Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Deposition
2.2. Characterization of TiZrMoC Coatings
2.3. Computational Procedure
3. Results and Discussion
3.1. Nanostructure and Chemical Bonding
XPS Spectrum | Peak Position [eV] | Identification | Reference Data [eV] |
---|---|---|---|
Ti 2p3/2 | 454.9 | TiC | 455.05 [61], 455.0 [62] |
Ti 2p1/2 | 461.1 | TiC | 461.3 [61], 461.0 [62] |
Zr 3d5/2 | 179.3 | ZrC | 179.1 [61], 179.6 [63] |
181.65 | ZrC | 181.5 [61] | |
Mo 3d3/2 | 231.57 | MoC | 231.4–232.1 [64,65,66] |
Mo 3d5/2 | 228.4 | MoC | 228.2–228.8 [64,65,66] |
C 1s | 282.2 | TiC | 281.9 [67], 282.2 [68] |
C 1s | 284.6 | C-C | 284.5 [68], 284.6 [67] |
3.2. Tribological and Mechanical Properties
System | H [GPa] | Method | Refs. |
---|---|---|---|
Ti-Zr-Mo-C | 24–34 | Coatings (DC magnetron) | This work |
Ti-Nb-C | 20–25 | Bulk (hot press) | Fides et al. [76] |
Ti-Nb-C | 26–29 | Coatings (laser cladding) | Sun et al. [77] |
Ti-Mo-C | 8–10 | Coatings (RF magnetron) | Koutzaki et al. [7] |
Ti-W-C | 15–26 | Coatings (RF magnetron) | Koutzaki et al. [7] |
Ti-Zr-C | 26–33 | Coatings (DC magnetron) | Pogrebnjak et al. [70] |
Ti-Zr-C | 14–34 | Coatings (DC magnetron) | Rodríguez-Hernández et al. [78] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarkeeva, A.A.; Kruglov, A.A.; Lutfullin, R.Y.; Gladkovskiy, S.V.; Zhilyaev, A.P.; Mulyukov, R.R. Characteristics of the Mechanical Behavior of Ti–6Al–4V Multilayer Laminate under Impact Loading. Compos. Part B Eng. 2020, 187, 107838. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Ivashchenko, V.I.; Skrynskyy, P.L.; Bondar, O.V.; Konarski, P.; Załęski, K.; Jurga, S.; Coy, E. Experimental and Theoretical Studies of the Physicochemical and Mechanical Properties of Multi-Layered TiN/SiC Films: Temperature Effects on the Nanocomposite Structure. Compos. Part B Eng. 2018, 142, 85–94. [Google Scholar] [CrossRef]
- Lengauer, W. Transition Metal Carbides, Nitrides, and Carbonitrides. In Handbook of Ceramic Hard Materials; Wiley: Hoboken, NJ, USA, 2000; pp. 202–252. [Google Scholar]
- Kumar, A.; Chan, H.L.; Kapat, J.S. Deposition and Characterization of Titanium Carbide Coatings Using Laser Ablation Method. Appl. Surf. Sci. 1998, 127–129, 549–552. [Google Scholar] [CrossRef]
- In Jhon, Y.; Ki Han, I.; Lee, J.H.; Jhon, Y.M. Microscopic Understanding of Exceptional Orientation-Dependent Tensile and Fracture Responses of Two-Dimensional Transition-Metal Carbides. Appl. Surf. Sci. 2022, 585, 152557. [Google Scholar] [CrossRef]
- Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J.M. Unintentional Carbide Formation Evidenced during High-Vacuum Magnetron Sputtering of Transition Metal Nitride Thin Films. Appl. Surf. Sci. 2016, 385, 356–359. [Google Scholar] [CrossRef]
- Koutzaki, S.H.; Krzanowski, J.E.; Nainaparampil, J.J. Phase Formation and Microstructure in Sputter-Deposited Ti-Mo-C and Ti-W-C Thin Films. Metall. Mater. Trans. A 2002, 33, 1579–1588. [Google Scholar] [CrossRef]
