Design of Nanocrystalline Suspension of Dutasteride for Intramuscular Prolonged Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of DTS-Loaded NSs Using Bead-Milling Technology
2.3. Morphological and Physical Characterizations of DTS-NSs
2.3.1. Morphological Observation
2.3.2. Particle Size and Zeta Potential
2.3.3. Solid-State X-Ray Diffraction (XRD) Pattern
2.3.4. Differential Scanning Calorimetry (DSC) Analysis
2.4. In Vitro Dissolution Test
2.5. In Vivo Pharmacokinetic Evaluation in Rats
2.6. In Vivo Local Inflammatory Responses at Injected Sites Following IM Injection
2.7. Statistical Analysis
3. Results and Discussion
3.1. Screening of Suspending Agent to Formulate DTS-NS System
3.2. Effects of Tween 80 Concentration on Drug Particle Size and Homogeneity of DTS-NS
3.3. Morphological and Physical Characteristics of DTS-NS
3.4. In Vitro Dissolution Profile of DTS-NS
3.5. Establishment of LC-MS/MS Analysis Method for Determination of DTS in Plasma
3.6. In Vivo Pharmacokinetic Evaluation of DTS-NS in Rats
3.7. Histopathological Observation of Injection Site Following IM DTS-NS Injection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, C.; Kapoor, A. Dutasteride for the Treatment of Benign Prostatic Hyperplasia. Expert Opin. Pharmacother. 2013, 14, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Arif, T.; Dorjay, K.; Adil, M.; Sami, M. Dutasteride in Androgenetic Alopecia: An Update. Curr. Clin. Pharmacol. 2017, 12, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Jain, D.; Maithani, M.; Kumar Mishra, S.; Khare, P.; Jain, V.; Singh, R. Development and Characterization of Dutasteride Bearing Liposomal Systems for Topical Use. Curr. Drug Discov. Technol. 2011, 8, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Chislett, B.; Chen, D.; Perera, M.L.; Chung, E.; Bolton, D.; Qu, L.G. 5-Alpha Reductase Inhibitors Use in Prostatic Disease and Beyond. Transl. Androl. Urol. 2023, 12, 487. [Google Scholar] [CrossRef]
- Avodart® FDA Biopharmaceutics Review. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2001/21319_Duagen_biopharmr_P1.pdf (accessed on 2 July 2024).
- Avodart® Product Monograph. Available online: https://ca.gsk.com/media/6149/avodart.pdf (accessed on 10 July 2024).
- Traish, A.; Haider, K.S.; Doros, G.; Haider, A. Long-Term Dutasteride Therapy in Men with Benign Prostatic Hyperplasia Alters Glucose and Lipid Profiles and Increases Severity of Erectile Dysfunction. Horm. Mol. Biol. Clin. Investig. 2017, 30, 20170015. [Google Scholar] [CrossRef]
- Xie, X.; Yang, Y.; Chi, Q.; Li, Z.; Zhang, H.; Li, Y.; Yang, Y. Controlled Release of Dutasteride from Biodegradable Microspheres: In Vitro and In Vivo Studies. PLoS ONE 2014, 9, e114835. [Google Scholar] [CrossRef]
- Jindal, A.B.; Bhide, A.R.; Salave, S.; Rana, D.; Benival, D. Long-Acting Parenteral Drug Delivery Systems for the Treatment of Chronic Diseases. Adv. Drug Deliv. Rev. 2023, 198, 114862. [Google Scholar] [CrossRef]
