Regeneration of Antifog Performance of Laser-Induced Copper-Based Micro-Nano Structured Surfaces by Rapid Thermal Treatment
Abstract
:1. Introduction
2. Experiments
2.1. Materials and Methods
2.2. Characterization
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hashimoto, D.; Shouji, M. Development of a fogless scope and its analysis using infrared radiation pyrometer. Surg. Endosc. 1997, 11, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Ohdaira, T.; Nagai, H.; Kayano, S.; Kazuhito, H. Antifogging effects of a socket-type device with the superhydrophilic, titanium dioxide–coated glass for the laparoscope. Surg. Endosc. 2007, 21, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Zheng, L.; Zhao, C.; Liu, H. Micro-/nanostructured interface for liquid manipulation and its applications. Small 2020, 16, 1903849. [Google Scholar] [CrossRef]
- You, I.; Yun, N.; Lee, H. Surface-Tension-Confined Microfluidics and Their Applications. ChemPhysChem 2013, 14, 471–481. [Google Scholar] [CrossRef]
- Feng, K.; Peng, L.; Yu, L.; Zheng, Y.; Chen, R.; Zhang, W.; Chen, G.J. Universal antifogging and antimicrobial thin coating based on dopamine-containing glycopolymers. ACS Appl. Mater. Interfaces 2020, 12, 27632–27639. [Google Scholar] [CrossRef] [PubMed]
- Duran, I.R.; Laroche, G. Current trends, challenges, and perspectives of anti-fogging technology: Surface and material design, fabrication strategies, and beyond. Prog. Mater. Sci. 2019, 99, 106–186. [Google Scholar] [CrossRef]
- Aroussi, A.; Hassan, A.; Morsi, Y. Numerical simulation of the airflow over and heat transfer through a vehicle windshield defrosting and demisting system. Appl. Therm. Eng. 2003, 39, 401–405. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, Y.; Jeong, J.-H.; Choi, J.-H.; Lee, J.; Choi, D.-G. A cupronickel-based micromesh film for use as a high-performance and low-voltage transparent heater. J. Mater. Chem. A 2015, 3, 16621–16626. [Google Scholar] [CrossRef]
- Zhang, G.; Zou, H.; Qin, F.; Xue, Q.; Tian, C. Investigation on an improved heat pump AC system with the view of return air utilization and anti-fogging for electric vehicles. Appl. Therm. Eng. 2017, 115, 726–735. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Shi, L.; Li, J.; Xin, Y.; Yang, T.; Guo, Z. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging. Appl. Phys. Lett. 2012, 101, 033701. [Google Scholar] [CrossRef]
- Long, J.; Zhou, P.; Huang, Y.; Xie, X. Enhancing the Long-Term Robustness of Dropwise Condensation on Nanostructured Superhydrophobic Surfaces by Introducing 3D Conical Microtextures Prepared by Femtosecond Laser. Adv. Mater. Interfaces 2020, 7, 2000997. [Google Scholar] [CrossRef]
- Mouterde, T.; Lehoucq, G.; Xavier, S.; Checco, A.; Black, C.T.; Rahman, A.; Midavaine, T.; Clanet, C.; Quéré, D. Antifogging abilities of model nanotextures. Nat. Mater. 2017, 16, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv. Mater. 2007, 19, 2213–2217. [Google Scholar] [CrossRef]
- Kong, R.; Ren, J.; Mo, M.; Zhang, L.; Zhu, J. Multifunctional antifogging, self-cleaning, antibacterial, and self-healing coatings based on polyelectrolyte complexes. Colloid Surf. A 2023, 656, 130484. [Google Scholar] [CrossRef]
- Deng, W.; Su, Y.; Zhang, C.; Wang, W.; Xu, L.; Liu, P.; Wang, J.; Yu, X.; Zhang, Y. Transparent superhydrophilic composite coating with anti-fogging and self-cleaning properties. J. Colloid Interface Sci. 2023, 642, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-J.; Lee, Y.-T. Self-cleaning and antireflection properties of titanium oxide film by liquid phase deposition. Surf. Coat. Technol. 2013, 231, 257–260. [Google Scholar] [CrossRef]
- Huang, K.-T.; Yeh, S.-B.; Huang, C.-J. Surface modification for superhydrophilicity and underwater superoleophobicity: Applications in antifog, underwater self-cleaning, and oil–water separation. ACS Appl. Mater. Interfaces 2015, 7, 21021–21029. [Google Scholar] [CrossRef]