- Smyrnova, K.; Ivashchenko, V.I.; Sahul, M.; Čaplovič, Ľ.; Skrynskyi, P.; Kozak, A.; Konarski, P.; Koltunowicz, T.N.; Galaszkiewicz, P.; Bondariev, V.; et al. Microstructural, Electrical, and Tribomechanical Properties of Mo-W-C Nanocomposite Films. Nanomaterials 2024, 14, 1061. [Google Scholar] [CrossRef]
- Xia, K.; Zhan, H.; Zhang, X.; Li, Z. Atomistic Investigation of the Titanium Carbide MXenes under Impact Loading. Nanomaterials 2022, 12, 2456. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Onoprienko, A.; Pogrebnjak, A.; Scrynskyy, P.; Marchuk, O.; Kovalchenko, A.; Olifan, O. Influence of Bias Voltage on the Structure and Mechanical Properties of Ti-Nb-C Films Deposited by DC Dual Magnetron Sputtering. High Temp. Mater. Process. Int. Q. High-Technol. Plasma Process. 2024, 28, 25–32. [Google Scholar] [CrossRef]
- Jhi, S.-H.; Ihm, J.; Louie, S.G.; Cohen, M.L. Electronic Mechanism of Hardness Enhancement in Transition-Metal Carbonitrides. Nature 1999, 399, 132–134. [Google Scholar] [CrossRef]
- Holleck, H. Material Selection for Hard Coatings. J. Vac. Sci. Technol. A Vac. Surf. Film. 1986, 4, 2661–2669. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Turchi, P.E.A.; Medukh, N.R.; Shevchenko, V.I.; Gorb, L.; Leszczynski, J. A First-Principles Study of the Stability and Mechanical Properties of Ternary Transition Metal Carbide Alloys. J. Appl. Phys. 2019, 125, 235101. [Google Scholar] [CrossRef]
- Zhang, G.; Li, B.; Jiang, B.; Yan, F.; Chen, D. Microstructure and Tribological Properties of TiN, TiC and Ti(C, N) Thin Films Prepared by Closed-Field Unbalanced Magnetron Sputtering Ion Plating. Appl. Surf. Sci. 2009, 255, 8788–8793. [Google Scholar] [CrossRef]
- Pogrebnjak, A.; Ivashchenko, V.; Bondar, O.; Beresnev, V.; Sobol, O.; Załęski, K.; Jurga, S.; Coy, E.; Konarski, P.; Postolnyi, B. Multilayered Vacuum-Arc Nanocomposite TiN/ZrN Coatings before and after Annealing: Structure, Properties, First-Principles Calculations. Mater. Charact. 2017, 134, 55–63. [Google Scholar] [CrossRef]
- Baker, M.A.; Mollart, T.P.; Gibson, P.N.; Gissler, W. Combined X-Ray Photoelectron/Auger Electron Spectroscopy/Glancing Angle x-Ray Diffraction/Extended x-Ray Absorption Fine Structure Investigation of TiB x N y Coatings. J. Vac. Sci. Technol. A Vac. Surf. Film. 1997, 15, 284–291. [Google Scholar] [CrossRef]
- Kuroda, P.A.B.; Lourenço, M.L.; Correa, D.R.N.; Grandini, C.R. Thermomechanical Treatments Influence on the Phase Composition, Microstructure, and Selected Mechanical Properties of Ti–20Zr–Mo Alloys System for Biomedical Applications. J. Alloys Compd. 2020, 812, 152108. [Google Scholar] [CrossRef]
- Correa, D.R.N.; Kuroda, P.A.B.; Grandini, C.R. Structure, Microstructure, and Selected Mechanical Properties of Ti-Zr-Mo Alloys for Biomedical Applications. Adv. Mater. Res. 2014, 922, 75–80. [Google Scholar] [CrossRef]
