Effects of Cold Deformation and Heat Treatments on the Microstructure and Properties of Fe-15Cr-25Ni Superalloy Cold-Drawn Bars
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Mechanical Properties
- (1)
- The intrinsic nature, lattice type, and state of the alloy are characterized by the deformation-strengthening index.
- (2)
- The reduction ratio during cold drawing. The tensile strength of the rod after cold drawing can be approximately expressed by Equation (2) [16,17]:σ = σm − 10,580z3 + 4776z2 + 613z
3.2. Microstructure
4. Conclusions
- (1)
- Under the combined effect of grain refinement strengthening and work hardening during cold drawing, the tensile strength, yield strength, and hardness of the Fe-15Cr-25Ni alloy increased by 43%, 88%, and 53%, respectively, while the elongation decreased by 21%.
- (2)
- After undergoing solid-solution treatment, the majority of the precipitated phase dissolves back into the matrix, and the dislocation density decreases greatly, which leads to the decrease in strength and the decrease in strength.
- (3)
- After the aging treatment of the Fe-15Cr-25Ni alloy, the γ′ phase formed within grains hinders the dislocation movement and increases the strength by precipitation strengthening, leading to the increased strength but decreased plasticity. With dislocation strengthening and precipitation strengthening, the tensile strength reaches up to 1240 MPa, while the yield strength amounts to 724 MPa, with a hardness value of 340 HV and with a satisfied elongation of 20%.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rho, B.S.; Nam, S.W. Fatigue-induced precipitates at grain boundary of Nb-A286 alloy in high temperature low cycle fatigue. Mater. Sci. Eng. A 2000, 291, 54–59. [Google Scholar] [CrossRef]
- Guo, Z.; Liang, H.; Zhao, M.; Rong, L. Effect of boron addition on hydrogen embrittlement sensitivity in Fe–Ni based alloys. Mater. Sci. Eng. A 2010, 527, 6620–6625. [Google Scholar] [CrossRef]
- De Cicco, H.; Luppo, M.; Gribaudo, L.; Ovejero-Garcıa, J. Microstructural development and creep behavior in A286 superalloy. Mater. Charact. 2004, 52, 85–92. [Google Scholar] [CrossRef]
- Zhao, M.; Guo, Z.; Liang, H.; Rong, L. Effect of boron on the microstructure, mechanical properties and hydrogen performance in a modified A286. Mater. Sci. Eng. A 2010, 527, 5844–5851. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Li, J.; Wang, Z.; Wang, Q.; Dong, C.; Liaw, P.K. A novel low-density and high-strength Fe-Ni-base high-entropy superalloy with stable γ/γ‘coherent microstructure at 1023 K. Scr. Mater. 2024, 252, 116236. [Google Scholar] [CrossRef]
- Rho, B.S.; Nam, S.W. The effect of applied strain range on the fatigue cracking in Nb-A286 iron-base superalloy. Mater. Lett. 2001, 48, 49–55. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, P.; Zhou, Y.; Li, L.; Yin, H.; Yan, J.; Diao, W.; Li, P.; Yuan, Y. Microstructural evolution and yield strength of a novel precipitate-strengthened Fe-based superalloy during thermal aging at 700 °C. Intermetallics 2023, 163, 108077. [Google Scholar] [CrossRef]
- Seifollahi, M.; Razavi, S.; Kheirandish, S.; Abbasi, S. The mechanism of η phase precipitation in A286 superalloy during heat treatment. J. Mater. Eng. Perform. 2013, 22, 3063–3069. [Google Scholar] [CrossRef]
- Kobayashi, K.; Yamaguchi, K.; Hayakawa, M.; Kimura, M. High-temperature fatigue properties of austenitic superalloys 718, A286 and 304L. Int. J. Fatigue 2008, 30, 1978–1984. [Google Scholar] [CrossRef]
- Hagh Panahi, M.; Pirali, H. Experimental study of high temperature fracture behavior of A286 superalloy at 650 °C. Phys. Mesomech. 2018, 21, 157–164. [Google Scholar] [CrossRef]
- Huang, S.; Hu, J.; Li, X.; Liu, J.; Liu, K.; Qin, H.; Wang, H. Influence of deformation degree at cold drawing on structure-properties relationship of a Fe-Ni-Cr superalloy. J. Alloys Compd. 2023, 930, 167407. [Google Scholar] [CrossRef]
- Jimeng, L.; Shuo, H.; Xiaomin, Z.; Ran, D.; Kangkang, L.; Heyong, Q. Microstructure analysis of strip structure of mixed crystal GH2132 Alloy and its effect on Mechanical Properties. Iron Steel 2022, 57, 110–119. [Google Scholar] [CrossRef]
- Sicheng, L.; Yanwei, X.; Xiaojian, Y.; Yun, G.; Chuan, W. Effects of deformation and aging on microstructure andproperties of A286 superalloy. Heat Treat. Met. 2019, 44, 167–171. [Google Scholar] [CrossRef]
- GB/T 228.1-2010r; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2010.
