Enhanced Electrocatalytic Oxygen Reduction Reaction of TiO2 Nanotubes by Combining Surface Oxygen Vacancy Engineering and Zr Doping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Section
2.2. Fabrication of TNT Arrays
2.3. Fabrication of Zr:TNT Electrodes
2.4. Characterization of Electrodes
3. Results and Discussion
3.1. Crystalline Properties of Zr:TNT Arrays
3.2. Morphological Features of Zr:TNT Arrays
3.3. Electrochemical Performance of TNT Arrays
3.3.1. Electrochemical Performance of TNT Arrays without Zr Doping
3.3.2. Electrochemical Performances of Zr-Doped TNT Arrays
3.3.3. Effect of Oxygen Concentration on the Reduction Peaks in Vacuum-Annealed Zr-Doped TNT Arrays
3.3.4. EIS Measurements
3.3.5. Mechanisms of ORR Enhancement
3.3.6. ORR Catalytic Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, V.; Cooper, J.S. Review and Analysis of PEM Fuel Cell Design and Manufacturing. J. Power Sources 2003, 114, 32–53. [Google Scholar] [CrossRef]
- Nie, Y.; Li, L.; Wei, Z. Recent Advancements in Pt and Pt-Free Catalysts for Oxygen Reduction Reaction. Chem. Soc. Rev. 2015, 44, 2168–2201. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, S.; Chen, S. Pt Utilization in Proton Exchange Membrane Fuel Cells: Structure Impacting Factors and Mechanistic Insights. Chem. Soc. Rev. 2022, 51, 1529–1546. [Google Scholar] [CrossRef]
- Fang, B.; Chaudhari, N.K.; Kim, M.-S.; Kim, J.H.; Yu, J.-S. Homogeneous Deposition of Platinum Nanoparticles on Carbon Black for Proton Exchange Membrane Fuel Cell. J. Am. Chem. Soc. 2009, 131, 15330–15338. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.L.; Snyder, J.D.; Li, D.; Herron, J.A.; Mavrikakis, M.; et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Ou, L.; Liang, W.; Yang, F.; Liu, Y.; Chen, S. Efficient and Superiorly Durable Pt-Lean Electrocatalysts of Pt−W Alloys for the Oxygen Reduction Reaction. J. Phys. Chem. C 2011, 115, 2162–2168. [Google Scholar] [CrossRef]
- Li, Z.; Ge, R.; Su, J.; Chen, L. Recent Progress in Low Pt Content Electrocatalysts for Hydrogen Evolution Reaction. Adv. Mater. Interfaces 2020, 7, 2000396. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.; Yao, S.; Hao, C.; Pan, C.; Xiang, X.; Tian, Z.Q.; Shen, P.K.; Shao, Z.; Jiang, S.P. Boosting Electrocatalytic Activity of Single Atom Catalysts Supported on Nitrogen-Doped Carbon through N Coordination Environment Engineering. Small 2022, 18, 2105329. [Google Scholar] [CrossRef] [PubMed]
- Delmondo, L.; Salvador, G.P.; Muñoz-Tabares, J.A.; Sacco, A.; Garino, N.; Castellino, M.; Gerosa, M.; Massaglia, G.; Chiodoni, A.; Quaglio, M. Nanostructured MnxOy for Oxygen Reduction Reaction (ORR) Catalysts. Appl. Surf. Sci. 2016, 388, 631–639. [Google Scholar] [CrossRef]
- Garino, N.; Sacco, A.; Castellino, M.; Muñoz-Tabares, J.A.; Armandi, M.; Chiodoni, A.; Pirri, C.F. One-Pot Microwave-Assisted Synthesis of Reduced Graphene Oxide/Iron Oxide Nanocomposite Catalyst for the Oxygen Reduction Reaction. ChemistrySelect 2016, 1, 3640–3646. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An Overview of Metal Oxide Materials as Electrocatalysts and Supports for Polymer Electrolyte Fuel Cells. Energy Environ. Sci. 2014, 7, 2535–2558. [Google Scholar] [CrossRef]
- Xu, X.; Su, C.; Shao, Z. Fundamental Understanding and Application of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite in Energy Storage and Conversion: Past, Present, and Future. Energy Fuels 2021, 35, 13585–13609. [Google Scholar] [CrossRef]