- Qi, M.; Chen, B.; Xia, C.; Liu, Y.; Liu, S.; Zhong, H.; Zou, X.; Yang, T.; Li, Q. Microstructure, Mechanical Properties and Biocompatibility of Novel Ti-20Zr-XMo Alloys. J. Alloys Compd. 2021, 888, 161478. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, X.; Cao, P. Mechanical and Electrochemical Characterization of Ti–12Mo–5Zr Alloy for Biomedical Application. J. Alloys Compd. 2011, 509, 8235–8238. [Google Scholar] [CrossRef]
- Marupalli, B.C.G.; Adhikary, T.; Sahu, B.P.; Mitra, R.; Aich, S. Effect of Annealing Temperature on Microstructure and Mechanical Response of Sputter Deposited Ti-Zr-Mo High Temperature Shape Memory Alloy Thin Films. Appl. Surf. Sci. Adv. 2021, 6, 100137. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Beresnev, V.M.; Demianenko, A.A.; Baidak, V.S.; Komarov, F.F.; Kaverin, M.V.; Makhmudov, N.A.; Kolesnikov, D.A. Adhesive Strength, Superhardness, and the Phase and Elemental Compositions of Nanostructured Coatings Based on Ti-Hf-Si-N. Phys. Solid State 2012, 54, 1882–1890. [Google Scholar] [CrossRef]
- Samuel, S.; Nag, S.; Scharf, T.W.; Banerjee, R. Wear Resistance of Laser-Deposited Boride Reinforced Ti-Nb–Zr–Ta Alloy Composites for Orthopedic Implants. Mater. Sci. Eng. C 2008, 28, 414–420. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wu, S.-C.; Sung, Y.-C.; Ho, W.-F. The Structure and Mechanical Properties of As-Cast Zr–Ti Alloys. J. Alloys Compd. 2009, 488, 279–283. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Hirota, M.; Hayakawa, T. Influence of the Surface Chemical Composition Differences between Zirconia and Titanium with the Similar Surface Structure and Roughness on Bone Formation. Nanomaterials 2022, 12, 2478. [Google Scholar] [CrossRef]
- Martins Júnior, J.R.S.; Nogueira, R.A.; Araújo, R.O.d.; Donato, T.A.G.; Arana-Chavez, V.E.; Claro, A.P.R.A.; Moraes, J.C.S.; Buzalaf, M.A.R.; Grandini, C.R. Preparation and Characterization of Ti-15Mo Alloy Used as Biomaterial. Mater. Res. 2011, 14, 107–112. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, L.; Liu, Z.; Kong, F.; Chen, Z. Microstructures and Properties of Titanium Alloys Ti-Mo for Dental Use. Trans. Nonferrous Met. Soc. China 2006, 16, s824–s828. [Google Scholar] [CrossRef]
- Ha, M.-J.; Kim, H.; Choi, J.-H.; Kim, M.; Kim, W.-H.; Park, T.J.; Shong, B.; Ahn, J.-H. Ultralow-Resistivity Molybdenum-Carbide Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition Using a Cyclopentadienyl-Based Precursor. Chem. Mater. 2022, 34, 2576–2584. [Google Scholar] [CrossRef]
- Larhlimi, H.; Ghailane, A.; Makha, M.; Alami, J. Magnetron Sputtered Titanium Carbide-Based Coatings: A Review of Science and Technology. Vacuum 2022, 197, 110853. [Google Scholar] [CrossRef]
- Cheng, S.; Hou, T.; Zhang, D.; Wang, Z.; Yin, C.; Pan, X.; Liu, X.; Hu, S.; Wu, K. New Insights into the Formation Mechanism of the Multicomponent Carbides (Nb, M)C (M = Ti, Cr and Mn). J. Mater. Res. Technol. 2024, 28, 1022–1031. [Google Scholar] [CrossRef]
- Kärkkäinen, P.R.; Popov, G.; Hatanpää, T.; Kemppinen, A.; Kohopää, K.; Bagheri, M.; Komsa, H.; Heikkilä, M.; Mizohata, K.; Chundak, M.; et al. Atomic Layer Deposition of Molybdenum Carbide Thin Films. Adv. Mater. Interfaces 2024, 11, 2400270. [Google Scholar] [CrossRef]