- Jiawang, J.; Jiangnan, L.; Fei, X.; Zhengpin, W.; Yu, W.; Chongzhe, S. Mechanical-Hardening of Casting Double Phase Stainless Steel. Foundry Technol. 2007, 28, 350–353. [Google Scholar]
- Heyong, Q.; Binghong, P.; Jian, D.; Maicang, Z. Study on Cold Drawing Process of High-Strength Alloy GH2132. J. Iron Steel Res. Int. 2010, 22, 48–52. [Google Scholar] [CrossRef]
- Heyong, Q.; Can, C.; Xue, W.; Binghong, P.; Guilin, W. Investigation of Working Hardening and Heat Treatment of High Quality and High Strength GH2132 Superalloy. J. Iron Steel Res. Int. 2011, 23, 44–47. [Google Scholar] [CrossRef]
- Jiajun, C. Study on Microstructure and Oxidation Resistance of GH2132 Superalloy. Master’s Thesis, Jiangsu University of Science and Technology, Zhenjiang, China, 2022. [Google Scholar]
- Mo, L. Composition Design, Microstructure and Properties of GH2132 Alloys Based on a Cluster Model. Master’s Thesis, Dalian University of Technology, Dalian, China, 2022. [Google Scholar]
- Weixiu, S. Thermal Stability of the Plasma-Nitrided Layer on Fe-Based Superalloy GH2132. Master’s Thesis, Dalian Maritime University, Dalian, China, 2018. [Google Scholar]
- Gilakjani, R.S.; Razavi, S.H.; Seifollahi, M. An investigation on thermodynamics and kinetics of η phase formation in Nb-modified iron-nickel base A286 superalloy. Metall. Res. Technol. 2021, 118, 105. [Google Scholar] [CrossRef]
- Shahedi, R.; Kheirandish, S.; Shirazi, F.; Seifollahi, M. The effect of solid solution treatment parameters on the microstructure and mechanical properties of A286 superalloy. Metall. Res. Technol. 2021, 118, 517. [Google Scholar] [CrossRef]
- Schayes, C.; Bouquerel, J.; Vogt, J.-B.; Palleschi, F.; Zaefferer, S. A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading. Mater. Charact. 2016, 115, 61–70. [Google Scholar] [CrossRef]
- Wright, S.I.; Nowell, M.M.; Field, D.P. A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 2011, 17, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Yang, T.; Zhao, Y.; Luan, J.; Zhou, G.; Wang, H.; Jiao, Z.; Liu, C.-T. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures. Nat. Commun. 2020, 11, 6240. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Oh, H.S.; Gludovatz, B.; Kim, S.J.; Park, E.S.; Zhang, Z.; Ritchie, R.O.; Yu, Q. Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nat. Commun. 2020, 11, 826. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-C.; Gao, Y.; Lin, Z.-L.; Guo, S.-S.; Zhang, X.-B.; Yin, X.-J. Microstructure and properties after deformation and aging process of A286 superalloy. Rare Met. 2019, 38, 864–870. [Google Scholar] [CrossRef]
