Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Basic Principle of SFG
2.2. Sample Preparation
2.3. Optical Experimental Setup
2.3.1. The Generation of Laser Pulses
2.3.2. TR-SFG Experimental Geometry
2.3.3. Detection and Data Acquisition
3. Results and Discussion
3.1. TR-SFG Experiments of GaAs
3.2. TR-SFG Results of TMDC/Organic Thin Film Interfaces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, J.; Wang, C.; Zou, X.; Liao, L. Recent Advances in Optoelectronic Devices Based on 2D Materials and Their Heterostructures. Adv. Opt. Mater. 2019, 7, 1800441. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zheng, Y.J.; Song, Z.; Chi, D.; Wee, A.T.S.; Quek, S.Y. The organic–2D transition metal dichalcogenide heterointerface. Chem. Soc. Rev. 2018, 47, 3241–3264. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Choi, J.H. Recent progress in 2D hybrid heterostructures from transition metal dichalcogenides and organic layers: Properties and applications in energy and optoelectronics fields. Nanoscale 2022, 14, 10648–10689. [Google Scholar] [CrossRef] [PubMed]
- Obaidulla, S.M.; Supina, A.; Kamal, S.; Khan, Y.; Kralj, M. van der Waals 2D transition metal dichalcogenide/organic hybridized heterostructures: Recent breakthroughs and emerging prospects of the device. Nanoscale Horiz. 2024, 9, 44–92. [Google Scholar] [CrossRef]
- Bettis Homan, S.; Sangwan, V.K.; Balla, I.; Bergeron, H.; Weiss, E.A.; Hersam, M.C. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene–MoS2 van der Waals Heterojunction. Nano Lett. 2017, 17, 164–169. [Google Scholar] [CrossRef]
- Zhu, T.; Yuan, L.; Zhao, Y.; Zhou, M.; Wan, Y.; Mei, J.; Huang, L. Highly mobile charge-transfer excitons in two-dimensional WS2/tetracene heterostructures. Sci. Adv. 2018, 4, eaao3104. [Google Scholar] [CrossRef]
- Gu, J.; Liu, X.; Lin, E.; Lee, Y.; Forrest, S.R.; Menon, V.M. Dipole-Aligned Energy Transfer between Excitons in Two-Dimensional Transition Metal Dichalcogenide and Organic Semiconductor. ACS Photonics 2018, 5, 100–104. [Google Scholar] [CrossRef]
- Ye, L.; Liu, Y.; Zhou, Q.; Tao, W.; Li, Y.; Wang, Z.; Zhu, H. Ultrafast Singlet Energy Transfer before Fission in a Tetracene/WSe2 Type II Hybrid Heterostructure. J. Phys. Chem. Lett. 2021, 12, 8440–8446. [Google Scholar] [CrossRef]
- Duan, J.; Liu, Y.; Zhang, Y.; Chen, Z.; Xu, X.; Ye, L.; Wang, Z.; Yang, Y.; Zhang, D.; Zhu, H. Efficient solid-state infrared-to-visible photon upconversion on atomically thin monolayer semiconductors. Sci. Adv. 2022, 8, eabq4935. [Google Scholar] [CrossRef]
- Lopez, G.G.; Azadi, M. PMMA A2 and A4 Spin Curves. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2016. [Google Scholar]
- Shen, Y.R. Fundamentals of Sum-Frequency Spectroscopy; Cambridge University Press: Cambridge, UK, 2016; ISBN 9781107098848. [Google Scholar]
- Raschke, M.B.; Hayashi, M.; Lin, S.H.; Shen, Y.R. Doubly-resonant sum-frequency generation spectroscopy for surface studies. Chem. Phys. Lett. 2002, 359, 367–372. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, B.; Xiong, W. Heterodyne transient vibrational SFG to reveal molecular responses to interfacial charge transfer. J. Chem. Phys. 2019, 150, 114706. [Google Scholar] [CrossRef] [PubMed]
