Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. BiOI NS Preparation
2.3. Characterization
2.4. Photocatalytic Degradation Experiment
3. Results and Discussion
3.1. Phase Structures and Morphologies
3.2. Optical and Electrical Properties
3.3. Photocatalytic Degradation Properties
3.4. Photocatalytic Degradation Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Feng, Q.; Zhu, J.; Liu, G.; Dai, Y.; Zhou, Q.; Xia, S.; Wu, Z.; Zhang, Y. Towards sustainable futures: A review of sediment remediation and resource valorization techniques. J. Clean. Prod. 2024, 435, 140529. [Google Scholar] [CrossRef]
- Wahab, A.; Muhammad, M.; Ullah, S.; Abdi, G.; Shah, G.M.; Zaman, W.; Ayaz, A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. Sci. Total Environ. 2024, 926, 171862. [Google Scholar] [CrossRef] [PubMed]
- Mayer, P.M.; Moran, K.D.; Miller, E.L.; Brander, S.M.; Harper, S.; Garcia-Jaramillo, M.; Carrasco-Navarro, V.; Ho, K.T.; Burgess, R.M.; Hampton, L.M.T. Where the rubber meets the road: Emerging environmental impacts of Tire Wear particles and their chemical cocktails. Sci. Total Environ. 2024, 927, 171153. [Google Scholar] [CrossRef]
- Najar, I.N.; Sharma, P.; Das, R.; Tamang, S.; Mondal, K.; Thakur, N.; Gandhi, S.G.; Kumar, V. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. J. Environ. Manag. 2024, 360, 121136. [Google Scholar] [CrossRef]
- Rede, D.; Delerue-Matos, C.; Fernandes, V.C. The Microplastics Iceberg: Filling Gaps in Our Understanding. Polymers 2023, 15, 3356. [Google Scholar] [CrossRef]
- Tejada-Tovar, C.; Villabona-Ortíz, Á.; Ortega-Toro, R. Removal of metals and dyes in water using low-cost agro-industrial waste materials. Appl. Sci. 2023, 13, 8481. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, Y.; Zhou, Y. Recent advance in enhanced adsorption of ionic dyes from aqueous solution: A review. Crit. Rev. Environ. Sci. Technol. 2023, 53, 1709–1730. [Google Scholar] [CrossRef]
- Ngulube, K.F.; Abdelhaleem, A.; Osman, A.I.; Peng, L.; Nasr, M. Advancing sustainable water treatment strategies: Harnessing magnetite-based photocatalysts and techno-economic analysis for enhanced wastewater management in the context of SDGs. Environ. Sci. Pollut. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.H.; Uddin, M.K.; Isaac, R.; Aldosari, O.F. An effective biomass for the adsorption of methylene blue dye and treatment of river water. Adsorpt. Sci. Technol. 2022, 2022, 4143138. [Google Scholar] [CrossRef]
- Marcharla, E.; Vinayagam, S.; Gnanasekaran, L.; Soto-Moscoso, M.; Chen, W.-H.; Thanigaivel, S.; Ganesan, S. Microplastics in Marine Ecosystems: A Comprehensive Review of Biological and Ecological Implications and its mitigation approach using nanotechnology for the sustainable environment. Environ. Res. 2024, 256, 119181. [Google Scholar] [CrossRef]
- Tanaya, K.; Kumari, A.; Singh, A.K.; Singh, D. Bioremediation: An economical approach for treatment of textile dye effluents. Water Air Soil Pollut. 2024, 235, 516. [Google Scholar] [CrossRef]