- Braic, M.; Balaceanu, M.; Vladescu, A.; Zoita, C.N.; Braic, V. Deposition and Characterization of Multi-Principal-Element (CuSiTiYZr)C Coatings. Appl. Surf. Sci. 2013, 284, 671–678. [Google Scholar] [CrossRef]
- Zhao, C.; Xing, X.; Guo, J.; Shi, Z.; Zhou, Y.; Ren, X.; Yang, Q. Microstructure and Wear Resistance of (Nb,Ti)C Carbide Reinforced Fe Matrix Coating with Different Ti Contents and Interfacial Properties of (Nb,Ti)C/α-Fe. Appl. Surf. Sci. 2019, 494, 600–609. [Google Scholar] [CrossRef]
- Demirskyi, D.; Suzuki, T.S.; Yoshimi, K.; Vasylkiv, O. Synthesis and High-Temperature Properties of Medium-Entropy (Ti,Ta,Zr,Nb)C Using the Spark Plasma Consolidation of Carbide Powders. Open Ceram. 2020, 2, 100015. [Google Scholar] [CrossRef]
- Jiang, M.; Zheng, J.W.; Xiao, H.Y.; Liu, Z.J.; Zu, X.T. A Comparative Study of the Mechanical and Thermal Properties of Defective ZrC, TiC and SiC. Sci. Rep. 2017, 7, 9344. [Google Scholar] [CrossRef]
- Bhattacharya, N.; Unde, J.; Kulkarni, K. Use of Titanium and Its Alloy in Aerospace and Aircraft Industries. Int. J. Creat. Res. Thoughts 2020, 8, 2320–2882. [Google Scholar]
- Singh, P.; Pungotra, H.; Kalsi, N.S. On the Characteristics of Titanium Alloys for the Aircraft Applications. Mater. Today Proc. 2017, 4, 8971–8982. [Google Scholar] [CrossRef]
- Barry, J.; Byrne, G. Cutting Tool Wear in the Machining of Hardened Steels. Wear 2001, 247, 139–151. [Google Scholar] [CrossRef]
- Chayeuski, V.V.; Zhylinski, V.V.; Rudak, P.V.; Rusalsky, D.P.; Višniakov, N.; Černašėjus, O. Characteristics of ZrC/Ni-UDD Coatings for a Tungsten Carbide Cutting Tool. Appl. Surf. Sci. 2018, 446, 18–26. [Google Scholar] [CrossRef]
- Kuleshov, A.K.; Uglov, V.V.; Rusalsky, D.P. Hard and Wear-Resistant Niobium, Molybdenum Carbide Layered Coatings on WC-Co Tools Produced by Ion Bombardment and Cathodic Vacuum Arc Deposition. Surf. Coat. Technol. 2020, 395, 125920. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Onoprienko, A.A.; Skrynskyy, P.L.; Kozak, A.O.; Sinelnichenko, A.K.; Olifan, E.I.; Lytvyn, P.M.; Marchuk, O.K. Structure and Mechanical Properties of Ti–Al–C and Ti–Al–Si–C Films: Experimental and First-Principles Studies. J. Superhard Mater. 2021, 43, 100–110. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Yakushchenko, I.V.; Bondar, O.V.; Beresnev, V.M.; Oyoshi, K.; Ivasishin, O.M.; Amekura, H.; Takeda, Y.; Opielak, M.; Kozak, C. Irradiation Resistance, Microstructure and Mechanical Properties of Nanostructured (TiZrHfVNbTa)N Coatings. J. Alloys Compd. 2016, 679, 155–163. [Google Scholar] [CrossRef]
- Dalibón, E.L.; Brühl, S.P.; Silva Cardenas, I.; Prieto, G.; Tuckart, W. Tribological and Corrosion Behavior of Oxidized and Plasma Nitrided AISI 4140 Steel. Mater. Perform. Charact. 2023, 12. [Google Scholar] [CrossRef]