- Xu, X.; Wang, W.; Zhou, W.; Shao, Z. Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy-Related Applications. Small Methods 2018, 2, 1800071. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, H.; Li, Y.; Gao, Y.; Zhao, Y.; Song, W.; Shao, Z.; Yi, B. Supported Noble Metals on Hydrogen-Treated TiO2 Nanotube Arrays as Highly Ordered Electrodes for Fuel Cells. ChemSusChem 2013, 6, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Shaddad, M.N.; Al-Mayouf, A.M.; Ghanem, M.A.; AlHoshan, M.S.; Singh, J.P.; Al-Suhybani, A.A. Chemical Deposition and Electrocatalytic Activity of Platinum Nanoparticles Supported on TiO2 Nanotubes. Int. J. Electrochem. Sci. 2013, 8, 2468–2478. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Al-Mayouf, A.M.; Shaddad, M.N.; Marken, F. Selective Formation of Hydrogen Peroxide by Oxygen Reduction on TiO2 Nanotubes in Alkaline Media. Electrochim. Acta 2015, 174, 557–562. [Google Scholar] [CrossRef]
- Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M.; Guo, S. Tuning Nanowires and Nanotubes for Efficient Fuel-Cell Electrocatalysis. Adv. Mater. 2016, 28, 10117–10141. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D. TiO2 Photocatalysis and Related Surface Phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K.; Grimes, C.A. A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075. [Google Scholar] [CrossRef]
- Grimes, C.; Mor, G. TiO2 Nanotube Arrays: Synthesis, Properties, and Applications; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Arunachalam, P.; AlOraij, H.A.; Amer, M.S.; Hezam, M.; Shaddad, M.N.; Madhavan, J. Activation Effect of Nickel Phosphate Co-Catalysts on the Photoelectrochemical Water Oxidation Performance of TiO2 Nanotubes. J. Saudi Chem. Soc. 2022, 26, 101484. [Google Scholar] [CrossRef]
- Zhu, K.; Neale, N.R.; Miedaner, A.; Frank, A.J. Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Lett. 2007, 7, 69–74. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Xu, W.; Kulkarni, S.A.; Batabyal, S.K.; Zhang, S.; Cao, A.; Wong, L.H. TiO2 Nanotube Arrays Based Flexible Perovskite Solar Cells with Transparent Carbon Nanotube Electrode. Nano Energy 2015, 11, 728–735. [Google Scholar] [CrossRef]
- Arunachalam, P.; Amer, M.S.; AlOraij, H.A.; Al-Mayouf, A.M.; Hezam, M.; Al-Shalwi, M. Boosting the Photoelectrochemical Water Oxidation Performance of TiO2 Nanotubes by Surface Modification Using Silver Phosphate. Catalysts 2022, 12, 1440. [Google Scholar] [CrossRef]
- Macak, J.M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications. Curr. Opin. Solid State Mater. Sci. 2007, 11, 3–18. [Google Scholar] [CrossRef]
- Xing, L.; Jia, J.; Wang, Y.; Zhang, B.; Dong, S. Pt Modified TiO2 Nanotubes Electrode: Preparation and Electrocatalytic Application for Methanol Oxidation. Int. J. Hydrog. Energy 2010, 35, 12169–12173. [Google Scholar] [CrossRef]
- Baez, V.B.; Graves, J.E.; Pletcher, D. The Reduction of Oxygen on Titanium Oxide Electrodes. J. Electroanal. Chem. 1992, 340, 273–286. [Google Scholar] [CrossRef]
- Parkinson, B.; Decker, F.; Julião, J.F.; Abramovich, M.; Chagas, H.C. The Reduction of Molecular Oxygen at Single Crystal Rutile Electrodes. Electrochim. Acta 1980, 25, 521–525. [Google Scholar] [CrossRef]