- Khan, M.S.J.; Sidek, L.M.; Kumar, P.; Alkhadher, S.A.A.; Basri, H.; Zawawi, M.H.; El-Shafie, A.; Ahmed, A.N. Machine learning based-model to predict catalytic performance on removal of hazardous nitrophenols and azo dyes pollutants from wastewater. Int. J. Biol. Macromol. 2024, 278, 134701. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Jun, B.-M.; Choi, J.S.; Park, C.M.; Jang, M.; Son, A.; Nam, S.-N.; Yoon, Y. Ultrasonic treatment of dye chemicals in wastewater: A review. Chemosphere 2024, 354, 141676. [Google Scholar] [CrossRef] [PubMed]
- Rápó, E.; Tonk, S. Factors affecting synthetic dye adsorption; desorption studies: A review of results from the last five years (2017–2021). Molecules 2021, 26, 5419. [Google Scholar] [CrossRef]
- Kallawar, G.A.; Bhanvase, B.A. A review on existing and emerging approaches for textile wastewater treatments: Challenges and future perspectives. Environ. Sci. Pollut. Res. 2024, 31, 1748–1789. [Google Scholar] [CrossRef] [PubMed]
- Melendez, J.R.; Mátyás, B.; Hena, S.; Lowy, D.A.; El Salous, A. Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses. Renew. Sustain. Energy Rev. 2022, 160, 112260. [Google Scholar] [CrossRef]
- Sudalai, S.; Prabakaran, S.; Varalakksmi, V.; Kireeti, I.S.; Upasana, B.; Yuvasri, A.; Arumugam, A. A review on oilcake biomass waste into biofuels: Current conversion techniques, sustainable applications, and challenges: Waste to energy approach (WtE). Energy Convers. Manag. 2024, 314, 118724. [Google Scholar] [CrossRef]
- Akram, F.; Fatima, T.; Ibrar, R.; ul Haq, I. Biohydrogen: Production, promising progressions and challenges of a green carbon-free energy. Sustain. Energy Technol. Assess. 2024, 69, 103893. [Google Scholar] [CrossRef]
- Tetteh, E.K.; Sijadu, N.G.; Rathilal, S. An overview of non-carbonaceous and renewable-powered technologies for green hydrogen production in South Africa: Keywords occurrence analysis. Energy Strategy Rev. 2024, 54, 101486. [Google Scholar] [CrossRef]
- Jeje, S.O.; Marazani, T.; Obiko, J.O.; Shongwe, M.B. Advancing the hydrogen production economy: A comprehensive review of technologies, sustainability, and future prospects. Int. J. Hydrogen Energy 2024, 78, 642–661. [Google Scholar] [CrossRef]
- Vignesh, S.; Eniya, P.; Srinivasan, M.; Sundar, J.K.; Li, H.; Jayavel, S.; Pandiaraman, M.; Manthrammel, M.A.; Shkir, M.; Palanivel, B. Fabrication of Ag/Ag2O incorporated graphitic carbon nitride based ZnO nanocomposite for enhanced Z-scheme photocatalytic performance of various organic pollutants and bacterial disinfection. J. Environ. Chem. Eng. 2021, 9, 105996. [Google Scholar] [CrossRef]
- Ahmad, A.; e Noor, A.; Anwar, A.; Majeed, S.; Khan, S.; Nisa, Z.U.; Ali, S.; Gnanasekaran, L.; Rajendran, S.; Li, H. Support based metal incorporated layered nanomaterials for photocatalytic degradation of organic pollutants. Environ. Res. 2024, 260, 119481. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Wang, P.; Liu, X.; Lei, X.; Guo, R.; You, J.; Zhang, H. Application of MOFs driven by various energy sources for degradation the organic pollutants in water: A review. Coord. Chem. Rev. 2024, 499, 215506. