An MIP-Based PFAS Sensor Exploiting Nanolayers on Plastic Optical Fibers for Ultra-Wide and Ultra-Low Detection Ranges—A Case Study of PFAS Detection in River Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. MIP and NIP Preparation
2.3. SPR–POF Probe
2.4. Experimental Procedures for Liquid Chromatography–Mass Spectrometry (LC–MS/MS)
3. POF Chemical Chips, Sensing Principle, and Experimental Setup
3.1. MIP-Based POF Chemical Chip
3.2. Sensor System and Sensing Principle
3.3. Measurement Protocol
3.4. Real-Sample Preparation
4. Results
4.1. Dose–Response Curves in Milli-Q Water
4.2. Selectivity Tests
4.2.1. Test on NIP-Based POF Chemical Chip
4.2.2. Selectivity Tests via MIP-Based POF Chemical Chip
4.3. PFAS Detection in Real Samples
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; De Voogt, P.; Van Leeuwen, S.P. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Steenland, K.; Fletcher, T.; Savitz, D.A. Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ. Health Perspect. 2010, 118, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Stoiber, T.; Evans, S.; Temkin, A.M.; Andrews, D.Q.; Naidenko, O.V. PFAS in drinking water: An emergent water quality threat. Water Solut. 2020, 1, e49. [Google Scholar]
- Brusseau, M.L.; Anderson, R.H.; Guo, B. PFAS concentrations in soils: Background levels versus contaminated sites. Sci. Total Environ. 2020, 740, 140017. [Google Scholar] [CrossRef]
- Sima, M.W.; Jaffé, P.R. A critical review of modeling Poly- and Perfluoroalkyl Substances (PFAS) in the soil-water environment. Sci. Total Environ. 2021, 757, 143793. [Google Scholar] [CrossRef]
- Pelch, K.E.; Reade, A.; Wolffe, T.A.; Kwiatkowski, C.F. PFAS health effects database: Protocol for a systematic evidence map. Environ. Int. 2019, 130, 104851. [Google Scholar] [CrossRef]
- Bell, E.M.; De Guise, S.; McCutcheon, J.R.; Lei, Y.; Levin, M.; Li, B.; Ryu, H. Exposure, health effects, sensing, and remediation of the emerging PFAS contaminants-Scientific challenges and potential research directions. Sci. Total Environ. 2021, 780, 146399. [Google Scholar] [CrossRef]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Buha Djordjevic, A.; Saso, L. PFAS molecules: A major concern for human health and the environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef]
- Haervig, K.K.; Petersen, K.U.; Hougaard, K.S.; Lindh, C.; Ramlau-Hansen, C.H.; Toft, G.; Tøttenborg, S.S. Maternal exposure to per- and polyfluoroalkyl substances (PFAS) and male reproductive function in young adulthood: Combined exposure to seven PFAS. Environ. Health Perspect. 2022, 130, 107001. [Google Scholar] [CrossRef]
- Bock, A.R.; Laird, B.E. PFAS regulations: Past and present and their impact on fluoropolymers. In Perfluoroalkyl Substances; Royal Society of Chemistry: Cambridge, UK, 2022. [Google Scholar]
- Environmental Programme Stockholm Convention. Ninth Meeting of the Conference of the Parties to the Stockholm Convention. In Proceedings of the Ninth Meeting of the Conference of the Parties to the Stockholm Convention, Geneva, Switzerland, 29 April—10 May 2019; Available online: http://chm.pops.int/TheConvention/ConferenceoftheParties/Meetings/COP9/tabid/7521/Default.aspx (accessed on 27 June 2019).
- EPA, U.S. Drinking Water Health Advisories for PFOA and PFOS. Available online: https://www.epa.gov/ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos (accessed on 20 July 2021).
- PFASs Restriction Proposal—All News—ECHA—European Union. Available online: https://echa.europa.eu/-/echa-receives-PFASs-restriction-proposal-from-five-nationalauthorities (accessed on 13 January 2023).