- Syafiq, A.; Balakrishnan, V.; Rahim, N.A. Durable self-cleaning nano-titanium dioxide superhydrophilic coating with anti-fog property. Pigment. Resin Technol. 2022, 53, 261–270. [Google Scholar] [CrossRef]
- Syafiq, A.; Rahim, N.A.; Balakrishnan, V.; Pandey, A.K. Development of self-cleaning polydimethylsiloxane/nano-calcium carbonate-titanium dioxide coating with fog-resistance response for building glass. Pigment. Resin Technol. 2024, 53, 249–260. [Google Scholar] [CrossRef]
- Tran, H.T.; Mai, D.H.; Thi, T.T.N.; Tran, T.M.; Nguyen, D.T.; Trinh, X.A.; Vu, D.H.; Dang, Q.K.; Nguyen, V.G.; Nguyen, D.C. Characterization of closed-surface antireflective TiO2–SiO2 films for application in solar-panel glass. Mater. Lett. 2022, 326, 132921. [Google Scholar] [CrossRef]
- Wang, S.; Meng, K.; Zhao, L.; Jiang, Q.; Lian, J.S. Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis. Ceram. Int. 2014, 40, 5107–5110. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, T.; Ma, F.; Huang, L.-F.; Zeng, Z. Superhydrophilic Fe3+ doped TiO2 films with long-lasting antifogging performance. ACS Appl. Mater. Interfaces 2021, 13, 3377–3386. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Zhao, J.; Wu, C.; Li, B.; Sun, C.; Huang, S.; Tian, X. Highly durable antifogging coatings resistant to long-term airborne pollution and intensive UV irradiation. Mater. Des. 2020, 194, 108956. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Wu, S. Room-temperature fabrication of TiO2-PHEA nanocomposite coating with high transmittance and durable superhydrophilicity. Chem. Eng. J. 2019, 371, 609–617. [Google Scholar] [CrossRef]
- Huang, J.; Liu, Y.; Jin, S.; Wang, Z.; Qi, Y.; Zhang, J.; Wang, K.; Qiu, R. Uniformity control of laser-induced periodic surface structures. Front. Phys. 2022, 10, 932284. [Google Scholar] [CrossRef]
- Bondareva, N.E.; Sheremet, A.B.; Morgunova, E.Y.; Khisaeva, I.R.; Parfenova, A.S.; Chernukha, M.Y.; Omran, F.S.; Emelyanenko, A.M.; Boinovich, L.B. Study of the antibacterial activity of superhydrophilic and superhydrophobic copper substrates against multi-drug-resistant hospital-acquired Pseudomonas aeruginosa isolates. Int. J. Mol. Sci. 2024, 25, 779. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Z.; Zhang, G.; Li, D.; Han, F. Wettability regulation from superhydrophilic to superhydrophobic via nanosecond laser ablation. Sci. China Technol. Sci. 2024, 67, 1829–1841. [Google Scholar] [CrossRef]
- Gao, H.; Zhao, H.; Chang, S.; Meng, Z.; Han, Z.; Liu, Y. Multi-biomimetic Double Interlaced Wetting Janus Surface for Efficient Fog Collection. Nano Lett. 2024, 24, 7774–7782. [Google Scholar] [CrossRef]
- He, Y.; Yin, K.; Wang, L.; Wu, T.; Chen, Y.; Arnusch, C.J. Femtosecond laser structured black superhydrophobic cork for efficient solar-driven cleanup of crude oil. Appl. Phys. Lett. 2024, 124, 171601. [Google Scholar] [CrossRef]
- Ngo, C.-V.; Chun, D.-M. Fabrication of un-coated transparent superhydrophobic sapphire surface using laser surface ablation and heat treatment. CIRP Ann. 2018, 67, 571–574. [Google Scholar] [CrossRef]
- Vasiliev, M.M.; Shukhov, Y.G.; Rodionov, A.A.; Sulyaeva, V.S.; Markovich, D.M.; Starinskiy, S.V. Why do metals become superhydrophilic during nanosecond laser processing? Design of superhydrophilic, anisotropic and biphilic surfaces. Appl. Surf. Sci. 2024, 653, 159392. [Google Scholar] [CrossRef]
- Wang, R.; Ma, W.; Zhao, J.; Guo, Z.; Cui, Y.; Zhu, Y.; Chen, H. Nanosecond laser etching for enhanced multi-scale layered micro-nano superhydrophilic 304 stainless steel surface. Opt. Laser Technol. 2024, 174, 110645. [Google Scholar] [CrossRef]
- Weng, W.-X.; Deng, Q.-W.; Yang, P.-Y.; Yin, K. Femtosecond laser-chemical hybrid processing for achieving substrate-independent superhydrophobic surfaces. J. Cent. South Univ. 2024, 31, 1–10. [Google Scholar] [CrossRef]