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Akram, S.; Lal, B.; Hassan, S.U.; Ashraf, R.; Kezembayeva, G.; Mushtaq, M.; Chinibayeva, N.; Hosseini-Bandegharaei, A. Advanced Photocatalysis as a Viable and Sustainable Wastewater Treatment Process: A Comprehensive Review. Environ. Res. 2024, 253, 118947. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Sohail, M.; Ajmal, Z.; Abd El-Gawad, H.H.; Ghernaout, D.; Al-Hadeethi, Y.; Raza, S.; Orooji, Y. Advances/Scope and prospects of g-C3N4 derived fascinating photocatalyst as a leading route towards solar energy adaption. J. Clean. Prod. 2024, 438, 140568. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, H.; Shi, L.; Wu, Z.; Zhang, S.; Wang, S.; Sun, H. Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater. Sep. Purif. Technol. 2024, 329, 125225. [Google Scholar] [CrossRef]
- Bhapkar, A.R.; Bhame, S. A review on ZnO and its modifications for photocatalytic degradation of prominent textile effluents: Synthesis, mechanisms, and future directions. J. Environ. Chem. Eng. 2024, 12, 112553. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Zhou, X.; Xu, X.; Pan, M. Synergistic mechanisms of carbon-based materials for VOCs photocatalytic degradation: A critical review. J. Environ. Manag. 2024, 367, 122087. [Google Scholar] [CrossRef]
- Han, Q.; Ding, H.; Wang, Z. A Comprehensive Review on Non-Trivalent Bismuth-Based Materials: Structure, Synthesis, and Strategies for Improving Photocatalytic Performance. Sol. RRL 2024, 8, 2300872. [Google Scholar] [CrossRef]
- Li, S.; Li, Y.; Huang, H. Solar-Driven Selective Oxidation Over Bismuth-Based Semiconductors: From Prolific Catalysts to Diverse Reactions. Adv. Funct. Mater. 2024, 34, 2313883. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, L.; Cui, L.; Zhang, Z.; Li, R.; Wang, Y.; Wang, Y.; Fan, C.; Yu, Z.; Liu, J. Fe-Bi dual sites regulation of Bi2O2. 33 nanosheets to promote photocatalytic nitrogen fixation activity. J. Colloid Interface Sci. 2024, 661, 46–58. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, S.; Batool, F.; Chen, S.; Zhao, F.; Xu, K. Rational design of Bi2Sn2O7/Bi5O7I S-scheme heterojunction for visible photocatalytic oxidation of emerging pollutants. J. Colloid Interface Sci. 2024, 659, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Shi, Q.; Gu, X.; Sheng, X.; Sun, Y.; Shi, H.; Xu, L.; Li, G. Visible-light S-scheme heterojunction of copper bismuthate quantum dots decorated Titania-spindles for exceptional tetracycline degradation. J. Colloid Interface Sci. 2024, 654, 1365–1377. [Google Scholar] [CrossRef]
- Sivaranjani, P.; Subhiksha, V.; Okla, M.K.; Janani, B.; Abdel-Maksoud, M.A.; Al-Amri, S.S.; Alaraidh, I.A.; Alatar, A.A.; Khan, S.S. Construction of pnp nano heterojunction through coupling La2O3,(BiO)2CO3 and Ag3PO4 for effective photocatalytic degradation of doxycycline: Insights into mechanism, pathway and intermediate toxicity evaluation. Environ. Pollut. 2024, 345, 123521. [Google Scholar] [CrossRef] [PubMed]
- Parwaiz, S.; Khan, M.M. Perovskites and perovskite-based heterostructures for photocatalytic energy and environmental applications. J. Environ. Chem. Eng. 2024, 12, 113175. [Google Scholar] [CrossRef]
