Necking Reduction at Low Temperature in Aspect Ratio Etching of SiO2 at CF4/H2/Ar Plasma
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, K.T.; Byeon, D.S.; Kim, D.H. A world’s first product of three-dimensional vertical NAND Flash memory and beyond. In Proceedings of the 2014 14th Annual Non-Volatile Memory Technology Symposium (NVMTS), Jeju Island, Republic of Korea, 27–29 October 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Shen, M.; Lill, T.; Hoang, J.; Chi, H.; Routzahn, A.; Church, J.; Subramonium, P.; Puthenkovilakam, R.; Reddy, S.; Bhadauriya, S.; et al. Progress report on high aspect ratio patterning for memory devices. Jpn. J. Appl. Phys. 2023, 62, SI0801. [Google Scholar] [CrossRef]
- Ishikawa, K.; Karahashi, K.; Ishijima, T.; Cho, S.I.; Elliott, S.; Hausmann, D.; Mocuta, D.; Wilson, A.; Kinoshita, K. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom? Jpn. J. Appl. Phys. 2018, 57, 06JA01. [Google Scholar] [CrossRef]
- Iwase, T.; Yokogawa, K.; Mori, M. Eliminating dependence of hole depth on aspect ratio by forming ammonium bromide during plasma etching of deep holes in silicon nitride and silicon dioxide. Jpn. J. Appl. Phys. 2018, 57, 06JC03. [Google Scholar] [CrossRef]
- Tandou, T.; Kubo, S.; Yokogawa, K.; Negishi, N.; Izawa, M. Improving the etching performance of high-aspect-ratio contacts by wafer temperature control. Precis. Eng. 2016, 44, 87–92. [Google Scholar] [CrossRef]
- Lill, T.; Berry, I.L.; Shen, M.; Hoang, J.; Fischer, A.; Panagopoulos, T.; Chang, J.P.; Vahedi, V. Dry etching in the presence of physisorption of neutrals at lower temperatures. J. Vac. Sci. Technol. A 2023, 41, 023005. [Google Scholar] [CrossRef]
- Dussart, R.; Ettouri, R.; Nos, J.; Antoun, G.; Tillocher, T.; Lefaucheux, P. Cryogenic etching of silicon compounds using a CHF3 based plasma. J. Appl. Phys. 2023, 133, 113306. [Google Scholar] [CrossRef]
- Hsiao, S.-N.; Britun, N.; Nguyen, T.T.N.; Tsutsumi, T.; Ishikawa, K.; Sekine, M.; Hori, M. Manipulation of etch selectivity of silicon nitride over silicon dioxide to a-carbon by controlling substate temperature with a CF4/H2 plasma. Vacuum 2023, 210, 111863. [Google Scholar] [CrossRef]
- Hattori, T.; Kobayashi, H.; Ohtake, H.; Akinaga, K.; Kurosaki, Y.; Takei, A.; Sekiguchi, A.; Maeda, K.; Takubo, C.; Yamada, M. Highly selective isotropic gas-phase etching of SiO2 using HF and methanol at temperatures −30 °C and lower. Jpn. J. Appl. Phys. 2023, 62, abc953. [Google Scholar] [CrossRef]
- Sato, M.; Takehara, D.; Uda, K.; Hara, K.S. Suppression of microloading effect by low-temperature SiO2 etching. Jpn. J. Appl. Phys. 1992, 31, 4370–4375. [Google Scholar] [CrossRef]
- Kim, J.; Choi, G.; Kwon, K.H. High-aspect-ratio oxide etching using CF4/C6F12O plasma in an inductively coupled plasma etching system with low-frequency bias power. Plasma Process. Polym. 2023, 20, 2200167. [Google Scholar] [CrossRef]
- Jin, D.Z.; Yang, Z.H.; Tang, P.Y.; Xiao, K.X.; Dai, J.Y. Hydrogen plasma diagnosis in penning ion source by optical emission spectroscopy. Vacuum 2008, 83, 451–453. [Google Scholar] [CrossRef]
- Fukasawa, T.; Nakamura, A.; Shindo, H.; Yasuhiro Horiike, Y.H. High rate and highly selective SiO2 etching employing inductively coupled plasma. Jpn. J. Appl. Phys. 1994, 33, 2139–2144. [Google Scholar] [CrossRef]
- Montazer Rahmati, P.M.; Arefi, F.; Amouroux, J. Plasma polymerization of CF4+ H2 mixtures on the surface of polyethylene and polyvinylidene flouride substrates. Surf. Coat. Technol. 1991, 45, 369–378. [Google Scholar] [CrossRef]