- Shi, Y.; Lu, A.; Wang, X.; Belhadj, Z.; Wang, J.; Zhang, Q. A Review of Existing Strategies for Designing Long-Acting Parenteral Formulations: Focus on Underlying Mechanisms, and Future Perspectives. Acta Pharm. Sin. B 2021, 11, 2396–2415. [Google Scholar] [CrossRef]
- Alidori, S.; Subramanian, R.; Holm, R. Patient-Centric Long-Acting Injectable and Implantable Platforms—An Industrial Perspective. Mol. Pharm. 2024, 21, 4238–4258. [Google Scholar] [CrossRef]
- Haag, R. Supramolecular Drug-Delivery Systems Based on Polymeric Core–Shell Architectures. Angew. Chem. Int. Ed. 2004, 43, 278–282. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Zhou, Y.; Rao, K.; Lin, J.; Zhu, D.; Wang, H. Bionic Aggregation-Induced Emission Photosensitizer for Enhanced Cancer Immunotherapy. Mater. Today Bio 2024, 28, 101217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Ping, W.; Xiang, J.; Chu, S.; Li, D.; Ning, S.; Xu, Q. Biomimetic Single-Atom Nanozyme for Dual Starvation-Enhanced Breast Cancer Immunotherapy. Adv. Healthc. Mater. 2024, 2401362. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Ling, R.; Chen, H.; Lyu, M.; Qian, H.; Wu, K.; Wang, X. Biomimetic Copper Single-Atom Nanozyme System for Self-Enhanced Nanocatalytic Tumor Therapy. Nano Res. 2022, 15, 7320–7328. [Google Scholar] [CrossRef]
- Ho, M.J.; Jeong, M.Y.; Jeong, H.T.; Kim, M.S.; Park, H.J.; Kim, D.Y.; Lee, H.C.; Song, W.H.; Kim, C.H.; Lee, C.H.; et al. Effect of Particle Size on In Vivo Performances of Long-Acting Injectable Drug Suspension. J. Control. Release 2022, 341, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Tang, J.; Lee, D.; Tice, T.R.; Schwendeman, S.P.; Prausnitz, M.R. Clinical Translation of Long-Acting Drug Delivery Formulations. Nat. Rev. Mater. 2022, 7, 406–420. [Google Scholar] [CrossRef]
- Ray, P.; Ferraro, M.; Haag, R.; Quadir, M. Dendritic Polyglycerol-Derived Nano-Architectures as Delivery Platforms of Gemcitabine for Pancreatic Cancer. Macromol. Biosci. 2019, 19, 1900073. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B.; Shah, J. Emerging Role of Nanosuspensions in Drug Delivery Systems. Biomater. Res. 2020, 24, 3. [Google Scholar] [CrossRef]
- Di, J.; Wu, K.; Hou, P.; Corpstein, C.D.; Xu, Y.; Li, T. Multiphysics-Informed Pharmacokinetic Modeling of Systemic Exposure of Intramuscularly Injected LNPs. Mol. Pharm. 2023, 20, 6162–6168. [Google Scholar] [CrossRef]
- Darville, N.; van Heerden, M.; Mariën, D.; De Meulder, M.; Rossenu, S.; Vermeulen, A.; Vynckier, A.; De Jonghe, S.; Sterkens, P.; Annaert, P.; et al. The Effect of Macrophage and Angiogenesis Inhibition on the Drug Release and Absorption from an Intramuscular Sustained-Release Paliperidone Palmitate Suspension. J. Control. Release 2016, 230, 95–108. [Google Scholar] [CrossRef]
- Bao, Q.; Zou, Y.; Wang, Y.; Choi, S.; Burgess, D.J. Impact of Formulation Parameters on In Vitro Release from Long-Acting Injectable Suspensions. AAPS J. 2021, 23, 1–11. [Google Scholar] [CrossRef]
