Two Structural Designs of Broadband, Low-Loss, and Compact TM Magneto-Optical Isolator Based on GaAs-on-Insulator
Abstract
:1. Introduction
2. Device Structure and Principle
3. Results and Discussion
3.1. Calculation of the NRPS of the MO Waveguide
3.2. Reciprocal Waveguide Structure, MMI Coupler Design
3.3. Insertion Loss, Isolation Bandwidth, Tolerance, and Fabrication Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jalas, D.; Petrov, A.; Eich, M.; Freude, W.; Fan, S.; Yu, Z.; Baets, R.; Popović, M.; Melloni, A.; Joannopoulos, J.D.; et al. What is—And what is not—An optical isolator. Nat. Photonics 2013, 7, 579–582. [Google Scholar] [CrossRef]
- Stubkjaer, K.; Small, M. Noise properties of semiconductor lasers due to optical feedback. IEEE J. Quantum Elect. 1984, 20, 472–478. [Google Scholar] [CrossRef]
- Petermann, K. External optical feedback phenomena in semiconductor lasers. IEEE J. Sel. Top. Quant. 1995, 1, 480–489. [Google Scholar] [CrossRef]
- Shoji, Y.; Miura, K.; Mizumoto, T. Optical nonreciprocal devices based on magneto-optical phase shift in silicon photonics. J. Optics 2016, 18, 13001. [Google Scholar] [CrossRef]
- Ghosh, S.; Keyvaninia, S.; Shirato, Y.; Mizumoto, T.; Roelkens, G.; Baets, R. Optical Isolator for TE Polarized Light Realized by Adhesive Bonding of Ce:YIG on Silicon-on-Insulator Waveguide Circuits. IEEE Photonics J. 2013, 5, 6601108. [Google Scholar] [CrossRef]
- Kittlaus, E.A.; Otterstrom, N.T.; Kharel, P.; Gertler, S.; Rakich, P.T. Non-reciprocal interband Brillouin modulation. Nat. Photonics 2018, 12, 613–619. [Google Scholar] [CrossRef]
- Sohn, D.B.; Kim, S.; Bahl, G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nat. Photonics 2018, 12, 91–97. [Google Scholar] [CrossRef]
- Fan, L.; Wang, J.; Varghese, L.T.; Shen, H.; Niu, B.; Xuan, Y.; Weiner, A.M.; Qi, M. An All-Silicon Passive Optical Diode. Science 2012, 335, 447–450. [Google Scholar] [CrossRef]
- Wang, J.; Shi, Y.; Fan, S. Non-reciprocal polarization rotation using dynamic refractive index modulation. Opt. Express 2020, 28, 11974. [Google Scholar] [CrossRef]
- Zhang, C.; Dulal, P.; Stadler, B.J.H.; Hutchings, D.C. Monolithically-Integrated TE-mode 1D Silicon-on-Insulator Isolators using Seedlayer-Free Garnet. Sci. Rep. 2017, 7, 5820. [Google Scholar] [CrossRef]
- Espinola, R.L.; Izuhara, T.; Tsai, M.C.; Osgood, R.J.; Dotsch, H. Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides. Opt. Lett. 2004, 29, 941–943. [Google Scholar] [CrossRef] [PubMed]
- Karki, D.; Stenger, V.; Pollick, A.; Levy, M. Broadband Bias-Magnet-Free On-Chip Optical Isolators with Integrated Thin Film Polarizers. J. Light. Technol. 2020, 38, 827–833. [Google Scholar] [CrossRef]
- Yan, W.; Yang, Y.; Liu, S.; Zhang, Y.; Xia, S.; Kang, T.; Yang, W.; Qin, J.; Deng, L.; Bi, L. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica 2020, 7, 1555. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y.; Dai, T.; Zhang, Y.; Zhang, X.; Liu, H.; Wang, P. On-chip Ce:YIG/Si Mach–Zehnder optical isolator with low power consumption. Opt. Express 2023, 31, 8375. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Makimoto, T. Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics. J. Appl. Phys. 1974, 45, 882–888. [Google Scholar] [CrossRef]
- van Engen, P.G. Mode degeneracy in magnetic garnet optical waveguides with high Faraday rotation. J. Appl. Phys. 1978, 49, 4660–4662. [Google Scholar] [CrossRef]
- Hepner, G.; Désormière, B. Influence of the Quadratic Magnetooptical Effect on Light Propagation in Garnet Films. Appl. Optics 1974, 13, 2007. [Google Scholar] [CrossRef]
- Sugimoto, N.; Terui, H.; Tate, A.; Katoh, Y.; Yamada, Y.; Sugita, A.; Shibukawa, A.; Inoue, Y. A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit. J. Light. Technol. 1996, 14, 2537–2546. [Google Scholar] [CrossRef]