- Shin, D.; Liu, Z.-K. Enthalpy of Mixing for Ternary Fcc Solid Solutions from Special Quasirandom Structures. Calphad 2008, 32, 74–81. [Google Scholar] [CrossRef]
- Wolverton, C. Crystal Structure and Stability of Complex Precipitate Phases in Al–Cu–Mg–(Si) and Al–Zn–Mg Alloys. Acta Mater. 2001, 49, 3129–3142. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Billeter, S.R.; Curioni, A.; Andreoni, W. Efficient Linear Scaling Geometry Optimization and Transition-State Search for Direct Wavefunction Optimization Schemes in Density Functional Theory Using a Plane-Wave Basis. Comput. Mater. Sci. 2003, 27, 437–445. [Google Scholar] [CrossRef]
- Stokes, H.T.; Hatch, D.M. ISOTROPY Software Package; Brigham Young University: Provo, UT, USA, 2019. [Google Scholar]
- Golesorkhtabar, R.; Pavone, P.; Spitaler, J.; Puschnig, P.; Draxl, C. ElaStic: A Tool for Calculating Second-Order Elastic Constants from First Principles. Comput. Phys. Commun. 2013, 184, 1861–1873. [Google Scholar] [CrossRef]
- Niu, H.; Niu, S.; Oganov, A.R. Simple and Accurate Model of Fracture Toughness of Solids. J. Appl. Phys. 2019, 125, 065105. [Google Scholar] [CrossRef]
- Chen, X.-Q.; Niu, H.; Li, D.; Li, Y. Modeling Hardness of Polycrystalline Materials and Bulk Metallic Glasses. Intermetallics 2011, 19, 1275–1281. [Google Scholar] [CrossRef]
- Ivashchenko, V.I.; Turchi, P.E.A.; Shevchenko, V.I.; Ivashchenko, L.A.; Gorb, L.; Leszczynski, J. Stability and Mechanical Properties of Molybdenum Carbides and the Ti–Mo–C Solid Solutions: A First-Principles Study. Mater. Chem. Phys. 2022, 275, 125178. [Google Scholar] [CrossRef]
- Shikama, T.; Araki, H.; Fujitsuka, M.; Fukutomi, M.; Shinno, H.; Okada, M. Properties and Structure of Carbon Excess TixC1−x Deposited onto Molybdenum by Magnetron Sputtering. Thin Solid Film. 1983, 106, 185–194. [Google Scholar] [CrossRef]
- Wanjara, P.; Drew, R.A.; Root, J.; Yue, S. Evidence for Stable Stoichiometric Ti2C at the Interface in TiC Particulate Reinforced Ti Alloy Composites. Acta Mater. 2000, 48, 1443–1450. [Google Scholar] [CrossRef]
- Pelleg, J.; Zevin, L.Z.; Lungo, S.; Croitoru, N. Reactive-Sputter-Deposited TiN Films on Glass Substrates. Thin Solid Film. 1991, 197, 117–128. [Google Scholar] [CrossRef]
- Shafiq, M.; Hassan, M.; Shahzad, K.; Qayyum, A.; Ahmad, S.; Rawat, R.S.; Zakaullah, M. Pulsed Ion Beam-Assisted Carburizing of Titanium in Methane Discharge. Chin. Phys. B 2010, 19, 012801–012810. [Google Scholar] [CrossRef]
- Bagdasaryan, A.A.; Pshyk, A.V.; Coy, L.E.; Konarski, P.; Misnik, M.; Ivashchenko, V.I.; Kempiński, M.; Mediukh, N.R.; Pogrebnjak, A.D.; Beresnev, V.M.; et al. A New Type of (TiZrNbTaHf)N/MoN Nanocomposite Coating: Microstructure and Properties Depending on Energy of Incident Ions. Compos. Part B Eng. 2018, 146, 132–144. [Google Scholar] [CrossRef]
- Lewin, E.; Råsander, M.; Klintenberg, M.; Bergman, A.; Eriksson, O.; Jansson, U. Design of the Lattice Parameter of Embedded Nanoparticles. Chem. Phys. Lett. 2010, 496, 95–99. [Google Scholar] [CrossRef]