- Wu, T.; Yin, K.; Pei, J.; He, Y.; Duan, J.-A.; Arnusch, C.J. Femtosecond laser-textured superhydrophilic coral-like structures spread AgNWs enable strong thermal camouflage and anti-counterfeiting. Appl. Phys. Lett. 2024, 124, 161602. [Google Scholar] [CrossRef]
- Yang, C.; Peng, Y.; Lv, J.; Guan, X.; You, H. Water collection and transportation on superhydrophilic/superhydrophobic bioinspired heterogeneous wettability surface. Colloids Surf. A Physicochem. Eng. Asp. 2024, 687, 133472. [Google Scholar] [CrossRef]
- Yang, P.; Yin, K.; Song, X.; Wang, L.; Deng, Q.; Pei, J.; He, Y.; Arnusch, C.J. Airflow triggered water film self-sculpturing on femtosecond laser-induced heterogeneously wetted micro/nanostructured surfaces. Nano Lett. 2024, 24, 3133–3141. [Google Scholar] [CrossRef]
- Vorobyev, A.; Guo, C. Water sprints uphill on glass. J. Appl. Phys. 2010, 108, 123512. [Google Scholar] [CrossRef]
- Wang, B.; Hua, Y.; Ye, Y.; Chen, R.; Li, Z. Transparent superhydrophobic solar glass prepared by fabricating groove-shaped arrays on the surface. Appl. Surf. Sci. 2017, 426, 957–964. [Google Scholar] [CrossRef]
- Yang, L.; Luo, X.; Chang, W.; Tian, Y.; Wang, Z.; Gao, J.; Cai, Y.; Qin, Y.; Duxbury, M. Manufacturing of anti-fogging super-hydrophilic microstructures on glass by nanosecond laser. J. Manuf. Process. 2020, 59, 557–565. [Google Scholar] [CrossRef]
- Skruibis, J.; Balachninaite, O.; Butkus, S.; Vaicaitis, V.; Sirutkaitis, V. Multiple-pulse Laser-induced breakdown spectroscopy for monitoring the femtosecond laser micromachining process of glass. Opt. Laser Technol. 2019, 111, 295–302. [Google Scholar] [CrossRef]
- Verma, N.; Anoop, K.; Dominic, P.; Philip, R. Fabrication of durable superhydrophilic silicon surfaces using nanosecond laser pulses. J. Appl. Phys. 2020, 128, 135304. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Tian, Y. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure. J. Colloid Interface Sci. 2019, 533, 268–277. [Google Scholar] [CrossRef]
- Chen, X.; Liu, C.; Mi, L.; Cui, H. Self-cleaning anti-fog micro-nanostructures by laser marker patterning nickel-coated glass. Surf. Eng. 2024, 40, 216–225. [Google Scholar] [CrossRef]
- Cui, H.; Teng, C.; Xie, X.; Qi, X. Durable anti-fog micro-nano structures fabricated by laser ablation of aluminum film on resin/glass. Discov. Nano 2024, 19, 58. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Teng, C.; Zhao, Y.; Wang, P.; Guo, Y.; Qi, X. Durable self-cleaning antireflective and antifog Al micro-nano structure on glass by laser marker ablation. Opt. Mater. 2024, 147, 114675. [Google Scholar] [CrossRef]
- Guo, Y.; Qi, X.; Wang, P.; Teng, C.; Li, Y.; Mi, L.; Chen, X.; Cui, H. Durable self-cleaning anti-reflective and antifog micro-nanostructures fabricated by laser ablation of vanadium-coated glass surfaces. J. Appl. Phys. 2024, 135, 105301. [Google Scholar] [CrossRef]
- Okoye, P.; Azi, S.; Qahtan, T.; Owolabi, T.; Saleh, T.A. Synthesis, properties, and applications of doped and undoped CuO and Cu2O nanomaterials. Mater. Today Chem. 2023, 30, 101513. [Google Scholar] [CrossRef]
- Tsvetkov, P.; Coy, S.; Petrova, B.; Dreishpoon, M.; Verma, A.; Abdusamad, M.; Rossen, J.; Joesch-Cohen, L.; Humeidi, R.; Spangler, R.D.; et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022, 375, 1254–1261. [Google Scholar] [CrossRef]
- Mehmood, A.; Bibi, K.; Ali, F.; Nazir, A.; Sandhu, Z.A.; Raza, M.A.; Bhalli, A.H.; Ashraf, A.; Aslam, M.; Al-Sehemi, A.G. Innovative approach to synthesize Mo-Doped CuO Nanostructures: Uncovering structural and photocatalytic insights. J. Mol. Liq. 2024, 395, 123768. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, J.H.; Seo, J.; Im, T.H.; Kim, J.C.; Lee, H.E.; Kim, D.H.; Woo, K.Y.; Jeong, H.Y.; Cho, Y.H.; et al. A Flash-Induced Robust Cu Electrode on Glass Substrates and Its Application for Thin-Film Mleds. Adv. Mater. 2021, 33, 2007186. [Google Scholar] [CrossRef]
