Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation
Abstract
1. Introduction
2. Materials and Methods
2.1. The Basic Principle of SFG
2.2. Sample Preparation
2.3. Optical Experimental Setup
2.3.1. The Generation of Laser Pulses
2.3.2. TR-SFG Experimental Geometry
2.3.3. Detection and Data Acquisition
3. Results and Discussion
3.1. TR-SFG Experiments of GaAs
3.2. TR-SFG Results of TMDC/Organic Thin Film Interfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.; Wang, C.; Zou, X.; Liao, L. Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures. Adv. Opt. Mater. 2019, 7, 1800441. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zheng, Y.J.; Song, Z.; Chi, D.; Wee, A.T.S.; Quek, S.Y. The organic–2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241–3264. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Choi, J.H. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: Properties and applications in energy and optoelectronics fields. Nanoscale 2022, 14, 10648–10689. [Google Scholar] [CrossRef] [PubMed]
- Obaidulla, S.M.; Supina, A.; Kamal, S.; Khan, Y.; Kralj, M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: Recent breakthroughs and emerging prospects of the device. Nanoscale Horiz. 2024, 9, 44–92. [Google Scholar] [CrossRef]
- Bettis Homan, S.; Sangwan, V.K.; Balla, I.; Bergeron, H.; Weiss, E.A.; Hersam, M.C. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene–MoS2 van der Waals Heterojunction. Nano Lett. 2017, 17, 164–169. [Google Scholar] [CrossRef]
- Zhu, T.; Yuan, L.; Zhao, Y.; Zhou, M.; Wan, Y.; Mei, J.; Huang, L. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 2018, 4, eaao3104. [Google Scholar] [CrossRef]
- Gu, J.; Liu, X.; Lin, E.; Lee, Y.; Forrest, S.R.; Menon, V.M. Dipole-Aligned Energy Transfer between Excitons in Two-Dimensional Transition Metal Dichalcogenide and Organic Semiconductor. ACS Photonics 2018, 5, 100–104. [Google Scholar] [CrossRef]
- Ye, L.; Liu, Y.; Zhou, Q.; Tao, W.; Li, Y.; Wang, Z.; Zhu, H. Ultrafast Singlet Energy Transfer before Fission in a Tetracene/WSe2 Type II Hybrid Heterostructure. J. Phys. Chem. Lett. 2021, 12, 8440–8446. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.; Zhang, Y.; Chen, Z.; Xu, X.; Ye, L.; Wang, Z.; Yang, Y.; Zhang, D.; Zhu, H. Efficient solid-state infrared-to-visible photon upconversion on atomically thin monolayer semiconductors. Sci. Adv. 2022, 8, eabq4935. [Google Scholar] [CrossRef]
- Lopez, G.G.; Azadi, M. PMMA A2 and A4 Spin Curves. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2016. [Google Scholar]
- Shen, Y.R. Fundamentals of Sum-Frequency Spectroscopy; Cambridge University Press: Cambridge, UK, 2016; ISBN 9781107098848. [Google Scholar]
- Raschke, M.B.; Hayashi, M.; Lin, S.H.; Shen, Y.R. Doubly-resonant sum-frequency generation spectroscopy for surface studies. Chem. Phys. Lett. 2002, 359, 367–372. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, B.; Xiong, W. Heterodyne transient vibrational SFG to reveal molecular responses to interfacial charge transfer. J. Chem. Phys. 2019, 150, 114706. [Google Scholar] [CrossRef] [PubMed]
- Piontek, S.M.; Borguet, E. Vibrational Dynamics at Aqueous–Mineral Interfaces. J. Phys. Chem. C 2022, 126, 2307–2324. [Google Scholar] [CrossRef]
- Saak, C.; Backus, E.H.G. The Role of Sum-Frequency Generation Spectroscopy in Understanding On-Surface Reactions and Dynamics in Atmospheric Model-Systems. J. Phys. Chem. Lett. 2024, 15, 4546–4559. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Smits, M.; Bredenbeck, J.; Dijkhuizen, N.; Bonn, M. Femtosecond time-resolved and two-dimensional vibrational sum frequency spectroscopic instrumentation to study structural dynamics at interfaces. Rev. Sci. Instrum. 2008, 79, 93907. [Google Scholar] [CrossRef]
- Thi, Q.H.; Kim, H.; Zhao, J.; Ly, T.H. Coating two-dimensional MoS2 with polymer creates a corrosive non-uniform interface. npj 2D Mater. Appl. 2018, 2, 34. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.; Yang, R.; Bao, L.; Meng, L.; Luo, H.; Cai, Y.; Liu, G.; Zhao, W.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, T.; Qin, Z.; Ma, C.; Lu, F.; Liu, T.; Li, J.; Wei, S.; Cheng, G.; Liu, W. Nonlinear optical phonon spectroscopy revealing polaronic signatures of the LaAlO3/SrTiO3 interface. Sci. Adv. 2023, 9, eadg7037. [Google Scholar] [CrossRef]
- Chowdhury, A.U.; Liu, F.; Watson, B.R.; Ashkar, R.; Katsaras, J.; Patrick Collier, C.; Lutterman, D.A.; Ma, Y.; Calhoun, T.R.; Doughty, B. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light. Opt. Lett. 2018, 43, 2038–2041. [Google Scholar] [CrossRef]
- Hess, C.; Funk, S.; Miners, J.H.; Persson, B.N.J.; Wolf, M.; Ertl, G.; Bonn, M. Femtosecond Surface Vibrational Spectroscopy of CO Adsorbed on Ru(001) during Desorption. Phys. Rev. Lett. 2000, 84, 4653–4656. [Google Scholar] [CrossRef]