- Adjaoud, O.; Steinle-Neumann, G.; Burton, B.P.; van de Walle, A. First-Principles Phase Diagram Calculations for the HfC–TiC, ZrC–TiC, and HfC–ZrC Solid Solutions. Phys. Rev. B 2009, 80, 134112. [Google Scholar] [CrossRef]
- Ma, C.-H.; Huang, J.-H.; Chen, H. Residual Stress Measurement in Textured Thin Film by Grazing-Incidence X-Ray Diffraction. Thin Solid Film. 2002, 418, 73–78. [Google Scholar] [CrossRef]
- Gao, X.-H.; Guo, Z.-M.; Geng, Q.-F.; Ma, P.-J.; Wang, A.-Q.; Liu, G. Structure, Optical Properties and Thermal Stability of SS/TiC–ZrC/Al2O3 Spectrally Selective Solar Absorber. RSC Adv. 2016, 6, 63867–63873. [Google Scholar] [CrossRef]
- Bouabibsa, I.; Lamri, S.; Sanchette, F. Structure, Mechanical and Tribological Properties of Me-Doped Diamond-like Carbon (DLC) (Me = Al, Ti, or Nb) Hydrogenated Amorphous Carbon Coatings. Coatings 2018, 8, 370. [Google Scholar] [CrossRef]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J. NIST Standard Reference Database 20, Version 3.4; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Lin, H.; Shi, Z.; He, S.; Yu, X.; Wang, S.; Gao, Q.; Tang, Y. Heteronanowires of MoC–Mo 2 C as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Chem. Sci. 2016, 7, 3399–3405. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Xi, Q.; Chen, X.; Guo, D.; Ding, F.; Yang, Z.; Wang, S.; Li, J.; Huang, S. Molybdenum Carbide Nanoparticles Coated into the Graphene Wrapping N-Doped Porous Carbon Microspheres for Highly Efficient Electrocatalytic Hydrogen Evolution Both in Acidic and Alkaline Media. Adv. Sci. 2018, 5, 1700733. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Regmi, Y.N.; Leonard, B.M. Multiple Phases of Molybdenum Carbide as Electrocatalysts for the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 2014, 53, 6407–6410. [Google Scholar] [CrossRef] [PubMed]
- Benko, E.; Barr, T.; Hardcastle, S.; Hoppe, E.; Bernasik, A.; Morgiel, J. XPS Study of the CBN–TiC System. Ceram. Int. 2001, 27, 637–643. [Google Scholar] [CrossRef]
- Tsotsos, C.; Baker, M.A.; Polychronopoulou, K.; Gibson, P.N.; Giannakopoulos, K.; Polycarpou, A.A.; Böbel, K.; Rebholz, C. Structure and Mechanical Properties of Low Temperature Magnetron Sputtered Nanocrystalline (Nc-)Ti(N,C)/Amorphous Diamond like Carbon (a-C:H) Coatings. Thin Solid Films 2010, 519, 24–30. [Google Scholar] [CrossRef]
- Krishna, D.N.G.; Philip, J. Review on Surface-Characterization Applications of X-Ray Photoelectron Spectroscopy (XPS): Recent Developments and Challenges. Appl. Surf. Sci. Adv. 2022, 12, 100332. [Google Scholar] [CrossRef]
- Pogrebnjak, A.; Ivashchenko, V.; Maksakova, O.; Buranich, V.; Konarski, P.; Bondariev, V.; Zukowski, P.; Skrynskyy, P.; Sinelnichenko, A.; Shelest, I.; et al. Comparative Measurements and Analysis of the Mechanical and Electrical Properties of Ti-Zr-C Nanocomposite: Role of Stoichiometry. Measurement 2021, 176, 109223. [Google Scholar] [CrossRef]