- Gremmel, C.; Frömel, T.; Knepper, T.P. HPLC-MS/MS methods for the determination of 52 perfluoroalkyl and polyfluoroalkyl substances in aqueous samples. Anal. Bioanal. Chem. 2017, 409, 1643–1655. [Google Scholar] [CrossRef]
- Marra, V.; Abballe, A.; Dellatte, E.; Iacovella, N.; Ingelido, A.M.; De Felip, E. A simple and rapid method for quantitative HPLC MS/MS determination of selected perfluorocarboxylic acids and perfluorosulfonates in human serum. Int. J. Anal. Chem. 2020, 2020, 8878618. [Google Scholar] [CrossRef] [PubMed]
- Casey, J.S.; Jackson, S.R.; Ryan, J.; Newton, S.R. The use of gas chromatography-high resolution mass spectrometry for suspect screening and non-targeted analysis of per- and polyfluoroalkyl substances. J. Chromatogr. A 2023, 1693, 463884. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Karube, I. Current research activity in biosensors. Anal. Bioanal. Chem. 2003, 377, 446–468. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Kumar, P.; Greene, G.W.; Mishra, V.; Avisar, D.; Sharma, R.S.; Dumée, L.F. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems-A review. J. Environ. Manag. 2022, 308, 114655. [Google Scholar] [CrossRef] [PubMed]
- Ranaweera, R.; Ghafari, C.; Luo, L. Bubble-nucleation-based method for the selective and sensitive electrochemical detection of surfactants. Anal. Chem. 2019, 91, 7744–7748. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, H.; Lei, A.; Quan, X. Electrochemical biosensor for detection of perfluorooctane sulfonate based on inhibition biocatalysis of enzymatic fuel cell. Electrochemistry 2014, 82, 94–99. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Barpaga, D.; Soltis, J.A.; Shutthanandan, V.; Kargupta, R.; Han, K.S.; Chatterjee, S. Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate. ACS Appl. Mater. Interfaces 2020, 12, 10503–10514. [Google Scholar] [CrossRef]
- Chen, L.D.; Lai, C.-Z.; Granda, L.P.; Fierke, M.A.; Mandal, D.; Stein, A.; Gladysz, J.A.; Bühlmann, P. Fluorous membrane ion-selective electrodes for perfluorinated surfactants: Trace-level detection and in situ monitoring of adsorption. Anal. Chem. 2013, 85, 7471–7477. [Google Scholar] [CrossRef]
- Li, J.; Feng, H.; Cai, J.; Yuan, L.; Wang, N.; Cai, Q. Molecularly imprinted polymer modified TiO2 nanotube arrays for photoelectrochemical determination of perfluorooctane sulfonate (PFOS). Sens. Actuators B-Chem. 2014, 190, 745–751. [Google Scholar]
- Faiz, F.; Cran, M.J.; Zhang, J.; Muthukumaran, S.; Sidiroglou, F. Graphene Oxide Doped Alginate Coated Optical Fiber Sensor for the Detection of Perfluorooctanoic Acid in Water. IEEE Sens. J. 2023, 23, 12861–12867. [Google Scholar] [CrossRef]
- Fang, C.; Wu, J.; Sobhani, Z.; Al Amin, M.; Tang, Y. Aggregated-fluorescent detection of PFAS with a simple chip. Anal. Methods 2019, 11, 163–170. [Google Scholar] [CrossRef]
- Feng, H.; Wang, N.; Yuan, L.; Li, J.; Cai, Q. Surface molecular imprinting on dye-(NH2)-SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate. Sens. Actuators B-Chem. 2014, 195, 266–273. [Google Scholar] [CrossRef]
- Al Amin, M.; Sobhani, Z.; Liu, Y.; Dharmaraja, R.; Chadalavada, S.; Naidu, R.; Fang, C. Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS)-A review. Environ. Technol. Innov. 2020, 19, 100879. [Google Scholar] [CrossRef]