- Park, J.H.; Seo, J.; Kim, C.; Joe, D.J.; Lee, H.E.; Im, T.H.; Seok, J.Y.; Jeong, C.K.; Ma, B.S.; Park, H.K.; et al. Flash-Induced Stretchable Cu Conductor Via Multiscale-Interfacial Couplings. Adv. Sci. 2018, 5, 1801146. [Google Scholar] [CrossRef] [PubMed]
- Lassnig, A.; Terziyska, V.L.; Zalesak, J.; Jörg, T.; Toebbens, D.M.; Griesser, T.; Mitterer, C.; Pippan, R.; Cordill, M.J. Microstructural Effects on the Interfacial Adhesion of Nanometer-Thick Cu Films on Glass Substrates: Implications for Microelectronic Devices. ACS Appl. Nano Mater. 2020, 4, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Xi, M.; Yang, P.; Huang, Z. Mechanisms of metal wettability transition and fabrication of durable superwetting/superhydrophilic metal surfaces. Appl. Surf. Sci. 2024, 654, 159497. [Google Scholar] [CrossRef]
- Long, J.; Zhong, M.; Fan, P.; Gong, D.; Zhang, H. Wettability conversion of ultrafast laser structured copper surface. J. Laser Appl. 2015, 27, S29107. [Google Scholar] [CrossRef]
- Long, J.; Zhong, M.; Zhang, H.; Fan, P. Superhydrophilicity to superhydrophobicity transition of picosecond laser microstructured aluminum in ambient air. J. Colloid Interface Sci. 2015, 441, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Jiang, Y.; Jiang, Z.; Li, Y.; Wen, C.; Lian, J. Reversible wettability transition between superhydrophilicity and superhydrophobicity through alternate heating-reheating cycle on laser-ablated brass surface. Appl. Surf. Sci. 2019, 492, 349–361. [Google Scholar] [CrossRef]
- Young, T. An Essay on the Cohesion of Fluids. Proc. R. Soc. Lond. 1832, 1, 171–172. [Google Scholar]
- Cui, M.; Huang, H.; Wu, H.; Zhang, L.; Yan, J. Achieving superhydrophobicity of Zr-based metallic glass surface with anti-corrosion and anti-icing properties by nanosecond laser ablation and subsequent heat treatment. Surf. Coat. Technol. 2023, 475, 130159. [Google Scholar] [CrossRef]
- Sharma, A.; Song, J.; Furfari, D.; Mannava, S.R.; Vasudevan, V.K. Remarkable near-surface microstructure of nanoparticles and oxide film in laser shock peened Al-Zn-Mg-Cu alloy. Scr. Mater. 2021, 202, 114012. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Hass, K.C.; Schneider, W.F.; Curioni, A.; Andreoni, W. The chemistry of water on alumina surfaces: Reaction dynamics from first principles. Science 1998, 282, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Siddique, R.H.; Gomard, G.; Hölscher, H. The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly. Nat. Commun. 2015, 6, 6909. [Google Scholar] [CrossRef] [PubMed]
Sample Name | 100 nm-Cu | 200 nm-Cu | 400 nm-Cu | 600 nm-Cu |
---|---|---|---|---|
Surface roughness (μm) | 0.472 | 0.447 | 0.437 | 0.604 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Xie, X.; Qi, X.; Liu, C.; Wang, C.; Fang, X.; Wang, Y.; Cui, H.; Dong, J. Regeneration of Antifog Performance of Laser-Induced Copper-Based Micro-Nano Structured Surfaces by Rapid Thermal Treatment. Nanomaterials 2024, 14, 1415. https://doi.org/10.3390/nano14171415
Zhang H, Xie X, Qi X, Liu C, Wang C, Fang X, Wang Y, Cui H, Dong J. Regeneration of Antifog Performance of Laser-Induced Copper-Based Micro-Nano Structured Surfaces by Rapid Thermal Treatment. Nanomaterials. 2024; 14(17):1415. https://doi.org/10.3390/nano14171415
Chicago/Turabian StyleZhang, Huixing, Xinyi Xie, Xiaowen Qi, Chengling Liu, Chenrui Wang, Xiaolong Fang, Youfu Wang, Hongtao Cui, and Ji Dong. 2024. "Regeneration of Antifog Performance of Laser-Induced Copper-Based Micro-Nano Structured Surfaces by Rapid Thermal Treatment" Nanomaterials 14, no. 17: 1415. https://doi.org/10.3390/nano14171415
APA StyleZhang, H., Xie, X., Qi, X., Liu, C., Wang, C., Fang, X., Wang, Y., Cui, H., & Dong, J. (2024). Regeneration of Antifog Performance of Laser-Induced Copper-Based Micro-Nano Structured Surfaces by Rapid Thermal Treatment. Nanomaterials, 14(17), 1415. https://doi.org/10.3390/nano14171415