- Gerold, V.; Haberkorn, H. On the critical resolved shear stress of solid solutions containing coherent precipitates. Phys. Status Solidi B 1966, 16, 675–684. [Google Scholar] [CrossRef]
- Nembach, E.; Neite, G. Precipitation hardening of superalloys by ordered γ′-particles. Prog. Mater. Sci. 1985, 29, 177–319. [Google Scholar] [CrossRef]
- Qilong, Y. The Second Phase in Steel; Metallurgical Industry Press: Beijing, China, 2006. [Google Scholar]
- Qilong, Y.; Xinjun, S.; Lei, Z.; Xi, Y.; Zhenbao, L.; Mingxi, C. The role of the Second phase in Iron and steel materials. Sci. Technol. Innov. Her. 2009, 8, 2–3. [Google Scholar] [CrossRef]
Elements | C | Fe | Ni | Cr | Mo | Co | Ti | Al | V |
---|---|---|---|---|---|---|---|---|---|
Content | 0.05 | 53.90 | 24.56 | 15.12 | 1.26 | 0.20 | 1.79 | 0.19 | 0.32 |
Samples | Preparation Process |
---|---|
1 | Hot-rolled annealed (900 °C holding 1 h water cooling) |
2 | Cold-drawn state |
3 | Solid-solution state (900 °C holding time 2 h water cooling) |
4 | Aging state (700 °C holding 16 h air-cooling, 650 °C holding 16 h air-cooling) |
Elements (at%) | C | Fe | Ni | Cr | Mo | Ti | Al | V |
---|---|---|---|---|---|---|---|---|
Sample 1 | 19.7 | 39.7 | 23.0 | 12.3 | 0.6 | 3.7 | 0.5 | 0.3 |
Sample 2 | 21.6 | 41.0 | 20.0 | 13.6 | 0.6 | 2.3 | 0.6 | 0.3 |
Sample 3 | 21.5 | 42.0 | 18.6 | 13.5 | 0.6 | 2.5 | 0.5 | 0.3 |
Sample 4 | 16.0 | 44.7 | 20.9 | 14.4 | 0.6 | 2.4 | 0.6 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Z.; Sun, Z.; Zhao, Y.; Cui, Y.; Zhang, Z. Effects of Cold Deformation and Heat Treatments on the Microstructure and Properties of Fe-15Cr-25Ni Superalloy Cold-Drawn Bars. Nanomaterials 2024, 14, 1949. https://doi.org/10.3390/nano14231949
Zhang Y, Zhang Z, Sun Z, Zhao Y, Cui Y, Zhang Z. Effects of Cold Deformation and Heat Treatments on the Microstructure and Properties of Fe-15Cr-25Ni Superalloy Cold-Drawn Bars. Nanomaterials. 2024; 14(23):1949. https://doi.org/10.3390/nano14231949
Chicago/Turabian StyleZhang, Yunfei, Zhen Zhang, Zhiyan Sun, Yingli Zhao, Yi Cui, and Zhongwu Zhang. 2024. "Effects of Cold Deformation and Heat Treatments on the Microstructure and Properties of Fe-15Cr-25Ni Superalloy Cold-Drawn Bars" Nanomaterials 14, no. 23: 1949. https://doi.org/10.3390/nano14231949
APA StyleZhang, Y., Zhang, Z., Sun, Z., Zhao, Y., Cui, Y., & Zhang, Z. (2024). Effects of Cold Deformation and Heat Treatments on the Microstructure and Properties of Fe-15Cr-25Ni Superalloy Cold-Drawn Bars. Nanomaterials, 14(23), 1949. https://doi.org/10.3390/nano14231949