- Yang, D.; Li, Y.; Liu, X.; Cao, Y.; Gao, Y.; Shen, Y.R.; Liu, W. Facet-specific interaction between methanol and TiO2 probed by sum-frequency vibrational spectroscopy. Proc. Natl. Acad. Sci. USA 2018, 115, E3888–E3894. [Google Scholar] [CrossRef]
- Deng, G.; Qian, Y.; Rao, Y. Development of ultrafast broadband electronic sum frequency generation for charge dynamics at surfaces and interfaces. J. Chem. Phys. 2019, 150, 24708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kim, J.; Khoury, R.; Saghayezhian, M.; Haber, L.H.; Plummer, E.W. Surface sum frequency generation spectroscopy on non-centrosymmetric crystal GaAs (001). Surf. Sci. 2017, 664, 21–28. [Google Scholar] [CrossRef]
- Kanasaki, J.I.; Tanimura, H.; Tanimura, K. Imaging Energy-, Momentum-, and Time-Resolved Distributions of Photoinjected Hot Electrons in GaAs. Phys. Rev. Lett. 2014, 113, 237401. [Google Scholar] [CrossRef] [PubMed]
- Di Cicco, A.; Polzoni, G.; Gunnella, R.; Trapananti, A.; Minicucci, M.; Rezvani, S.J.; Catone, D.; Di Mario, L.; Pelli Cresi, J.S.; Turchini, S.; et al. Broadband optical ultrafast reflectivity of Si, Ge and GaAs. Sci. Rep. 2020, 10, 17363. [Google Scholar] [CrossRef] [PubMed]
- van Stokkum, I.H.M.; Larsen, D.S.; van Grondelle, R. Global and target analysis of time-resolved spectra. BBA-Bioenerg. 2004, 1657, 82–104. [Google Scholar] [CrossRef]
- Vashistha, N.; Kumar, M.; Singh, R.K.; Panda, D.; Tyagi, L.; Chakrabarti, S. A comprehensive study of ultrafast carrier dynamics of LT-GaAs: Above and below bandgap regions. Phys. B Condens. Matter 2021, 602, 412441. [Google Scholar] [CrossRef]
- Hong, X.; Kim, J.; Shi, S.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686. [Google Scholar] [CrossRef]
- Rai, V.; Mukherjee, C.; Jain, B. UV-Vis and FTIR spectroscopy of gamma irradiated polymethyl methacrylate. Indian J. Pure Appl. Phys. 2017, 55, 775–785. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Buck, S.M.; Chen, Z. Molecular Chemical Structure on Poly(methyl methacrylate) (PMMA) Surface Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy. J. Phys. Chem. B 2001, 105, 12118–12125. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, H.; Huang, D.; Zhang, S.; Li, Y.; Gong, X.; Shen, Y.; Liu, W.; Wu, S. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825–829. [Google Scholar] [CrossRef]
- Huang, L.; Krasnok, A.; Alú, A.; Yu, Y.; Neshev, D.; Miroshnichenko, A.E. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys. 2022, 85, 46401. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Y.; Xu, Q.; Wang, H.; Liu, W. Coherent Vibrational Spectroscopy of Electrochemical Interfaces with Plasmonic Nanogratings. J. Phys. Chem. Lett. 2020, 11, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhang, Y.; Wang, H.; Liu, W. Matrix formalism for radiating polarization sheets in multilayer structures of arbitrary composition. Chin. Opt. Lett. 2017, 15, 081901. [Google Scholar] [CrossRef]
- Kitadai, H.; Tan, Q.; Ping, L.; Ling, X. Raman enhancement induced by exciton hybridization in molecules and 2D materials. npj 2D Mater. Appl. 2024, 8, 11. [Google Scholar] [CrossRef]
- Genco, A.; Trovatello, C.; Louca, C.; Watanabe, K.; Taniguchi, T.; Tartakovskii, A.I.; Cerullo, G.; Dal Conte, S. Ultrafast Exciton and Trion Dynamics in High-Quality Encapsulated MoS2 Monolayers. Phys. Status Solidi B Basic Res. 2023, 260, 2200376. [Google Scholar] [CrossRef]
- Li, Y.; Shi, J.; Mi, Y.; Sui, X.; Xu, H.; Liu, X. Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 2019, 7, 4304–4319. [Google Scholar] [CrossRef]
- Hernandez-Rueda, J.; Noordam, M.L.; Komen, I.; Kuipers, L. Nonlinear Optical Response of a WS2 Monolayer at Room Temperature upon Multicolor Laser Excitation. ACS Photonics 2021, 8, 550–556. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Lian, Y.; Zhou, T.; Li, H.; Li, J.; Liu, X.; Huang, Y.; Liu, W.-T. Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation. Nanomaterials 2024, 14, 1892. https://doi.org/10.3390/nano14231892
Chen H, Lian Y, Zhou T, Li H, Li J, Liu X, Huang Y, Liu W-T. Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation. Nanomaterials. 2024; 14(23):1892. https://doi.org/10.3390/nano14231892
Chicago/Turabian StyleChen, Huiling, Yu Lian, Tao Zhou, Hui Li, Jiashi Li, Xinyi Liu, Yuan Huang, and Wei-Tao Liu. 2024. "Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation" Nanomaterials 14, no. 23: 1892. https://doi.org/10.3390/nano14231892
APA StyleChen, H., Lian, Y., Zhou, T., Li, H., Li, J., Liu, X., Huang, Y., & Liu, W.-T. (2024). Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation. Nanomaterials, 14(23), 1892. https://doi.org/10.3390/nano14231892