. J. Colloid Interface Sci. 2022, 617, 568–577. [Google Scholar] [CrossRef]
- Ma, T.; Gao, L.; Liu, Y.; Zhang, L.; Yang, X. Porous CuO/Cu2O heterostructured arrays as anode for high-performance sodium-ion batteries. Ionics 2021, 27, 1995–2003. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, L.; Li, J.; Kou, L.; Huang, J.; Feng, Y.; Chen, S. Cu/Cu2O@Ppy nanowires as a long-life and high-capacity anode for lithium ion battery. Chem. Eng. J. 2020, 391, 123597. [Google Scholar] [CrossRef]
- Yuan, W.; Ye, Y.; Yang, Y.; Zhang, X.; Pan, B.; Peng, Z.; Wu, M.; Qiu, Z.; Wang, C.; Yuan, Y.; et al. CuO nanoflowers/copper fiber felt integrated porous electrode for lithium-ion batteries. Sci. China Technol. Sci. 2020, 63, 2423–2434. [Google Scholar] [CrossRef]
- Gao, G.; Lu, S.; Dong, B.; Xiang, Y.; Xi, K.; Ding, S. Mesoporous Co3V2O8nanoparticles grown on reduced graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 6264–6270. [Google Scholar] [CrossRef]
- Li, X.; Wu, G.; Liu, X.; Li, W.; Li, M. Orderly integration of porous TiO2(B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. Nano Energy 2017, 31, 1–8. [Google Scholar] [CrossRef]
- Yu, L.-Q.; Zhao, S.-X.; Wu, X.; Wu, Q.-L.; Li, J.-W.; Zhao, E.-L. Effects of vanadium pentoxide with different crystallinities on lithium ion storage performance. CrystEngComm 2019, 21, 6641–6651. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Gu, L.; Wang, Y.; Ying, Y.; Mao, Y.; Sun, L.; Peng, X. Flexible CuO Nanosheets/Reduced-Graphene Oxide Composite Paper: Binder-Free Anode for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2013, 5, 9850–9855. [Google Scholar] [CrossRef]
- Wang, L.-H.; Gao, S.; Ren, L.-L.; Zhou, E.-L.; Qin, Y.-F. The Synergetic Effect Induced High Electrochemical Performance of CuO/Cu2O/Cu Nanocomposites as Lithium-Ion Battery Anodes. Front. Chem. 2021, 9, 790659. [Google Scholar] [CrossRef]
- Banerjee, A.; Singh, U.; Aravindan, V.; Srinivasan, M.; Ogale, S. Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy 2013, 2, 1158–1163. [Google Scholar] [CrossRef]
- Sahay, R.; Kumar, P.S.; Aravindan, V.; Sundaramurthy, J.; Ling, W.C.; Mhaisalkar, S.G.; Ramakrishna, S.; Madhavi, S. High Aspect Ratio Electrospun CuO Nanofibers as Anode Material for Lithium-Ion Batteries with Superior Cycleability. J. Phys. Chem. C 2012, 116, 18087–18092. [Google Scholar] [CrossRef]
- Li, Z.; Xie, G.; Wang, C.; Liu, Z.; Chen, J.; Zhong, S. Binder free Cu2O/CuO/Cu/Carbon-polymer composite fibers derived from metal/organic hybrid materials through electrodeposition method as high performance anode materials for lithium-ion batteries. J. Alloys Compd. 2021, 864, 158585. [Google Scholar] [CrossRef]
- Xu, C.; Manukyan, K.V.; Adams, R.A.; Pol, V.G.; Chen, P.; Varma, A. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries. Carbon 2019, 142, 51–59. [Google Scholar] [CrossRef]
- Rai, A.K.; Anh, L.T.; Gim, J.; Mathew, V.; Kang, J.; Paul, B.J.; Singh, N.K.; Song, J.; Kim, J. Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery. J. Power Sources 2013, 244, 435–441. [Google Scholar] [CrossRef]