- Mentus, S.V. Oxygen Reduction on Anodically Formed Titanium Dioxide. Electrochim. Acta 2004, 50, 27–32. [Google Scholar] [CrossRef]
- Clechet, P.; Martelet, C.; Martin, J.R.; Olier, R. Photoelectrochemical Behaviour of TiO2 and Formation of Hydrogen Peroxide. Electrochim. Acta 1979, 24, 457–461. [Google Scholar] [CrossRef]
- Macak, J.; Schmidt-Stein, F.; Communications, P.S.-E. Efficient Oxygen Reduction on Layers of Ordered TiO2 Nanotubes Loaded with Au Nanoparticles. Electrochem. Commun. 2007, 9, 1783–1787. [Google Scholar] [CrossRef]
- Shaddad, M.N.; Cardenas-Morcoso, D.; García-Tecedor, M.; Fabregat-Santiago, F.; Bisquert, J.; Al-Mayouf, A.M.; Gimenez, S. TiO2 Nanotubes for Solar Water Splitting: Vacuum Annealing and Zr Doping Enhance Water Oxidation Kinetics. ACS Omega 2019, 4, 16095–16102. [Google Scholar] [CrossRef]
- Noh, K.J.; Nam, I.; Han, J.W. Nb-TiO2 Nanotubes as Catalyst Supports with High Activity and Durability for Oxygen Reduction. Appl. Surf. Sci. 2020, 521, 146330. [Google Scholar] [CrossRef]
- Nah, Y.C.; Paramasivam, I.; Schmuki, P. Doped TiO2 and TiO2 Nanotubes: Synthesis and Applications. ChemPhysChem 2010, 11, 2698–2713. [Google Scholar] [CrossRef]
- Nagaoka, H.; Ma, F.; Dequilettes, D.W.; Vorpahl, S.M.; Glaz, M.S.; Colbert, A.E.; Ziffer, M.E.; Ginger, D.S. Zr Incorporation into TiO2 Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells While Increasing Carrier Lifetimes. J. Phys. Chem. Lett. 2015, 6, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Albu, S.P.; Tsuchiya, H.; Fujimoto, S.; Schmuki, P. TiO2 Nanotubes–Annealing Effects on Detailed Morphology and Structure. Eur. J. Inorg. Chem. 2010, 2010, 4351–4356. [Google Scholar] [CrossRef]
- Macak, J.M.; Aldabergerova, S.; Ghicov, A.; Schmuki, P. Smooth Anodic TiO2 Nanotubes: Annealing and Structure. Phys. Status Solidi (a) 2006, 203, R67–R69. [Google Scholar] [CrossRef]
- Albu, S.P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G.E.; Macak, J.M.; Schmuki, P. Formation of Double-Walled TiO2 Nanotubes and Robust Anatase Membranes. Adv. Mater. 2008, 20, 4135–4139. [Google Scholar] [CrossRef]
- Xiao, P.; Liu, D.; Garcia, B.B.; Sepehri, S.; Zhang, Y.; Cao, G. Electrochemical and Photoelectrical Properties of Titania Nanotube Arrays Annealed in Different Gases. Sens. Actuators B Chem. 2008, 134, 367–372. [Google Scholar] [CrossRef]
- Hyam, R.S.; Lee, J.; Cho, E.; Khim, J.; Lee, H. Effect of Annealing Environments on Self-Organized TiO2 Nanotubes for Efficient Photocatalytic Applications. J. Nanosci. Nanotechnol. 2012, 12, 8908–8912. [Google Scholar] [CrossRef] [PubMed]
- Talla, A.; Suliali, N.J.; Goosen, W.E.; Urgessa, Z.N.; Motloung, S.V.; Botha, J.R. Effect of Annealing Temperature and Atmosphere on the Structural, Morphological and Luminescent Properties of TiO2 Nanotubes. Phys. B Condens. Matter 2022, 640, 414026. [Google Scholar] [CrossRef]
- Regonini, D.; Satka, A.; Jaroenworaluck, A.; Allsopp, D.W.E.; Bowen, C.R.; Stevens, R. Factors Influencing Surface Morphology of Anodized TiO2 Nanotubes. Electrochim. Acta 2012, 74, 244–253. [Google Scholar] [CrossRef]
- Khudhair, D.; Bhatti, A.; Li, Y.; Hamedani, H.A.; Garmestani, H.; Hodgson, P.; Nahavandi, S. Anodization Parameters Influencing the Morphology and Electrical Properties of TiO2 Nanotubes for Living Cell Interfacing and Investigations. Mater. Sci. Eng. C 2016, 59, 1125–1142. [Google Scholar] [CrossRef] [PubMed]
