Editorial for Special Issue “Functional Graphene-Based Nanodevices”
Conflicts of Interest
List of Contributions
- Li, X.; Sui, J.; Fang, J. Single-Electron Transport and Detection of Graphene Quantum Dots. Nanomaterials 2023, 13, 889.
- Meng, Y. Highly Stretchable Graphene Scrolls Transistors for Self-Powered Tribotronic Non-Mechanosensation Application. Nanomaterials 2023, 13, 528.
- Shen, Y.; Li, Y; Chen, W.; Jiang, S.; Li, C.; Cheng, Q. High-Performance Graphene Nanowalls/Si Self-Powered Photodetectors with HfO2 as an Interfacial Layer. Nanomaterials 2023, 13, 1681.
- Jeon, M. J.; Hyeong, S.-K.; Jang, H. Y.; Mun, J.; Kim, T.-W.; Bae, S.; Lee, S.-K. Selective Laser-Assisted Direct Synthesis of MoS2 for Graphene/MoS2 Schottky Junction. Nanomaterials 2023, 13, 2937.
- Yin, H.; Tang, J.; Zhang, K.; Lin, S.; Xu, G.; Qin, L.-C. Achieving High-Energy-Density Graphene/Single-Walled Carbon Nanotube Lithium-Ion Capacitors from Organic-Based Electrolytes. Nanomaterials 2024, 14, 45.
- Chow, D.; Burns, N.; Boateng, E.; Zalm, J. V. D.; Kycia, S.; Chen, A. Mechanical Exfoliation of Expanded Graphite to Graphene-Based Materials and Modification with Palladium Nanoparticles for Hydrogen Storage. Nanomaterials 2023, 13, 2588.
- Wang, J.; Zhu, Z.; Qi, Y.; Li, M. A Novel Crossbeam Structure with Graphene Sensing Element for N/MEMS Mechanical Sensors. Nanomaterials 2022, 12, 2101.
- Zheng, W.; Su, R.; Yu, G.; Liu, L.; Yan, F. Highly Sensitive Electrochemical Detection of Paraquat in Environmental Water Samples Using a Vertically Ordered Mesoporous Silica Film and a Nanocarbon Composite. Nanomaterials 2022, 12, 3632.
- Tene, T.; Naranjo, P. G. V.; Cevallos, Y.; Arias, F. A.; Pietra, M. L.; Scarcello, A.; Salazar, Y. C.; Polanco, M. A.; Straface, S.; Gomez, C. V.; Caputi, L. S.; Bellucci, S. Temperature-Dependent Optical Properties of Oxidized Graphenes, Nanomaterials. 2023, 13, 2263.
- Fang, J.; Li, X.; Xie W.; Sun, K. A Novel Fabrication of Single Electron Transistor from Patterned Gold Nanoparticle Array Template-Prepared by Polystyrene Nanospheres. Nanomaterials 2022, 12, 3102.