- Piontek, S.M.; Borguet, E. Vibrational Dynamics at Aqueous–Mineral Interfaces. J. Phys. Chem. C 2022, 126, 2307–2324. [Google Scholar] [CrossRef]
- Saak, C.; Backus, E.H.G. The Role of Sum-Frequency Generation Spectroscopy in Understanding On-Surface Reactions and Dynamics in Atmospheric Model-Systems. J. Phys. Chem. Lett. 2024, 15, 4546–4559. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Smits, M.; Bredenbeck, J.; Dijkhuizen, N.; Bonn, M. Femtosecond time-resolved and two-dimensional vibrational sum frequency spectroscopic instrumentation to study structural dynamics at interfaces. Rev. Sci. Instrum. 2008, 79, 93907. [Google Scholar] [CrossRef]
- Thi, Q.H.; Kim, H.; Zhao, J.; Ly, T.H. Coating two-dimensional MoS2 with polymer creates a corrosive non-uniform interface. npj 2D Mater. Appl. 2018, 2, 34. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.; Yang, R.; Bao, L.; Meng, L.; Luo, H.; Cai, Y.; Liu, G.; Zhao, W.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 2020, 11, 2453. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, T.; Qin, Z.; Ma, C.; Lu, F.; Liu, T.; Li, J.; Wei, S.; Cheng, G.; Liu, W. Nonlinear optical phonon spectroscopy revealing polaronic signatures of the LaAlO3/SrTiO3 interface. Sci. Adv. 2023, 9, eadg7037. [Google Scholar] [CrossRef]
- Chowdhury, A.U.; Liu, F.; Watson, B.R.; Ashkar, R.; Katsaras, J.; Patrick Collier, C.; Lutterman, D.A.; Ma, Y.; Calhoun, T.R.; Doughty, B. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light. Opt. Lett. 2018, 43, 2038–2041. [Google Scholar] [CrossRef]
- Hess, C.; Funk, S.; Miners, J.H.; Persson, B.N.J.; Wolf, M.; Ertl, G.; Bonn, M. Femtosecond Surface Vibrational Spectroscopy of CO Adsorbed on Ru(001) during Desorption. Phys. Rev. Lett. 2000, 84, 4653–4656. [Google Scholar] [CrossRef]
- Yang, D.; Li, Y.; Liu, X.; Cao, Y.; Gao, Y.; Shen, Y.R.; Liu, W. Facet-specific interaction between methanol and TiO2 probed by sum-frequency vibrational spectroscopy. Proc. Natl. Acad. Sci. USA 2018, 115, E3888–E3894. [Google Scholar] [CrossRef]
- Deng, G.; Qian, Y.; Rao, Y. Development of ultrafast broadband electronic sum frequency generation for charge dynamics at surfaces and interfaces. J. Chem. Phys. 2019, 150, 24708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Kim, J.; Khoury, R.; Saghayezhian, M.; Haber, L.H.; Plummer, E.W. Surface sum frequency generation spectroscopy on non-centrosymmetric crystal GaAs (001). Surf. Sci. 2017, 664, 21–28. [Google Scholar] [CrossRef]
- Kanasaki, J.I.; Tanimura, H.; Tanimura, K. Imaging Energy-, Momentum-, and Time-Resolved Distributions of Photoinjected Hot Electrons in GaAs. Phys. Rev. Lett. 2014, 113, 237401. [Google Scholar] [CrossRef] [PubMed]
- Di Cicco, A.; Polzoni, G.; Gunnella, R.; Trapananti, A.; Minicucci, M.; Rezvani, S.J.; Catone, D.; Di Mario, L.; Pelli Cresi, J.S.; Turchini, S.; et al. Broadband optical ultrafast reflectivity of Si, Ge and GaAs. Sci. Rep. 2020, 10, 17363. [Google Scholar] [CrossRef] [PubMed]
- van Stokkum, I.H.M.; Larsen, D.S.; van Grondelle, R. Global and target analysis of time-resolved spectra. BBA-Bioenerg. 2004, 1657, 82–104. [Google Scholar] [CrossRef]
- Vashistha, N.; Kumar, M.; Singh, R.K.; Panda, D.; Tyagi, L.; Chakrabarti, S. A comprehensive study of ultrafast carrier dynamics of LT-GaAs: Above and below bandgap regions. Phys. B Condens. Matter 2021, 602, 412441. [Google Scholar] [CrossRef]