- Cennamo, N.; Zeni, L.; Tortora, P.; Regonesi, M.E.; Giusti, A.; Staiano, M.; D’Auria, S.; Varriale, A. A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment. Talanta 2018, 178, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Cennamo, N.; D’Agostino, G.; Porto, G.; Biasiolo, A.; Perri, C.; Arcadio, F.; Zeni, L. A molecularly imprinted polymer on a plasmonic plastic optical fiber to detect perfluorinated compounds in water. Sensors 2018, 18, 1836. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Sequeira, F.; Mattiello, F.; Porto, G.; Biasiolo, A.; Zeni, L. A simple and low-cost optical fiber intensity-based configuration for perfluorinated compounds in water solution. Sensors 2018, 18, 3009. [Google Scholar] [CrossRef]
- Ahmad, O.S.; Bedwell, T.S.; Esen, C.; Garcia-Cruz, A.; Piletsky, S.A. Molecularly imprinted polymers in electrochemical and optical sensors. Trends Biotechnol. 2019, 37, 294–309. [Google Scholar]
- Pitruzzella, R.; Arcadio, F.; Perri, C.; Del Prete, D.; Porto, G.; Zeni, L.; Cennamo, N. Ultra-Low Detection of Perfluorooctanoic Acid Using a Novel Plasmonic Sensing Approach Combined with Molecularly Imprinted Polymers. Chemosensors 2023, 11, 211. [Google Scholar] [CrossRef]
- Cennamo, N.; Arcadio, F.; Zeni, L.; Alberti, G.; Pesavento, M. Optical-Chemical Sensors Based on Plasmonic Phenomena Modulated via Micro-Holes in Plastic Optical Fibers Filled by Molecularly Imprinted Polymers. Sens. Actuators B-Chem. 2022, 372, 132672. [Google Scholar] [CrossRef]
- Cennamo, N.; Massarotti, D.; Conte, L.; Zeni, L. Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 2011, 11, 11752–11760. [Google Scholar] [CrossRef]
- Barola, C.; Moretti, S.; Giusepponi, D.; Paoletti, F.; Saluti, G.; Cruciani, G.; Brambilla, G.; Galarini, R. A liquid chromatography-high resolution mass spectrometry method for the determination of thirty-three per- and polyfluoroalkyl substances in animal liver. J. Chromatogr. A 2020, 1628, 461442. [Google Scholar] [CrossRef] [PubMed]
- Pesavento, M.; Marchetti, S.; De Maria, L.; Zeni, L.; Cennamo, N. Sensing by molecularly imprinted polymer: Evaluation of the binding properties with different techniques. Sensors 2019, 19, 1344. [Google Scholar] [CrossRef] [PubMed]
- Polo Chimico di Spinetta Marengo: I Risultati Analitici in Seguito Agli Ultimi Eventi Accidentali. Available online: https://www.arpa.piemonte.it/news/polo-chimico-di-spinetta-marengo-i-risultati-analitici-in-seguito-agli-ultimi-eventi-accidentali (accessed on 19 April 2024).
- DECRETO LEGISLATIVO. 23 Febbraio 2023, n. 18. Available online: https://www.gazzettaufficiale.it/eli/id/2023/03/06/23G00025/sg (accessed on 6 March 2023).
- Garada, M.B.; Kabagambe, B.; Kim, Y.; Amemiya, S. Ion-transfer voltammetry of perfluoroalkanesulfonates and perfluoroalkanecarboxylates: Picomolar detection limit and high lipophilicity. Anal. Chem. 2014, 86, 11230–11237. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Wang, S.; Zhou, Z.; Ma, Y.; Ma, X.; Cai, Y.J. A Sensitive colorimetric visualization of perfluorinated compounds using poly (ethylene glycol) and perfluorinated thiols modified gold nanoparticles. Anal. Chem. 2014, 86, 4170–4177. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, Z. Two-dimensional polymers: Synthesis and applications. ACS Appl. Mater. Interfaces 2021, 13, 45130–45138. [Google Scholar] [CrossRef]
Sensor | Kaff (Kaff = 1/K) [ppt−1] | Slow−conc [nm/ppt] | LOD [ppt] | Ref. |
---|---|---|---|---|
SPR-POF-MIP | 0.005 | 0.022 | 130 | [29] |
SPR-POF chip + chemical POF chip based on micro-holes filled by MIP | 0.036 | 0.063 | 0.81 | [32] |
SPR-POF chip + POF chemical chip based on MIP nanolayer sites1 (strong) | 0.072 | 0.102 | 1.47 | [present work] |
SPR-POF chip + POF chemical chip based on MIP nanolayer sites2 (weak) | 0.003 | 0.002 | 186.2 | [present work] |
Label (Figure 8) | Dilution Factor | Δλ [nm] | Estimated PFAS Concentration of Diluted Samples [ppt] | Estimated PFAS Concentration of Real Sample [ppt] |