- Su, W.; Chen, L.; Huo, S.; Zhang, W.; Wang, Y.; Zhou, Y. Fracture Mode Transition from Intergranular to Transgranular in (TiZrNbTaCr)C: The Grain Boundary Purification Effect of Cr Carbide. J. Eur. Ceram. Soc. 2024, 44, 1881–1889. [Google Scholar] [CrossRef]
- Demyashev, G.M. Review: Transition Metal-Based Nanolamellar Phases. Prog. Mater. Sci. 2010, 55, 629–674. [Google Scholar] [CrossRef]
- Lu, K. Stabilizing Nanostructures in Metals Using Grain and Twin Boundary Architectures. Nat. Rev. Mater. 2016, 1, 16019. [Google Scholar] [CrossRef]
- Sánchez-López, J.C.; Martínez-Martínez, D.; Abad, M.D.; Fernández, A. Metal Carbide/Amorphous C-Based Nanocomposite Coatings for Tribological Applications. Surf. Coat. Technol. 2009, 204, 947–954. [Google Scholar] [CrossRef]
- Espinosa-Magaña, F.; Duarte-Moller, A.; Martınez-Sánchez, R.; Miki-Yoshida, M. Electron Energy Loss Spectroscopy of TiC, ZrC and HfC. J. Electron Spectros. Relat. Phenom. 2002, 125, 119–125. [Google Scholar] [CrossRef]
- Fides, M.; Hvizdoš, P.; Bystrický, R.; Kovalčíková, A.; Sedlák, R.; Sedláček, J.; Džunda, R. Microstructure, Fracture, Electrical Properties and Machinability of SiC-TiNbC Composites. J. Eur. Ceram. Soc. 2017, 37, 4315–4322. [Google Scholar] [CrossRef]
- Sun, S.; Fu, H.; Ping, X.; Guo, X.; Lin, J.; Lei, Y.; Wu, W.; Zhou, J. Formation Mechanism and Mechanical Properties of Titanium-Doped NbC Reinforced Ni-Based Composite Coatings. Appl. Surf. Sci. 2019, 476, 914–927. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, M.G.; Jiménez, O.; Alvarado-Hernández, F.; Flores, M.; Andrade, E.; Canto, C.E.; Ávila, C.; Espinoza-Beltrán, F. The Effect of C Content on the Mechanical Properties of Ti–Zr Coatings. J. Mech. Behav. Biomed. Mater. 2015, 49, 269–276. [Google Scholar] [CrossRef]
- López, J.M.; Gordillo-Vázquez, F.J.; Fernández, M.; Albella, J.M.; Cáceres, D.; Vergara, I. Investigation of TiC Thin Films Synthesised by Low Energy IBAD from Electron Evaporation of TiC Powder. Appl. Surf. Sci. 2001, 172, 110–116. [Google Scholar] [CrossRef]
- Meng, Q.N.; Wen, M.; Mao, F.; Nedfors, N.; Jansson, U.; Zheng, W.T. Deposition and Characterization of Reactive Magnetron Sputtered Zirconium Carbide Films. Surf. Coat. Technol. 2013, 232, 876–883. [Google Scholar] [CrossRef]
- Huang, Q.; Yoon, S.; Rusli; Yang, H.; Ahn, J.; Zhang, Q. Molybdenum-Containing Carbon Films Deposited Using the Screen Grid Technique in an Electron Cyclotron Resonance Chemical Vapor Deposition System. Diam. Relat. Mater. 2000, 9, 534–538. [Google Scholar] [CrossRef]
- Onoprienko, A.A.; Ivashchenko, V.I. Solid Solutions in Films of Ternary Carbides and Nitrides of Groups IV–VI Transition Metals: Structure and Properties (Review). J. Superhard Mater. 2021, 43, 231–247. [Google Scholar] [CrossRef]
- Cong, D.Y.; Huang, L.; Hardy, V.; Bourgault, D.; Sun, X.M.; Nie, Z.H.; Wang, M.G.; Ren, Y.; Entel, P.; Wang, Y.D. Low-Field-Actuated Giant Magnetocaloric Effect and Excellent Mechanical Properties in a NiMn-Based Multiferroic Alloy. Acta Mater. 2018, 146, 142–151. [Google Scholar] [CrossRef]