- Jung, H.M.; Kim, C.H.; Seo, J.E.; Goo, Y.T.; Hong, S.H.; Kang, M.J.; Choi, Y.W. Development of Core–Shell Structured Nanoparticle for Sequential Release of Tariquidar and Docetaxel to Overcome Multi Drug-Resistant Cancer. J. Pharm. Investig. 2024, 54, 61–75. [Google Scholar] [CrossRef]
- Abdel-Emam, R.A.; Ali, M.F.; Hassan, A.S.; Abd-Ellatief, R.B. Development and Evaluation of Dexamethasone-Loaded Bioadhesive Polymeric Nanocapsules for Mitigating Cardiac and Gastric Adverse Effects of Free Dexamethasone. J. Pharm. Investig. 2024, 54, 825–844. [Google Scholar] [CrossRef]
- Yun, T.S.; Jung, M.; Bang, K.H.; Lee, H.K.; Jin, M.; Yoo, H.; Cho, C.W. An Economically Advantageous Amorphous Solid Dispersion of the Fixed Combination of Lopinavir and Ritonavir. J. Pharm. Investig. 2023, 53, 549–561. [Google Scholar] [CrossRef]
- Chaurasiya, S.P.; Ghosh, R. Low Viscosity versus High Viscosity PMMA Bone Cement for Total Joint Arthroplasty: Influence of Glass Transition Temperature, Residual Monomer Content, Transmittance of Chemical Functional Groups, and Crystallinity Index on Quasi-Static Flexural Strength. Forces Mech. 2023, 10, 100176. [Google Scholar] [CrossRef]
- Kang, M.J.; Cho, H.R.; Lee, D.H.; Yeom, D.W.; Choi, Y.W.; Choi, Y.S. A Method to Monitor Dutasteride in Rat Plasma Using Liquid-Liquid Extraction and Multiple Reaction Monitoring: Comparisons and Validation. Mass Spectrom. Lett. 2014, 5, 79–83. [Google Scholar] [CrossRef]
- Jeong, M.Y.; Ho, M.J.; Park, J.S.; Jeong, H.; Kim, J.H.; Jang, Y.J.; Shin, D.M.; Yang, I.G.; Kim, H.R.; Song, W.H.; et al. Tricaprylin-Based Drug Crystalline Suspension for Intramuscular Long-Acting Delivery of Entecavir with Alleviated Local Inflammation. Bioeng. Transl. Med. 2024, 9, e10649. [Google Scholar] [CrossRef]
- Zulbeari, N.; Holm, R. Wet Bead Milling by Dual Centrifugation—An Approach to Obtain Reproducible and Differentiable Suspensions. Int. J. Pharm. 2023, 646, 123455. [Google Scholar] [CrossRef]
- Hagedorn, M.; Bögershausen, A.; Rischer, M.; Schubert, R.; Massing, U. Dual Centrifugation—A New Technique for Nanomilling of Poorly Soluble Drugs and Formulation Screening by a DoE-Approach. Int. J. Pharm. 2017, 530, 79–88. [Google Scholar] [CrossRef]
- Hagedorn, M.; Liebich, L.; Bögershausen, A.; Massing, U.; Hoffmann, S.; Mende, S.; Rischer, M. Rapid Development of API Nano-Formulations from Screening to Production Combining Dual Centrifugation and Wet Agitator Bead Milling. Int. J. Pharm. 2019, 565, 187–198. [Google Scholar] [CrossRef]
- Terayama, H.; Inada, K.; Nakayama, H.; Yasueda, S.; Esumi, K. Preparation of Stable Aqueous Suspension of a Hydrophobic Drug with Polymers. Colloids Surf. B Biointerfaces 2004, 39, 159–164. [Google Scholar] [CrossRef]
- Kim, E.A.; Park, J.S.; Kim, M.S.; Jeong, M.Y.; Park, H.J.; Choi, J.H.; Kang, M.J. High-Payload Nanosuspension of Centella asiatica Extract for Improved Skin Delivery with No Irritation. Int. J. Nanomed. 2021, 16, 7417–7432. [Google Scholar] [CrossRef] [PubMed]