- Sun, X.Y.; Du, Q.; Goto, T.; Onbasli, M.C.; Kim, D.H.; Aimon, N.M.; Hu, J.; Ross, C.A. Single-Step Deposition of Cerium-Substituted Yttrium Iron Garnet for Monolithic On-Chip Optical Isolation. ACS Photonics 2015, 2, 856–863. [Google Scholar] [CrossRef]
- Goto, T.; Onbaşli, M.C.; Ross, C.A. Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits. Opt. Express 2012, 20, 28507–28517. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Onbaşli, M.C.; Kim, D.H.; Singh, V.; Inoue, M.; Kimerling, L.C.; Ross, C.A. A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet. Opt. Express 2012, 22, 19047–19054. [Google Scholar] [CrossRef]
- Du, Q.; Wang, C.; Zhang, Y.; Zhang, Y.; Fakhrul, T.; Zhang, W.; Gonçalves, C.; Blanco, C.; Richardson, K.; Deng, L.; et al. Monolithic On-chip Magneto-optical Isolator with 3 db Insertion Loss and 40 db Isolation Ratio. ACS Photonics 2018, 5, 5010–5016. [Google Scholar] [CrossRef]
- Shoji, Y.; Mizumoto, T. Magneto-optical non-reciprocal devices in silicon photonics. Sci. Technol. Adv. Mat. 2014, 15, 14602–14610. [Google Scholar] [CrossRef]
- Ghosh, S.; Keyvavinia, S.; Van Roy, W.; Mizumoto, T.; Roelkens, G.; Baets, R. Ce: YIG/Silicon-on-Insulator waveguide optical isolator realized by adhesive bonding. Opt. Express 2012, 20, 1839–1848. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Q.; Wang, C.; Fakhrul, T.; Liu, S.; Deng, L.; Huang, D.; Pintus, P.; Bowers, J.; Ross, C.A.; et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica 2019, 6, 473. [Google Scholar] [CrossRef]
- Krasnokutska, I.; Tambasco, J.J.; Li, X.; Peruzzo, A. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express 2018, 26, 897. [Google Scholar] [CrossRef]
- Englund, D.; Faraon, A.; Fushman, I.; Stoltz, N.; Petroff, P.; Vučković, J. Controlling cavity reflectivity with a single quantum dot. Nature 2007, 450, 857–861. [Google Scholar] [CrossRef]
- Lund-Hansen, T.; Stobbe, S.; Julsgaard, B.; Thyrrestrup, H.; Sünner, T.; Kamp, M.; Forchel, A.; Lodahl, P. Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide. Phys. Rev. Lett. 2008, 101, 113903. [Google Scholar] [CrossRef]
- Schwagmann, A.; Kalliakos, S.; Farrer, I.; Griffiths, J.P.; Jones, G.A.C.; Ritchie, D.A.; Shields, A.J. On-chip single photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide. Appl. Phys. Lett. 2012, 99, 261108. [Google Scholar] [CrossRef]
- Hoang, T.B.; Beetz, J.; Midolo, L.; Skacel, M.; Lermer, M.; Kamp, M.; Höfling, S.; Balet, L.P.; Chauvin, N.J.G.; Fiore, A. Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Appl. Phys. Lett. 2012, 100, 61121–61122. [Google Scholar] [CrossRef]
- Cao, S.; Sun, L.; Savoie, M. 2 × 2 MMI-MZI GaAs-GaAlAs carrier-injection optical switch. In Proceedings of the IEEE Photonics Society Summer Topicals 2010, Playa del Carmen, Mexico, 19–21 July 2010; pp. 207–208. [Google Scholar]
- Sprengers, J.P.; Gaggero, A.; Sahin, D.; Jahanmirinejad, S.; Frucci, G.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; et al. Waveguide superconducting single-photon detectors for integrated quantum photonic circuits. Appl. Phys. Lett. 2011, 99, 181110. [Google Scholar] [CrossRef]
- Chang, L.; Boes, A.; Pintus, P.; Peters, J.D.; Kennedy, M.J.; Guo, X.; Volet, N.; Yu, S.; Papp, S.B.; Bowers, J.E. Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics 2019, 4, 36103. [Google Scholar] [CrossRef]
- Haisma, J.; Koek, B.H.; Maes, J.W.F.; Mateika, D.; Pistorius, J.A.; Roksnoer, P.J. Hetero-epitaxial growth of GaAs on garnets. J. Cryst. Growth 1987, 83, 466–469. [Google Scholar] [CrossRef]
- Stadler, B.; Vaccaro, K.; Yip, P.; Lorenzo, J.; Li, Y.; Cherif, M. Integration of magneto-optical garnet films by metal-organic chemical vapor deposition. IEEE T. Magn. 2002, 38, 1564–1567. [Google Scholar] [CrossRef]
- Debnath, M.C.; Zayets, V.; Ando, K. Thermal annealing of magneto-optical (Cd, Mn)Te waveguides for optical isolators with wider operational wavelength range. Appl. Phys. Lett. 2005, 87, 91112. [Google Scholar] [CrossRef]