- Zhu, H.; Turkevych, I.; Lohan, H.; Liu, P.; Martin, R.W.; Massabuau, F.C.; Hoye, R.L. Progress and applications of (Cu–) Ag–Bi–I semiconductors, and their derivatives, as next-generation lead-free materials for photovoltaics, detectors and memristors. Int. Mater. Rev. 2024, 69, 19–62. [Google Scholar] [CrossRef]
- Sun, Z.; Amrillah, T. Potential application of bismuth oxyiodide (BiOI) when it meets light. Nanoscale 2024, 16, 5079–5106. [Google Scholar] [CrossRef] [PubMed]
- Haile, C.T.; Ng, K.H.; Chiu, C.-W.; Ahmad, N.; Kuo, C.-F.J. Design of a novel Schottky diode-functionalized Z-scheme C-doped BiOI@ Bi0 noble-metal-free plasmonic photocatalyst for efficient photo-oxidation of azo dyes and endocrine-disrupting chemical under visible light irradiation. Mater. Today Phys. 2024, 42, 101352. [Google Scholar] [CrossRef]
- Chen, W.; Xing, Z.; Zhang, N.; Cheng, T.; Ren, B.; Liu, X.; Wang, Z.; Li, Z.; Zhou, W. Hierarchical Bi2Fe4O9/BiOI S-scheme heterojunctions with exceptional hydraulic shear induced photo-piezoelectric catalytic activity. npj Clean Water 2024, 7, 86. [Google Scholar] [CrossRef]
- Lin, M.; Liu, H.; Wang, H.; Wu, J.; Jiang, H.; Wei, H.; Ou, M.; Guan, Z.; Dong, Z.; Qi, J. Co dopant anchored in the BiOIO3 nanosheets to induce oxygen vacancies for enhanced photocatalytic activity. Chem. Eng. J. 2024, 484, 149472. [Google Scholar] [CrossRef]
- Luangwanta, T.; Chachvalvutikul, A.; Watwiangkham, A.; Jungsuttiwong, S.; Kaowphong, S. Ethylene glycol-assisted microwave synthesis of bismuth-rich oxychlorides photocatalysts with oxygen vacancies for efficient degradation of bisphenol A and oxidation of arsenite. J. Environ. Chem. Eng. 2024, 12, 114100. [Google Scholar] [CrossRef]
- Vahabirad, S.; Nezamzadeh-Ejhieh, A.; Mirmohammadi, M. A co-precipitation synthesized BiOI/(BiO) 2CO3 nanocatalyst: An experimental design and mechanism study towards photodegradation of sulfasalazine. J. Taiwan Inst. Chem. Eng. 2023, 151, 105139. [Google Scholar] [CrossRef]
- Cao, X.; Gu, Y.; Tian, H.; Fang, Y.; Johnson, D.; Ren, Z.; Chen, C.; Huang, Y. Microemulsion synthesis of ms/tz-BiVO4 composites: The effect of pH on crystal structure and photocatalytic performance. Ceram. Int. 2020, 46, 20788–20797. [Google Scholar] [CrossRef]
- Cui, S.; Shan, G.; Zhu, L. Solvothermal synthesis of I-deficient BiOI thin film with distinct photocatalytic activity and durability under simulated sunlight. Appl. Catal. B Environ. 2017, 219, 249–258. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Li, C.; Qi, Y.; Qi, X.; Ren, J.; Yuan, B.; Ni, B.; Zhou, R.; Zhang, J. Hydrothermal synthesis of carbon spheres–BiOI/BiOIO3 heterojunctions for photocatalytic removal of gaseous Hg0 under visible light. Chem. Eng. J. 2016, 304, 533–543. [Google Scholar] [CrossRef]
- Arumugam, M.; Choi, M.Y. Recent progress on bismuth oxyiodide (BiOI) photocatalyst for environmental remediation. J. Ind. Eng. Chem. 2020, 81, 237–268. [Google Scholar]