- Kopanichuk, I.V.; Vedenchuk, E.A.; Koneva, A.S.; Vanin, A.A. Structural Properties of Span 80/Tween 80 Reverse Micelles by Molecular Dynamics Simulations. J. Phys. Chem. B 2018, 122, 8047–8055. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, Y.; Zhang, L.; Wang, Q.; Zhang, D. Stability of Nanosuspensions in Drug Delivery. J. Control. Release 2013, 172, 1126–1141. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.; Zhang, H.; Gao, J.; Zheng, A. Progress in the Development of Stabilization Strategies for Nanocrystal Preparations. Drug Deliv. 2021, 28, 19–36. [Google Scholar] [CrossRef]
- Oktay, A.N.; Ilbasmis-Tamer, S.; Karakucuk, A.; Celebi, N. Screening of Stabilizing Agents to Optimize Flurbiprofen Nanosuspensions Using Experimental Design. J. Drug Deliv. Sci. Technol. 2020, 57, 101690. [Google Scholar] [CrossRef]
- Zulbeari, N.; Mustafova, S.S.; Simonsen, A.C.; Lund, F.W.; Holm, R. The Langmuir-Blodgett Trough (Langmuir Film Balance) Can Be Used To Understand the Stabilizer Concentrations in Aqueous Nano- and Microsuspensions. Int. J. Pharm. 2024, 665, 124726. [Google Scholar] [CrossRef]
- Malhotra, G.; Singh, S.; Ansari, K.A. Paliperidone Palmitate Particles and Compositions Thereof. World Intellect. Prop. Organ. 2016, WO2016199170. [Google Scholar]
- Kostanski, J.W.; Matsuda, T.; Nerurkar, M.; Naringrekar, V.H. Controlled Release Sterile Injectable Aripiprazole Formulation and Method. U.S. Patent US8030313, 4 October 2011. [Google Scholar]
- Paquette, S.M.; Dawit, H.; Hickey, M.B.; Merisko-Liversidge, E.; Almarsson, Ö.; Deaver, D.R. Long-Acting Atypical Antipsychotics: Characterization of the Local Tissue Response. Pharm. Res. 2014, 31, 2065–2077. [Google Scholar] [CrossRef]
- Mundhra, D.B. Pharmaceutical Compositions. U.S. Patent US20130171214A1, 4 July 2013. [Google Scholar]
- Goloveshkin, A.S.; Korlyukov, A.A.; Vologzhanina, A.V. Novel Polymorph of Favipiravir—An Antiviral Medication. Pharmaceutics 2021, 13, 139. [Google Scholar] [CrossRef]
- Rustichelli, C.; Gamberini, G.; Ferioli, V.; Gamberini, M.C.; Ficarra, R.; Tommasini, S. Solid-State Study of Polymorphic Drugs: Carbamazepine. J. Pharm. Biomed. Anal. 2000, 23, 41–54. [Google Scholar] [CrossRef]
- Łaszcz, M.; Trzcińska, K.; Witkowska, A.; Lipiec-Abramska, E.; Szczepek, W.J. Phase Transition Studies of Dutasteride Crystalline Forms. CrystEngComm 2015, 17, 2346–2352. [Google Scholar] [CrossRef]
- Penha, F.M.; Gopalan, A.; Meijlink, J.C.; Ibis, F.; Eral, H.B. Selective Crystallization of D-Mannitol Polymorphs Using Surfactant Self-Assembly. Crystal Growth Des. 2021, 21, 3928–3935. [Google Scholar] [CrossRef] [PubMed]
- Arruda, B.R.; Mendes, M.G.A.; de Freitas, P.G.C.; Reis, A.V.F.; Lima, T.S.; Crisóstomo, L.C.C.F.; Nogueira, K.A.B.; Pessoa, C.; Petrilli, R.; Eloy, J.O. Nanocarriers for Delivery of Taxanes: A Review on Physicochemical and Biological Aspects. J. Drug Deliv. Sci. Technol. 2023, 80, 104070. [Google Scholar] [CrossRef]