Name | FAr a | Pcb | Target 1 | Target 2 | ||
---|---|---|---|---|---|---|
[sccm] | [Pa] | U c [V] | I d [mA] | U [V] | I [mA] | |
Graphite | TiZrMo | |||||
S1 | 50 | 0.15 | 460 | 150 | 300 | 200 |
S2 | 50 | 0.15 | 480 | 200 | 300 | 200 |
S3 | 50 | 0.15 | 510 | 250 | 310 | 200 |
S4 | 50 | 0.15 | 540 | 300 | 320 | 200 |
Phase | a, [Å] | ΔV, [%] | EMIX, [eV/at] | B, [GPa] | G, [GPa] | E, [GPa] | B/G | ν | HV, [GPa] | KIC, [MPa·m1/2] |
---|---|---|---|---|---|---|---|---|---|---|
TiC | 4.317 | 0 | 0 | 245.2 | 179.1 | 432.4 | 1.37 | 0.21 | 25.7 | 3.38 |
ZrC | 4.708 | 29.7 | 0 | 221.7 | 163.5 | 393.7 | 1.36 | 0.20 | 24.6 | 2.99 |
MoC | 2.926 a 2.840 | 4.7 | 0 | 349.0 | 255.1 | 615.4 | 1.37 | 0.21 | - | 4.42 |
Ti0.5Zr0.5C | 4.527 | 15.3 | 0.069 | 233.7 | 166.1 | 402.8 | 1.41 | 0.21 | 23.8 | 3.11 |
Ti0.5Mo0.5C | 4.343 | 1.8 | 0.068 | 295.9 | 190.6 | 470.7 | 1.55 | 0.23 | 22.8 | 4.12 |
Zr0.5Mo0.5C | 4.543 | 16.5 | 0.116 | 238.8 | 130.6 | 331.4 | 1.83 | 0.27 | 14.0 | 2.85 |
Ti0.5Zr0.25Mo0.25C | 4.430 | 8.1 | 0.053 | 258.2 | 180.4 | 439.0 | 1.43 | 0.22 | 24.6 | 3.54 |
Ti0.25Zr0.5Mo0.25C | 4.528 | 15.4 | 0.070 | 246.3 | 167.7 | 410.0 | 1.47 | 0.22 | 22.5 | 3.29 |
Ti0.25Zr0.25Mo0.5C | 4.448 | 9.4 | 0.103 | 258.3 | 167.8 | 412.3 | 1.54 | 0.23 | 21.2 | 3.42 |
Ti0.33Zr0.33Mo0.33C | 4.467 | 10.8 | 0.078 | 259.6 | 173.2 | 425.1 | 1.50 | 0.23 | 22.4 | 3.50 |
Area [µm2] | Radius [mm] | Total Cycles | Load [N] | Distance [m] | Volume Lost [mm3] | Wear Factor |
---|---|---|---|---|---|---|
168.64 | 4.5 | 30,000 | 0.75 | 838.23 | 0.0047 | 2.119 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogrebnjak, A.; Buranych, V.; Ivashchenko, V.; Borba-Pogrebnjak, S.; Maksakova, O.; Caplovicová, M.; Goncharov, A.; Onoprienko, A.; Skrynskyy, P.; Sahul, M.; et al. Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance. Nanomaterials 2024, 14, 1986. https://doi.org/10.3390/nano14241986
Pogrebnjak A, Buranych V, Ivashchenko V, Borba-Pogrebnjak S, Maksakova O, Caplovicová M, Goncharov A, Onoprienko A, Skrynskyy P, Sahul M, et al. Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance. Nanomaterials. 2024; 14(24):1986. https://doi.org/10.3390/nano14241986
Chicago/Turabian StylePogrebnjak, Alexander, Volodymyr Buranych, Volodymyr Ivashchenko, Svitlana Borba-Pogrebnjak, Olga Maksakova, Maria Caplovicová, Alexander Goncharov, Alexei Onoprienko, Petro Skrynskyy, Martin Sahul, and et al. 2024. "Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance" Nanomaterials 14, no. 24: 1986. https://doi.org/10.3390/nano14241986
APA StylePogrebnjak, A., Buranych, V., Ivashchenko, V., Borba-Pogrebnjak, S., Maksakova, O., Caplovicová, M., Goncharov, A., Onoprienko, A., Skrynskyy, P., Sahul, M., Konarski, P., Budzynski, P., Kaminski, M., Opielak, M., Flock, D., Pelenovich, V., & Bing, Y. (2024). Tunable TiZrMoC Coatings: A Comprehensive Study of Microstructure, Mechanical Properties, and Wear Resistance. Nanomaterials, 14(24), 1986. https://doi.org/10.3390/nano14241986