- Mera, A.C.; Moreno, Y.; Contreras, D.; Escalona, N.; Meléndrez, M.F.; Mangalaraja, R.V.; Mansilla, H.D. Improvement of the BiOI photocatalytic activity optimizing the solvothermal synthesis. Solid State Sci. 2017, 63, 84–92. [Google Scholar] [CrossRef]
- Chang, X.; Huang, J.; Tan, Q.; Wang, M.; Ji, G.; Deng, S.; Yu, G. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation. Catal. Commun. 2009, 10, 1957–1961. [Google Scholar] [CrossRef]
- Ren, K.; Zhang, K.; Liu, J.; Luo, H.; Huang, Y.; Yu, X. Controllable synthesis of hollow/flower-like BiOI microspheres and highly efficient adsorption and photocatalytic activity. CrystEngComm 2012, 14, 4384–4390. [Google Scholar] [CrossRef]
- Hu, H.; Liu, S.; Zhang, W.; An, J.; Xia, H. Efficient epimerization of glucose to mannose over molybdenum-based catalyst in aqueous media. ChemistrySelect 2020, 5, 1728–1733. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, L.; Ye, R.-P.; Sun, M.-L.; Yang, J.-X.; Li, F.; Yao, Y.-G. Mannitol as a novel dopant for Cu/SiO2: A low-cost, environmental and highly stable catalyst for dimethyl oxalate hydrogenation without hydrogen prereduction. J. Catal. 2020, 389, 421–431. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, J.; Tang, J.; Yang, F.; Wang, C.; Wei, B.; Li, X. Enhanced photovoltaic performance of PDPP3T bulk heterojunction using D-sorbitol doped PEDOT: PSS. Org. Electron. 2018, 62, 491–498. [Google Scholar] [CrossRef]
- Xiong, W.; Tang, W.; Zhang, G.; Yang, Y.; Fan, Y.; Zhou, K.; Zou, C.; Zhao, B.; Di, D. Controllable p-and n-type behaviours in emissive perovskite semiconductors. Nature 2024, 633, 344–350. [Google Scholar] [CrossRef]
- Pattnaik, A.; Poonia, A.K.; Ghosh, P. Bi-tailored compounds for photocatalytic environmental applications: Current trends, advancements, challenges and future perspectives. Sustain. Mater. Technol. 2023, 38, e00769. [Google Scholar] [CrossRef]
- Barhoum, A.; García-Betancourt, M.L.; Jeevanandam, J.; Hussien, E.A.; Mekkawy, S.A.; Mostafa, M.; Omran, M.M.; Abdalla, M.S.; Bechelany, M. Review on natural, incidental, bioinspired, and engineered nanomaterials: History, definitions, classifications, synthesis, properties, market, toxicities, risks, and regulations. Nanomaterials 2022, 12, 177. [Google Scholar] [CrossRef]
- Li, Z.; Wang, M.; Shen, J.; Zhu, Z.; Liu, Y. Synthesis of BiOI nanosheet/coarsened TiO2 nanobelt heterostructures for enhancing visible light photocatalytic activity. RSC Adv. 2016, 6, 30037–30047. [Google Scholar] [CrossRef]
- Kumar, P.; Laishram, D.; Sharma, R.K.; Vinu, A.; Hu, J.; Kibria, M.G. Boosting photocatalytic activity using carbon nitride based 2D/2D van der Waals heterojunctions. Chem. Mater. 2021, 33, 9012–9092. [Google Scholar] [CrossRef]
- Chen, L.; Guan, B.; Guo, J.; Chen, Y.; Ma, Z.; Chen, J.; Yao, S.; Zhu, C.; Dang, H.; Shu, K. Review on the preparation and performance improvement methods of bismuth photocatalyst materials. Catal. Sci. Technol. 2023, 13, 5478–5529. [Google Scholar] [CrossRef]
- Cao, J.; Li, X.; Lin, H.; Chen, S.; Fu, X. In situ preparation of novel p–n junction photocatalyst BiOI/(BiO) 2CO3 with enhanced visible light photocatalytic activity. J. Hazard. Mater. 2012, 239, 316–324. [Google Scholar] [CrossRef]