- Shin, Y.B.; Kim, J.H.; Kwon, M.K.; Myung, J.H.; Lee, D.G.; Jin, S.G.; Choi, Y.S. Optimized Method Development and Validation for Determining Donepezil in Rat Plasma: A Liquid-Liquid Extraction, LC-MS/MS, and Design of Experiments Approach. PLoS ONE 2024, 19, e0309802. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Jang, Y.J.; Kim, J.H.; Kim, J.H.; Seo, J.H.; Park, I.H.; Choi, Y.S. A Sensitive, Efficient, and Cost-Effective Method to Determine Rotigotine in Rat Plasma Using Liquid-Liquid Extraction (LLE) and LC-MRM. Mass Spectrom. Lett. 2022, 13, 146–151. [Google Scholar]
- Nakashima, K.; Itoh, K.; Kono, M.; Nakashima, M.N.; Wada, M. Determination of Donepezil Hydrochloride in Human and Rat Plasma, Blood, and Brain Microdialysates by HPLC with a Short C30 Column. J. Pharm. Biomed. Anal. 2006, 41, 201–206. [Google Scholar] [CrossRef]
- Harris, J.M.; Bentley, M.D.; Moreadith, R.W.; Viegas, T.X.; Fang, Z.; Yoon, K.; Nordstierna, L. Tuning Drug Release from Polyoxazoline-Drug Conjugates. Eur. Polym. J. 2019, 120, 109241. [Google Scholar] [CrossRef]
- M10 Bioanalytical Method Validation and Study Sample Analysis. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m10-bioanalytical-method-validation-and-study-sample-analysis (accessed on 22 July 2024).
- Darville, N.; van Heerden, M.; Vynckier, A.; De Meulder, M.; Sterkens, P.; Annaert, P.; Van den Mooter, G. Intramuscular Administration of Paliperidone Palmitate Extended-Release Injectable Microsuspension Induces a Subclinical Inflammatory Reaction Modulating the Pharmacokinetics in Rats. J. Pharm. Sci. 2014, 103, 2072–2087. [Google Scholar] [CrossRef]
- Kim, M.S.; Ho, M.J.; Joung, M.Y.; Choi, Y.S.; Kang, M.J. Effect of Dispersion Medium on Pharmacokinetic Profile of Rotigotine Crystalline Suspension Following Subcutaneous Injection. Pharmaceutics 2022, 14, 2630. [Google Scholar] [CrossRef]
- Nguyen, V.T.T.; Darville, N.; Vermeulen, A. Pharmacokinetics of Long-Acting Aqueous Nano-/Microsuspensions after Intramuscular Administration in Different Animal Species and Humans—A Review. AAPS J. 2023, 25, 4. [Google Scholar] [CrossRef] [PubMed]
- Gniazdowska, E.; Kaza, M.; Buś-Kwaśnik, K.; Giebułtowicz, J. LC-MS/MS Determination of Dutasteride and Its Major Metabolites in Human Plasma. J. Pharm. Biomed. Anal. 2021, 206, 114362. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, M.N.; Jiang, W.; Wang, Y.; Loffredo, D.M. Challenges and Opportunities in the Development of Complex Generic Long-Acting Injectable Drug Products. J. Control. Release 2021, 336, 144–158. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Park, K. Effects of the Microparticle Shape on Cellular Uptake. Mol. Pharm. 2016, 13, 2164–2171. [Google Scholar] [CrossRef] [PubMed]