- Chang, L.; Boes, A.; Pintus, P.; Xie, W.; Peters, J.D.; Kennedy, M.J.; Jin, W.; Guo, X.; Yu, S.; Papp, S.B.; et al. Low loss (Al)GaAs on an insulator waveguide platform. Opt. Lett. 2019, 44, 4075. [Google Scholar] [CrossRef]
- Skauli, T.; Kuo, P.S.; Vodopyanov, K.L.; Pinguet, T.J.; Levi, O.; Eyres, L.A.; Harris, J.S.; Fejer, M.M.; Gerard, B.; Becouarn, L.; et al. Improved dispersion relations for GaAs and applications to nonlinear optics. J. Appl. Phys. 2003, 94, 6447–6455. [Google Scholar] [CrossRef]
- Rodríguez-de Marcos, L.; Larruquert, V.J.I.; Méndez, J.A.; Aznárez, J.A. Self-consistent optical constants of SiO2 and Ta2O5 films. Opt. Mater. Express 2016, 6, 3622–3637. [Google Scholar] [CrossRef]
- Yokoi, H. Calculation of nonreciprocal phase shift in magneto-optic waveguides with Ce:YIG layer. Opt. Mater. 2008, 31, 189–192. [Google Scholar] [CrossRef]
- Pintus, P. Accurate vectorial finite element mode solver for magneto-optic and anisotropic waveguides. Opti. Express 2014, 22, 15737–15756. [Google Scholar] [CrossRef]
- Yan, W.; Yang, Y.; Liu, S.; Zhang, Y.; Xia, S.; Kang, T.; Yang, W.; Deng, L.; Hu, J.; Ross, C.A.; et al. Dysprosium substituted Ce:YIG thin films with perpendicular magnetic anisotropy for silicon integrated optical isolator applications. APL Mater. 2019, 7, 081119. [Google Scholar]
- Shui, K.; Nie, L.; Zhang, Y.; Peng, B.; Xie, J.; Deng, L.; Bi, L. Design of a compact waveguide optical isolator based on multimode interferometers using magneto-optical oxide thin films grown on silicon-on-insulator substrates. Opt. Express 2016, 24, 12856. [Google Scholar] [CrossRef] [PubMed]
m | Structure A | Structure B |
---|---|---|
ΔL (nm) | ||
0 | 195.36 | 261.61 |
5 | 4102.49 | 5493.71 |
10 | 8009.63 | 10,725.81 |
15 | 11,916.77 | 15,957.92 |
20 | 15,823.90 | 21,190.02 |
25 | 19,731.04 | 26,422.12 |
30 | 23,638.18 | 31,654.23 |
Parameter | Structure A | Structure B |
---|---|---|
Value | ||
HGaAs | 260 nm | 140 nm |
WGaAs and Ce:YIG/YIG width | 600 nm | 640 nm |
HCe:YIG | 350 nm | 250 nm |
HYIG | / | 50 nm |
L | 217.09 μm | 174.53 μm |
ΔL | 195.36 nm | 261.61 nm |
the θF value of Ce: YIG | −5900 deg/cm | |
the θF value of YIG | / | 200 deg/cm |
Wcoupler | 6 μm | |
Lcoupler | 28 μm | 26 μm |
S | 3.17 μm | 3.06 μm |
Wtaper | 1.3 μm | |
Indices of GaAs/Ce:YIG/YIG/SiO2/SGGG | 3.3/2.22/2.22/1.45/1.97 |
Device Geometries | Structure A | Structure B | ||
---|---|---|---|---|
Value | Tolerances | Value | Tolerances | |
HGaAs | 260 nm | ±8 nm | 140 nm | ±22 nm |
WGaAs and Ce:YIG/YIG width | 600 nm | ±110 nm | 640 nm | ±157 nm |
HCe:YIG | 350 nm | ±72 nm | 250 nm | ±32 nm |
HYIG | / | 50 nm | ±5 nm | |
L | 217.09 μm | ±4.89 μm | 174.53 μm | ±3.95 μm |
ΔL | 195.36 nm | ±4.41 nm | 261.61 nm | ±5.91 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Chen, W.-T.; Zhao, J.; Zhang, C. Two Structural Designs of Broadband, Low-Loss, and Compact TM Magneto-Optical Isolator Based on GaAs-on-Insulator. Nanomaterials 2024, 14, 400. https://doi.org/10.3390/nano14050400
Liu L, Chen W-T, Zhao J, Zhang C. Two Structural Designs of Broadband, Low-Loss, and Compact TM Magneto-Optical Isolator Based on GaAs-on-Insulator. Nanomaterials. 2024; 14(5):400. https://doi.org/10.3390/nano14050400
Chicago/Turabian StyleLiu, Li, Wan-Ting Chen, Jia Zhao, and Chen Zhang. 2024. "Two Structural Designs of Broadband, Low-Loss, and Compact TM Magneto-Optical Isolator Based on GaAs-on-Insulator" Nanomaterials 14, no. 5: 400. https://doi.org/10.3390/nano14050400
APA StyleLiu, L., Chen, W. -T., Zhao, J., & Zhang, C. (2024). Two Structural Designs of Broadband, Low-Loss, and Compact TM Magneto-Optical Isolator Based on GaAs-on-Insulator. Nanomaterials, 14(5), 400. https://doi.org/10.3390/nano14050400