References
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine Structure Constant Defines Visual Transparency of Graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y. Approaching Ballistic Transport in Suspended Graphene. Nat. Nanotechnol. 2008, 3, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Efimkin, D.K.; Burg, G.W.; Tutuc, E.; MacDonald, A.H. Tunneling and Fluctuating Electron-hole Cooper Pairs in Double Bilayer Graphene. Phys. Rev. B 2015, 101, 035413. [Google Scholar] [CrossRef]
- Wang, L.; Guo, L.; Zhang, Q. A Light-controllable Topological Transistor Based on Quantum Tunneling of Anomalous Topological Edge States. Appl. Phys. Express 2022, 15, 115003. [Google Scholar] [CrossRef]
- McIver, J.; Schulte, B.; Stein, F.-U.; Matsuyama, T.; Jotzu, G.; Meier, G.; Cavalleri, A. Light-induced Anomalous Hall Effect in Graphene. Nat. Phys. 2020, 16, 38–41. [Google Scholar] [CrossRef] [PubMed]
- De Laissardière, G.T.; Mayou, D. Conductivity of Graphene with Resonant and Nonresonant Adsorbates. Phys. Rev. Lett. 2013, 111, 146601. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Zhang, J.; Kong, D.; Zhang, C.; Han, D.; Han, J.; Tao, Y.; Lv, W.; Yang, Q.H. Practical Graphene Technologies for Electrochemical Energy Storage. Adv. Funct. Mater. 2022, 32, 2204272. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepańska, B.; Michalska-Sionkowska, M.; Binkowski, P.; Lukaszewicz, J.P.; Kamedulski, P. 3D-Structured and Blood-Contact-Safe Graphene Materials. Int. J. Mol. Sci. 2023, 24, 3576. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, H.; Wang, K.; Cao, A.; Wei, J.; Li, C.; Jia, Y.; Li, Z.; Li, X.; Wu, D. Graphene-On-Silicon Schottky Junction Solar Cells. Adv. Mater. 2010, 22, 2743–2748. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kim, S.; Shin, D.H.; Seo, S.W.; Lee, H.S.; Kim, J.H.; Jang, C.W.; Kang, S.S.; Choi, S.-H.; Kwak, G.Y.; et al. Si-Quantum-Dot Heterojunction Solar Cells with 16.2% Efficiency Achieved by Employing Doped-Graphene Transparent Conductive Electrodes. Nano Energy 2018, 43, 124–129. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, X.; Qiu, X.; Fu, J.; Yang, D. High-Responsivity Graphene/Hyperdoped-Silicon Heterostructure Infrared Photodetectors. Opt. Laser Technol. 2022, 153, 108291. [Google Scholar] [CrossRef]
- Xia, F.; Mueller, T.; Lin, Y.-M.; Valdes-Garcia, A.; Avouris, P. Ultrafast Graphene Photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Sturmberg, B.C.P.; Lin, K.-T.; Yang, Y.; Zheng, X.; Chong, T.K.; De Sterke, C.M.; Jia, B. A 90-nm-thick Graphene Metamaterial for Strong and Extremely Broadband Absorption of Unpolarized Light. Nat. Photonics 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Casalino, M.; Sassi, U.; Goykhman, I.; Eiden, A.; Lidorikis, E.; Milana, S.; De Fazio, D.; Tomarchio, F.; Iodice, M.; Coppola, G.; et al. Vertically Illuminated, Resonant Cavity Enhanced, Graphene–Silicon Schottky Photodetectors. ACS Nano 2017, 11, 10955–10963. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Shin, W.H.; Lim, S.Y.; Kim, B.G.; Choi, J.W. Modified Graphite and Graphene Electrodes for High-performance Lithium Ion Hybrid Capacitors. Mater. Renew. Sustain. Energy 2014, 3, 22. [Google Scholar] [CrossRef]
- Yeh, P.-C.; Ohkatsu, G.; Toyama, R.; Tue, P.T.; Ostrikov, K.; Majima, Y.; Chiang, W.-H. Towards Single Electron Transistor-based Photon Detection with Microplasma-enabled Graphene Quantum Dots. Nanotechnology 2021, 32, 50LT01. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Wang, H.; Zhang, L.; Cheng, Q.; Gong, Z.; Ostrikov, K.K. Graphene Nanowalls Conformally Coated with Amorphous/Nanocrystalline Si as High-Performance Binder-Free Nanocomposite Anode for Lithium-Ion Batteries. J. Power Sources 2019, 437, 226909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Zhou, J. Editorial for Special Issue “Functional Graphene-Based Nanodevices”. Nanomaterials 2024, 14, 417. https://doi.org/10.3390/nano14050417
Cheng Q, Zhou J. Editorial for Special Issue “Functional Graphene-Based Nanodevices”. Nanomaterials. 2024; 14(5):417. https://doi.org/10.3390/nano14050417
Chicago/Turabian StyleCheng, Qijin, and Jian Zhou. 2024. "Editorial for Special Issue “Functional Graphene-Based Nanodevices”" Nanomaterials 14, no. 5: 417. https://doi.org/10.3390/nano14050417
APA StyleCheng, Q., & Zhou, J. (2024). Editorial for Special Issue “Functional Graphene-Based Nanodevices”. Nanomaterials, 14(5), 417. https://doi.org/10.3390/nano14050417