- Sun, B.-W.; Li, H.-J.; Yu, H.-y.; Qian, D.-J.; Chen, M. In situ synthesis of polymetallic Co-doped g-C3N4 photocatalyst with increased defect sites and superior charge carrier properties. Carbon 2017, 117, 1–11. [Google Scholar] [CrossRef]
- Tian, N.; Zhang, Y.; Liu, C.; Yu, S.; Li, M.; Huang, H. gC3N4/Bi4O5I2 2D–2D heterojunctional nanosheets with enhanced visible-light photocatalytic activity. RSC Adv. 2016, 6, 10895–10903. [Google Scholar] [CrossRef]
- Wang, T.; Jin, Z. Graphdiyne (CnH2n−2) based CuI-GDY/ZnAl LDH double S-scheme heterojunction proved with in situ XPS for efficient photocatalytic hydrogen production. J. Mater. Sci. Technol. 2023, 155, 132–141. [Google Scholar] [CrossRef]
- Qu, W.; Chen, C.; Tang, Z.; Xia, D.; Ma, D.; Huang, Y.; Lian, Q.; He, C.; Shu, D.; Han, B. Electron-rich/poor reaction sites enable ultrafast confining Fenton-like processes in facet-engineered BiOI membranes for water purification. Appl. Catal. B Environ. 2022, 304, 120970. [Google Scholar] [CrossRef]
- Feng, Z.; Zeng, L.; Zhang, Q.; Ge, S.; Zhao, X.; Lin, H.; He, Y. In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. J. Environ. Sci. 2020, 87, 149–162. [Google Scholar] [CrossRef]
- Wang, C.; Hu, H.; Yan, S.; Zhang, Q. Activating Bi2O3 by ball milling to induce efficiently oxygen vacancy for incorporating iodide anions to form BiOI. Chem. Phys. 2020, 533, 110739. [Google Scholar] [CrossRef]
- Ho, R.; Hinder, S.J.; Watts, J.F.; Dilworth, S.E.; Williams, D.R.; Heng, J.Y. Determination of surface heterogeneity of d-mannitol by sessile drop contact angle and finite concentration inverse gas chromatography. Int. J. Pharm. 2010, 387, 79–86. [Google Scholar] [CrossRef]
- Gao, P.; Yang, Y.; Yin, Z.; Kang, F.; Fan, W.; Sheng, J.; Feng, L.; Liu, Y.; Du, Z.; Zhang, L. A critical review on bismuth oxyhalide based photocatalysis for pharmaceutical active compounds degradation: Modifications, reactive sites, and challenges. J. Hazard. Mater. 2021, 412, 125186. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Habib, H.; Yang, H.; Rehman, Z.U.; Zhang, Y.; Xu, X.; Wang, X.; Zheng, K.; Hou, J. Oxygen Vacancy-Modified BiOCl Nanoplates via Three Minutes Mannitol-Assisted Grinding Treatment for Excellent Photocatalytic Applications. ACS Sustain. Chem. Eng. 2024, 12, 11308–11318. [Google Scholar] [CrossRef]
- Wang, G.; Deng, Q.; Li, H.; Hou, W. Mannitol and acidity co-tuned synthesis of oxygen-vacancy-modified bismuth molybdate nanorods for efficient photocatalytic nitrogen reduction to ammonia. Sci. China Mater. 2023, 66, 1435–1446. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Miao, C.; Wang, Y.; Wang, Y.; Liu, C.; Che, G. g-C3N4/BiOI S-scheme heterojunction: A 2D/2D model platform for visible-light-driven photocatalytic CO2 reduction and pollutant degradation. J. Environ. Chem. Eng. 2022, 10, 108201. [Google Scholar] [CrossRef]
- Hu, H.; Xu, C.; Jin, J.; Xu, M.; Cheng, Y.; Ji, W.; Ding, Z.; Shao, M.; Wan, Y. Synthesis of a BiOIO3/Bi2O4 heterojunction that can efficiently degrade rhodamine B and ciprofloxacin under visible light. Opt. Mater. 2022, 133, 112893. [Google Scholar] [CrossRef]