- Ryan, K.R.; Plumb, I.C. Gas-phase reactions of CF3 and CF2 with hydrogen atoms: Their significance in plasma processing. Plasma Chem. Plasma Process. 1984, 4, 141–146. [Google Scholar] [CrossRef]
- Tinck, S.; Tillocher, T.; Dussart, R.; Bogaerts, A. Cryogenic etching of silicon with SF6 inductively coupled plasmas: A combined modelling and experimental study. J. Phys. D Appl. Phys. 2015, 48, 155204. [Google Scholar] [CrossRef]
- Li, J.; Kim, Y.; Han, S.; Chae, H. Ion-enhanced etching characteristics of sp2-rich hydrogenated amorphous carbons in CF4 plasmas and O2 plasmas. Materials 2021, 14, 2941. [Google Scholar] [CrossRef] [PubMed]
- Coburn, J.W.; Winters, H.F. Conductance considerations in the reactive ion etching of high aspect ratio features. Appl. Phys. Lett. 1989, 55, 2730–2732. [Google Scholar] [CrossRef]
- Doemling, M.F.; Rueger, N.R.; Oehrlein, G.S. Observation of inverse reactive ion etching lag for silicon dioxide etching in inductively coupled plasmas. Appl. Phys. Lett. 1996, 68, 10–12. [Google Scholar] [CrossRef]
- Huard, C.M.; Zhang, Y.; Sriraman, S.; Paterson, A.; Kushner, M.J. Role of neutral transport in aspect ratio dependent plasma etching of three-dimensional features. J. Vac. Sci. Technol. A 2017, 35, 05C301. [Google Scholar] [CrossRef]
- Cheng, Q.J.; Long, J.D.; Chen, Z.; Xu, S. Chemically active plasmas for deterministic assembly of nanocrystalline SiC film. J. Phys. D Appl. Phys. 2007, 40, 2304–2307. [Google Scholar] [CrossRef]
- Zeze, D.A.; Carey, J.D.; Stolojan, V.; Weiss, B.L.; Silva, S.R.P. Damage effects in Pyrex by CF4 reactive ion etching in dual RF-microwave plasmas. Micro Nano Lett. 2006, 1, 103–107. [Google Scholar] [CrossRef]
- Izawa, M.; Negishi, N.; Yokogawa, K.E.; Momonoi, Y. Investigation of bowing reduction in SiO2 etching taking into account radical sticking in a hole. Jpn. J. Appl. Phys. 2007, 46, 7870–7874. [Google Scholar] [CrossRef]
- Kim, D.; Hudson, E.A.; Cooperberg, D.; Edelberg, E.; Srinivasan, M. Profile simulation of high aspect ratio contact etch. Thin Solid Film. 2007, 515, 4874–4878. [Google Scholar] [CrossRef]
- Rangelow, I.W. Critical tasks in high aspect ratio silicon dry etching for microelectromechanical systems. J. Vac. Sci. Technol. A 2003, 21, 1550–1562. [Google Scholar] [CrossRef]
Chuck Temperature (°C) | ||
---|---|---|
26 | −63 | |
Etch rate of SiO2 (nm/min) | 69 | 158 |
Selectivity | 1.5 | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, H.-T.; Bang, I.-Y.; Kim, J.-H.; Kim, H.-J.; Lim, S.-Y.; Kim, S.-Y.; Cho, S.-H.; Kim, J.-H.; Kim, W.-J.; Shin, G.-W.; et al. Necking Reduction at Low Temperature in Aspect Ratio Etching of SiO2 at CF4/H2/Ar Plasma. Nanomaterials 2024, 14, 209. https://doi.org/10.3390/nano14020209
Kwon H-T, Bang I-Y, Kim J-H, Kim H-J, Lim S-Y, Kim S-Y, Cho S-H, Kim J-H, Kim W-J, Shin G-W, et al. Necking Reduction at Low Temperature in Aspect Ratio Etching of SiO2 at CF4/H2/Ar Plasma. Nanomaterials. 2024; 14(2):209. https://doi.org/10.3390/nano14020209
Chicago/Turabian StyleKwon, Hee-Tae, In-Young Bang, Jae-Hyeon Kim, Hyeon-Jo Kim, Seong-Yong Lim, Seo-Yeon Kim, Seong-Hee Cho, Ji-Hwan Kim, Woo-Jae Kim, Gi-Won Shin, and et al. 2024. "Necking Reduction at Low Temperature in Aspect Ratio Etching of SiO2 at CF4/H2/Ar Plasma" Nanomaterials 14, no. 2: 209. https://doi.org/10.3390/nano14020209
APA StyleKwon, H. -T., Bang, I. -Y., Kim, J. -H., Kim, H. -J., Lim, S. -Y., Kim, S. -Y., Cho, S. -H., Kim, J. -H., Kim, W. -J., Shin, G. -W., & Kwon, G. -C. (2024). Necking Reduction at Low Temperature in Aspect Ratio Etching of SiO2 at CF4/H2/Ar Plasma. Nanomaterials, 14(2), 209. https://doi.org/10.3390/nano14020209