---|---|---|---|---|
A | 1:1000 | 0.3 | 4 | 103) = 103 |
B | 1:500 | 0.5 | 8 | 103 |
Analyte | Concentration [ppt]—Linear | Concentration [ppt]—L + B |
---|---|---|
PFBA | 460 | 466 |
PFPeA | 423 | 646 |
PFHxA | 134 | 151 |
PFHpA | 149 | 164 |
PFOA | 321 | 372 |
PFNA | 137 | 150 |
PFDA | 58 | 66 |
PFUdA | 17 | 20 |
PFDoA | 2 | 2 |
cC6O4 | 215 | 215 |
Sum | 1916 | 2252 |
Emerging PFASs | ||
Class | Compound | Concentration [ppt] |
ClPFPECA | ClPFPECA-0.1 | 581 |
ClPFPECA-0.2 | 284 | |
ClPFPECA-0.3 | 132 | |
ClPFPECA-1.1 | 104 | |
ClPFPECA-1.2 | 11 | |
ClPFPECA-1.0 * | 2 | |
HPFPECA | HPFPECA-0.1 * | 40 |
HPFPECA-0.2 * | 28 | |
HPFPECA-1.0 * | 25 | |
HPFPECA-1.1 * | 17 | |
PFPEdCA | A2B2 * | 140 |
A2B3 * | 61 | |
A3B * | 77 | |
A3B2 * | 73 | |
A4B * | 40 | |
AB3 * | 106 | |
B3 * | 84 | |
B4 * | 25 | |
Sum | 1830 | |
Total sum [ppt] | 4082 |
Sensing Method | Target Analyte | LOD [ppt] | Ref. |
---|---|---|---|
Potentiometric detection using metal–organic framework and interdigitated electrodes | PFOS | 0.5 | [21] |
Potentiometric detection using ISEs | PFO− a, PFOS | 70–100 | [22] |
MIP-coated TiO2 nanotubes | PFOS | 86 | [23] |
Ion-transfer stripping Voltammetry Fabry–Perot Interferometry (FPI) | PFCAs, PFSAs | 25 × 103 | [39] |
Graphene Oxide-Doped Alginate-Coated Optical Fiber Sensor (FPI) | PFOA | 400 | [24] |
Aggregation-induced emission luminogens (AIEgen) | PFOA, PFOS, 6:2FTS | 200 | [25] |
MIP fluorescence sensor | PFOS | 5570 | [28] |
Self-assembled monolayer (SAM) on AuNP * | PFCs | 25 × 104 | [40] |
Electrochemical biosensor using an enzymatic biofuel cell (BFC) | PFOS | 1.6 | [20] |
Antibody on SPR-POF | PFOA | 240 | [28] |
SPR-POF-MIP | PFOA | 130 | [29] |
Intensity-based POF-MIP | PFOA, PFOS | 210 | [30] |
SPR-POF chip + chemical POF chip based on micro-holes filled by MIP | PFOA | 0.81 | [32] |
SPR-POF chip + POF chemical chip based on MIP nanolayer sites1 (strong) | PFOA | 1.47 | This work |
SPR-POF chip + POF chemical chip based on MIP nanolayer sites2 (weak) | PFOA | 186.2 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitruzzella, R.; Chiodi, A.; Rovida, R.; Arcadio, F.; Porto, G.; Moretti, S.; Brambilla, G.; Zeni, L.; Cennamo, N. An MIP-Based PFAS Sensor Exploiting Nanolayers on Plastic Optical Fibers for Ultra-Wide and Ultra-Low Detection Ranges—A Case Study of PFAS Detection in River Water. Nanomaterials 2024, 14, 1764. https://doi.org/10.3390/nano14211764
Pitruzzella R, Chiodi A, Rovida R, Arcadio F, Porto G, Moretti S, Brambilla G, Zeni L, Cennamo N. An MIP-Based PFAS Sensor Exploiting Nanolayers on Plastic Optical Fibers for Ultra-Wide and Ultra-Low Detection Ranges—A Case Study of PFAS Detection in River Water. Nanomaterials. 2024; 14(21):1764. https://doi.org/10.3390/nano14211764
Chicago/Turabian StylePitruzzella, Rosalba, Alessandro Chiodi, Riccardo Rovida, Francesco Arcadio, Giovanni Porto, Simone Moretti, Gianfranco Brambilla, Luigi Zeni, and Nunzio Cennamo. 2024. "An MIP-Based PFAS Sensor Exploiting Nanolayers on Plastic Optical Fibers for Ultra-Wide and Ultra-Low Detection Ranges—A Case Study of PFAS Detection in River Water" Nanomaterials 14, no. 21: 1764. https://doi.org/10.3390/nano14211764
APA StylePitruzzella, R., Chiodi, A., Rovida, R., Arcadio, F., Porto, G., Moretti, S., Brambilla, G., Zeni, L., & Cennamo, N. (2024). An MIP-Based PFAS Sensor Exploiting Nanolayers on Plastic Optical Fibers for Ultra-Wide and Ultra-Low Detection Ranges—A Case Study of PFAS Detection in River Water. Nanomaterials, 14(21), 1764. https://doi.org/10.3390/nano14211764