- Bi, C.; Miao, X.Q.; Chow, S.F.; Wu, W.J.; Yan, R.; Liao, Y.H.; Chow, A.H.-L.; Zheng, Y. Particle Size Effect of Curcumin Nanosuspensions on Cytotoxicity, Cellular Internalization, In Vivo Pharmacokinetics, and Biodistribution. Nanomedicine 2017, 13, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Kondyurina, I.; Kondyurin, A. Foreign Body Reaction (Immune Response) for Artificial Implants Can Be Avoided: An Example of Polyurethane in Mice for 1 Week. J. Funct. Biomater. 2023, 14, 432. [Google Scholar] [CrossRef]
- Cheng, J.; Abdi, S. Complications of Joint, Tendon, and Muscle Injections. Tech. Reg. Anesth. Pain Manag. 2007, 11, 141–147. [Google Scholar] [CrossRef]
- St Clair-Jones, A.; Prignano, F.; Goncalves, J.; Paul, M.; Sewerin, P. Understanding and Minimising Injection-Site Pain Following Subcutaneous Administration of Biologics: A Narrative Review. Rheumatol. Ther. 2020, 7, 741–757. [Google Scholar] [CrossRef]
- Pacheco, P.; White, D.; Sulchek, T. Effects of Microparticle Size and Fc Density on Macrophage Phagocytosis. PLoS ONE 2013, 8, e60989. [Google Scholar] [CrossRef]
- Qie, Y.; Yuan, H.; von Roemeling, C.A.; Chen, Y.; Liu, X.; Shih, K.D.; Knight, J.A.; Tun, H.W.; Wharen, R.E.; Jiang, W.; et al. Surface Modification of Nanoparticles Enables Selective Evasion of Phagocytic Clearance by Distinct Macrophage Phenotypes. Sci. Rep. 2016, 6, 26269. [Google Scholar]
Parameters | DTS-NS | IV Bolus |
---|---|---|
Dose (mg/kg) | 5 | 0.2 |
AUC0–last (ng·day/mL) | 110.99 ± 30.26 | 6.63 ± 1.32 |
AUC0–inf (ng·day/mL) | 112.97 ± 33.50 | 6.84 ± 1.41 |
Cmax (ng/mL) | 8.06 ± 0.45 | 17.02 ± 3.24 |
Tmax (day) | 8.40 ± 3.13 | |
T1/2α a (day) | 5.13 ± 2.48 | 0.04 ± 0.00 |
T1/2β b (day) | 9.94 ± 4.06 | 0.39 ± 0.07 |
AUC0–last/Dose (ng·day/mL/mg) | 55.50 ± 15.13 | 82.92 ± 14.75 |
Bioavailability (%) c | 66.96 ± 18.26 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, M.Y.; Shin, D.M.; Kwon, M.K.; Shin, Y.B.; Park, J.S.; Yang, I.G.; Myung, J.H.; Lee, D.G.; Lee, G.Y.; Park, C.W.; et al. Design of Nanocrystalline Suspension of Dutasteride for Intramuscular Prolonged Delivery. Nanomaterials 2024, 14, 1781. https://doi.org/10.3390/nano14221781
Jeong MY, Shin DM, Kwon MK, Shin YB, Park JS, Yang IG, Myung JH, Lee DG, Lee GY, Park CW, et al. Design of Nanocrystalline Suspension of Dutasteride for Intramuscular Prolonged Delivery. Nanomaterials. 2024; 14(22):1781. https://doi.org/10.3390/nano14221781
Chicago/Turabian StyleJeong, Min Young, Doe Myung Shin, Min Kyeong Kwon, Ye Bin Shin, Jun Soo Park, In Gyu Yang, Jin Hyuk Myung, Dong Geon Lee, Gi Yeong Lee, Chae Won Park, and et al. 2024. "Design of Nanocrystalline Suspension of Dutasteride for Intramuscular Prolonged Delivery" Nanomaterials 14, no. 22: 1781. https://doi.org/10.3390/nano14221781
APA StyleJeong, M. Y., Shin, D. M., Kwon, M. K., Shin, Y. B., Park, J. S., Yang, I. G., Myung, J. H., Lee, D. G., Lee, G. Y., Park, C. W., Yeo, J. W., Ho, M. J., Choi, Y. S., & Kang, M. J. (2024). Design of Nanocrystalline Suspension of Dutasteride for Intramuscular Prolonged Delivery. Nanomaterials, 14(22), 1781. https://doi.org/10.3390/nano14221781