- Wei, X.; Yang, X.; Xu, X.; Liu, Z.; Naraginti, S.; Wan, J. Novel magnetically separable tetrahedral Ag3PO4/NrGO/CuFe2O4 photocatalyst for efficient detoxification of 2,4-dichlorophenol. Environ. Res. 2021, 201, 111519. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Chen, J.; Yin, Z.; Sheng, W.; Lin, F.; Xu, H.; Cao, S. Complete removal of phenolic contaminants from bismuth-modified TiO2 single-crystal photocatalysts. Chin. J. Catal. 2021, 42, 347–355. [Google Scholar] [CrossRef]
- Chang, S.-K.; Abbasi, Z.; Khushbakht, F.; Ullah, I.; Rehman, F.U.; Hafeez, M. Rapid pH-dependent photocatalytic degradation of methylene blue by CdS nanorods synthesized through hydrothermal process. Arab. J. Chem. 2024, 17, 105422. [Google Scholar] [CrossRef]
- Zhou, M.; Yu, Z.; Yu, G.; Fu, R.; Wang, S.; Yang, W.; Liao, X.; Zhao, Y.; Wang, Z. Constructing of n-Type Semiconductor Heterostructures for Efficient Hydrazine-Assisted Hydrogen Production. Adv. Funct. Mater. 2024. [Google Scholar] [CrossRef]
- Teng, F.; Hu, K.; Ouyang, W.; Fang, X. Photoelectric detectors based on inorganic p-type semiconductor materials. Adv. Mater. 2018, 30, 1706262. [Google Scholar] [CrossRef]
- Kim, D.; Yong, K. Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production. Appl. Cata Lysis B Environ. 2021, 282, 119538. [Google Scholar] [CrossRef]
- Dong, L.; Jia, R.; Xin, B.; Peng, B.; Zhang, Y. Effects of oxygen vacancies on the structural and optical properties of β-Ga2O3. Sci. Rep. 2017, 7, 40160. [Google Scholar] [CrossRef] [PubMed]
- Wilczewska, P.; Bielicka-Giełdoń, A.; Szczodrowski, K.; Malankowska, A.; Ryl, J.; Tabaka, K.; Siedlecka, E.M. Morphology regulation mechanism and enhancement of photocatalytic performance of BiOX (X = Cl, Br, I) via mannitol-assisted synthesis. Catalysts 2021, 11, 312. [Google Scholar] [CrossRef]
- Narenuch, T.; Senasu, T.; Chankhanittha, T.; Nanan, S. Sunlight-active BiOI photocatalyst as an efficient adsorbent for the removal of organic dyes and antibiotics from aqueous solutions. Molecules 2021, 26, 5624. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ahmadi, Y.; Younis, S.A.; Kim, K.-H. Modification strategies of BiOI-based visible-light photocatalysts and their efficacy on decomposition of tetracycline antibiotics in water. Crit. Rev. Environ. Sci. Technol. 2024, 54, 1364–1393. [Google Scholar] [CrossRef]
- Ma, F.-Q.; Yao, J.-W.; Zhang, Y.-F.; Wei, Y. Unique band structure enhanced visible light photocatalytic activity of phosphorus-doped BiOI hierarchical microspheres. RSC Adv. 2017, 7, 36288–36296. [Google Scholar] [CrossRef]
- Liu, H.; Cao, W.; Su, Y.; Wang, Y.; Wang, X. Synthesis, characterization and photocatalytic performance of novel visible-light-induced Ag/BiOI. Appl. Catal. B Environ. 2012, 111, 271–279. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Yin, S.; Xu, H.; Xu, L.; Xu, Y.; He, M.; Li, H. Preparation of sphere-like gC3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J. Mater. Chem. A 2014, 2, 5340–5351. [Google Scholar] [CrossRef]