- Yan, B.; Li, X.; Bai, Z.; Zhao, Y.; Dong, L.; Song, X.; Li, D.; Langford, C.; Sun, X. Crumpled reduced graphene oxide conformally encapsulated hollow V2O5 nano/microsphere achieving brilliant lithium storage performance. Nano Energy 2016, 24, 32–44. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, R.; Zhou, W.; Wu, X.; Zhang, H.; Zhang, J. Hierarchical MoS2 Hollow Architectures with Abundant Mo Vacancies for Efficient Sodium Storage. ACS Nano 2019, 13, 5533–5540. [Google Scholar] [CrossRef]
- Liu, G.; Huang, M.; Zhang, Z.; Xi, B.; Li, H.; Xiong, S. Robust S-doped TiO2@N,S-codoped carbon nanotube arrays as free-binder anodes for efficient sodium storage. J. Energy Chem. 2021, 53, 175–184. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Liu, Z.; Zhao, H.; Huang, L.; Wang, Q.; Liu, H.; Zhang, Y. Tailoring sandwich-like CNT@MnO@N-doped carbon hetero-nanotubes as advanced anodes for boosting lithium storage. Electrochim. Acta 2019, 304, 158–167. [Google Scholar] [CrossRef]
- Hareendrakrishnakumar, H.; Chulliyote, R.; Joseph, M.G. Micro- and Nanocrystalline Inverse Spinel LiCoVO4 for Intercalation Pseudocapacitive Li+ Storage with Ultrahigh Energy Density and Long-Term Cycling. ACS Appl. Energy Mater. 2018, 1, 393–401. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, Z.; Foster, C.W.; Banks, C.E.; Qiu, X.; Ji, X. Oxygen Vacancies Evoked Blue TiO2(B) Nanobelts with Efficiency Enhancement in Sodium Storage Behaviors. Adv. Funct. Mater. 2017, 27, 1700856. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Zhao, Y.; Aboud, M.F.A.; Shakir, I.; Xu, Y. Ultrafine FeS2 nanocrystals/porous nitrogen-doped carbon hybrid nanospheres encapsulated in three-dimensional graphene for simultaneous efficient lithium and sodium ion storage. J. Mater. Chem. A 2019, 7, 26342–26350. [Google Scholar] [CrossRef]
- Yin, M.; Feng, X.; Zhao, D.; Zhao, Y.; Li, H.; Zhou, W.; Liu, H.; Bai, X.; Wang, H.; Feng, C.; et al. Hierarchical Co9S8@Carbon Hollow Microspheres as an Anode for Sodium Ion Batteries with Ultralong Cycling Stability. ACS Sustain. Chem. Eng. 2019, 7, 6122–6130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, G.; Gong, P.; Cui, C.; Wang, L.; An, C. Solid-State Construction of CuO–Cu2O@C with Synergistic Effects of Pseudocapacity and Carbon Coating for Enhanced Electrochemical Lithium Storage. Nanomaterials 2024, 14, 1378. https://doi.org/10.3390/nano14171378
Du G, Gong P, Cui C, Wang L, An C. Solid-State Construction of CuO–Cu2O@C with Synergistic Effects of Pseudocapacity and Carbon Coating for Enhanced Electrochemical Lithium Storage. Nanomaterials. 2024; 14(17):1378. https://doi.org/10.3390/nano14171378
Chicago/Turabian StyleDu, Guifen, Piyu Gong, Chuansheng Cui, Lei Wang, and Changhua An. 2024. "Solid-State Construction of CuO–Cu2O@C with Synergistic Effects of Pseudocapacity and Carbon Coating for Enhanced Electrochemical Lithium Storage" Nanomaterials 14, no. 17: 1378. https://doi.org/10.3390/nano14171378
APA StyleDu, G., Gong, P., Cui, C., Wang, L., & An, C. (2024). Solid-State Construction of CuO–Cu2O@C with Synergistic Effects of Pseudocapacity and Carbon Coating for Enhanced Electrochemical Lithium Storage. Nanomaterials, 14(17), 1378. https://doi.org/10.3390/nano14171378