- Pishkar, N.; Ghoranneviss, M.; Ghorannevis, Z.; Akbari, H. Study of the Highly Ordered TiO2 Nanotubes Physical Properties Prepared with Two-Step Anodization. Results Phys. 2018, 9, 1246–1249. [Google Scholar] [CrossRef]
- Li, S.; Zhang, G.; Guo, D.; Yu, L.; Zhang, W. Anodization Fabrication of Highly Ordered TiO2 Nanotubes. J. Phys. Chem. C 2009, 113, 12759–12765. [Google Scholar] [CrossRef]
- Shaddad, M.N.; Arunachalam, P.; Amer, M.S.; Al-Mayouf, A.M.; Hezam, M.; AlOraij, H.A.; Gimenez, S. Exploiting the Synergistic Catalytic Effects of CoPi Nanostructures on Zr-Doped Highly Ordered TiO2 Nanotubes for Efficient Solar Water Oxidation. Int. J. Energy Res. 2022, 46, 12608–12622. [Google Scholar] [CrossRef]
- Shaddad, M.; Alharthi, A.; Alotaibi, M.; Alanazi, A.A.; Arunachalam, P.; Al-Mayouf, A.M. Combining Heterointerface/Surface Oxygen Vacancies Engineering of Bismuth Oxide to Synergistically Improve Its Solar Water Splitting Performance. Electrochim. Acta 2023, 469, 143217. [Google Scholar] [CrossRef]
- Schaub, R.; Wahlstrom, E.; Rønnau, A.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface. Science 2003, 299, 377–379. [Google Scholar] [CrossRef]
- Simka, W.; Majewski, D.; Nawrat, G.; Krząkała, A.; Nieużyła, Ł.; Michalska, J. Electrodeposition of Zirconium from DMSO Solution. Arch. Metall. Mater. 2014, 59, 565–568. [Google Scholar] [CrossRef]
- Bakulin, A.; Elfimov, B.; Matiskina, E.V.; Kulkova, S.E. Impurity Influence on Oxygen Diffusion in TiO2. AIP Conf. Proc. 2020, 2310, 020026. [Google Scholar]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Baloch, A.A.B.; Alqahtani, S.M.; Mumtaz, F.; Muqaibel, A.H.; Rashkeev, S.N.; Alharbi, F.H. Extending Shannon’s Ionic Radii Database Using Machine Learning. Phys. Rev. Mater. 2021, 5, 043804. [Google Scholar] [CrossRef]
- Wang, M.; Ioccozia, J.; Sun, L.; Lin, C. Inorganic-Modified Semiconductor TiO2 Nanotube Arrays for Photocatalysis. Energy Environ. Sci. 2014, 7, 2182–2202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaddad, M.N.; Arunachalam, P.; Hezam, M.S.; Aladeemy, S.A.; Aljaafreh, M.J.; Abu Alrub, S.; Al-Mayouf, A.M. Enhanced Electrocatalytic Oxygen Reduction Reaction of TiO2 Nanotubes by Combining Surface Oxygen Vacancy Engineering and Zr Doping. Nanomaterials 2024, 14, 366. https://doi.org/10.3390/nano14040366
Shaddad MN, Arunachalam P, Hezam MS, Aladeemy SA, Aljaafreh MJ, Abu Alrub S, Al-Mayouf AM. Enhanced Electrocatalytic Oxygen Reduction Reaction of TiO2 Nanotubes by Combining Surface Oxygen Vacancy Engineering and Zr Doping. Nanomaterials. 2024; 14(4):366. https://doi.org/10.3390/nano14040366
Chicago/Turabian StyleShaddad, Maged N., Prabhakarn Arunachalam, Mahmoud S. Hezam, Saba A. Aladeemy, Mamduh J. Aljaafreh, Sharif Abu Alrub, and Abdullah M. Al-Mayouf. 2024. "Enhanced Electrocatalytic Oxygen Reduction Reaction of TiO2 Nanotubes by Combining Surface Oxygen Vacancy Engineering and Zr Doping" Nanomaterials 14, no. 4: 366. https://doi.org/10.3390/nano14040366
APA StyleShaddad, M. N., Arunachalam, P., Hezam, M. S., Aladeemy, S. A., Aljaafreh, M. J., Abu Alrub, S., & Al-Mayouf, A. M. (2024). Enhanced Electrocatalytic Oxygen Reduction Reaction of TiO2 Nanotubes by Combining Surface Oxygen Vacancy Engineering and Zr Doping. Nanomaterials, 14(4), 366. https://doi.org/10.3390/nano14040366