- Hong, X.; Kim, J.; Shi, S.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686. [Google Scholar] [CrossRef]
- Rai, V.; Mukherjee, C.; Jain, B. UV-Vis and FTIR spectroscopy of gamma irradiated polymethyl methacrylate. Indian J. Pure Appl. Phys. 2017, 55, 775–785. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C.; Buck, S.M.; Chen, Z. Molecular Chemical Structure on Poly(methyl methacrylate) (PMMA) Surface Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy. J. Phys. Chem. B 2001, 105, 12118–12125. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, H.; Huang, D.; Zhang, S.; Li, Y.; Gong, X.; Shen, Y.; Liu, W.; Wu, S. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825–829. [Google Scholar] [CrossRef]
- Huang, L.; Krasnok, A.; Alú, A.; Yu, Y.; Neshev, D.; Miroshnichenko, A.E. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Rep. Prog. Phys. 2022, 85, 46401. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, Y.; Xu, Q.; Wang, H.; Liu, W. Coherent Vibrational Spectroscopy of Electrochemical Interfaces with Plasmonic Nanogratings. J. Phys. Chem. Lett. 2020, 11, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Zhang, Y.; Wang, H.; Liu, W. Matrix formalism for radiating polarization sheets in multilayer structures of arbitrary composition. Chin. Opt. Lett. 2017, 15, 081901. [Google Scholar] [CrossRef]
- Kitadai, H.; Tan, Q.; Ping, L.; Ling, X. Raman enhancement induced by exciton hybridization in molecules and 2D materials. npj 2D Mater. Appl. 2024, 8, 11. [Google Scholar] [CrossRef]
- Genco, A.; Trovatello, C.; Louca, C.; Watanabe, K.; Taniguchi, T.; Tartakovskii, A.I.; Cerullo, G.; Dal Conte, S. Ultrafast Exciton and Trion Dynamics in High-Quality Encapsulated MoS2 Monolayers. Phys. Status Solidi B Basic Res. 2023, 260, 2200376. [Google Scholar] [CrossRef]
- Li, Y.; Shi, J.; Mi, Y.; Sui, X.; Xu, H.; Liu, X. Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 2019, 7, 4304–4319. [Google Scholar] [CrossRef]
- Hernandez-Rueda, J.; Noordam, M.L.; Komen, I.; Kuipers, L. Nonlinear Optical Response of a WS2 Monolayer at Room Temperature upon Multicolor Laser Excitation. ACS Photonics 2021, 8, 550–556. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Lian, Y.; Zhou, T.; Li, H.; Li, J.; Liu, X.; Huang, Y.; Liu, W.-T. Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation. Nanomaterials 2024, 14, 1892. https://doi.org/10.3390/nano14231892
Chen H, Lian Y, Zhou T, Li H, Li J, Liu X, Huang Y, Liu W-T. Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation. Nanomaterials. 2024; 14(23):1892. https://doi.org/10.3390/nano14231892
Chicago/Turabian StyleChen, Huiling, Yu Lian, Tao Zhou, Hui Li, Jiashi Li, Xinyi Liu, Yuan Huang, and Wei-Tao Liu. 2024. "Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation" Nanomaterials 14, no. 23: 1892. https://doi.org/10.3390/nano14231892
APA StyleChen, H., Lian, Y., Zhou, T., Li, H., Li, J., Liu, X., Huang, Y., & Liu, W. -T. (2024). Excitonic-Vibrational Interaction at 2D Material/Organic Molecule Interfaces Studied by Time-Resolved Sum Frequency Generation. Nanomaterials, 14(23), 1892. https://doi.org/10.3390/nano14231892