- Vinoth, R.; Babu, S.G.; Ramachandran, R.; Neppolian, B. Bismuth oxyiodide incorporated reduced graphene oxide nanocomposite material as an efficient photocatalyst for visible light assisted degradation of organic pollutants. Appl. Surf. Sci. 2017, 418, 163–170. [Google Scholar] [CrossRef]
- Yu, C.; Jimmy, C.Y.; Fan, C.; Wen, H.; Hu, S. Synthesis and characterization of Pt/BiOI nanoplate catalyst with enhanced activity under visible light irradiation. Mater. Sci. Eng. B 2010, 166, 213–219. [Google Scholar] [CrossRef]
- Chang, C.; Zhu, L.; Fu, Y.; Chu, X. Highly active Bi/BiOI composite synthesized by one-step reaction and its capacity to degrade bisphenol A under simulated solar light irradiation. Chem. Eng. J. 2013, 233, 305–314. [Google Scholar] [CrossRef]
- Wang, X.; Liang, H.; Zhao, X.; Fan, X.; Bai, J. Enhanced visible light utilization of BiOI/BiOBr/Bi composite catalytic materials for photocatalytic degradation of TC and reduction of Cr (VI). Mater. Today Sustain. 2024, 27, 100909. [Google Scholar] [CrossRef]
Sample | Amount | Application | Concentration and Usage | Power Source | Time | Efficiency | Ref. |
---|---|---|---|---|---|---|---|
BiOI | 25 mg | gallic acid degradation | 20 ppm 250 mL | Xenion lamp 12 W | 60 min | 60% | [47] |
BiOI | 50 mg | NOR degradation | 10 mg/L 200 mL | Panasonic lamp 15W | 240 min | 80% | [80] |
BiOI heterojunction | 10 mg | TC degradation | 20 mg/L 10 mL | 200 W | 120 min | 69.43% | [81] |
N doped BiOI | 50 mg | TC degradation | 20 mg/L 60 mL | 500 W | 120 min | 70% | [82] |
Ag/BiOI | 50 mg | MO degradation | 10 mg/L 50 mL | Xe lamp 500 W | 240 min | 80% | [83] |
g-C3N4/BiOI | 20 mg | TC degradation | 10 mg/L 50 mL | Xe lamp 500 W | 120 min | 77% | [84] |
PANI/BiOI | 20 mg | RhB degradation | 20 mg/L 50 mL | Xe lamp 300 W | 120 min | 91% | [46] |
rGO/BiOI | 80 mg | MO degradation | 10 mg/L 80 mL | Xe lamp 250 W | 240 min | 85% | [85] |
Pt/BiOI | 50 mg | AO II | 20 mg/L 80 mL | Tungsten halogen lamp 300 W | 60 min | 90% | [86] |
Bi/BiOI | 5 mg | BPA | 20 mg/L 10 mL | Xe lamp 350 W | 60 min | 90% | [87] |
BiOI/BiOBr/Bi | 20 mg | TC | 10 mg/L 50 mL | Xe lamp 300 W | 140 min | 98.4% | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Li, W.; Li, K.; Huang, P.; Zhuo, Y.; Liu, K.; Yang, Z.; Han, D. Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity. Nanomaterials 2024, 14, 2048. https://doi.org/10.3390/nano14242048
Yang S, Li W, Li K, Huang P, Zhuo Y, Liu K, Yang Z, Han D. Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity. Nanomaterials. 2024; 14(24):2048. https://doi.org/10.3390/nano14242048
Chicago/Turabian StyleYang, Shuo, Wenhui Li, Kaiyue Li, Ping Huang, Yuquan Zhuo, Keyan Liu, Ziwen Yang, and Donglai Han. 2024. "Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity" Nanomaterials 14, no. 24: 2048. https://doi.org/10.3390/nano14242048
APA StyleYang, S., Li, W., Li, K., Huang, P., Zhuo, Y., Liu, K., Yang, Z., & Han, D. (2024). Engineering n-Type and p-Type BiOI Nanosheets: Influence of Mannitol on Semiconductor Behavior and Photocatalytic Activity. Nanomaterials, 14(24), 2048. https://doi.org/10.3390/nano14242048