Pump-Driven Opto-Magnetic Properties in Semiconducting Transition-Metal Dichalcogenides: An Analytical Model
Abstract
:1. Introduction
2. Single-Particle Hamiltonian
3. Optical Response
4. Non-Equilibrium Optical Response
5. Time-Dependence
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Mapping k·p Band Parameters in Terms of TB Parameters
MoS2 | MoSe2 | MoTe2 | WS2 | WSe2 | WTe2 | |
---|---|---|---|---|---|---|
0.073 | 0.091 | 0.107 | 0.211 | 0.228 | 0.237 | |
3.451 | 3.056 | 2.525 | 3.933 | 3.443 | 2.871 | |
1.595 | 1.482 | 1.113 | 1.749 | 1.565 | 1.132 | |
−0.062 | 0.053 | 0.041 | −0.057 | 0.024 | 0.065 | |
3.378 | 2.965 | 2.418 | 3.722 | 3.215 | 2.634 | |
1.595 | 1.482 | 1.113 | 1.749 | 1.565 | 1.132 | |
0.011 | 0.144 | 0.148 | 0.154 | 0.252 | 0.302 | |
3.524 | 3.147 | 2.632 | 4.144 | 3.671 | 3.108 | |
1.595 | 1.482 | 1.113 | 1.749 | 1.565 | 1.132 | |
−0.135 | −0.038 | −0.066 | −0.268 | −0.204 | −0.172 | |
1.584 | 1.338 | 0.965 | 1.595 | 1.313 | 0.830 | |
1.730 | 1.520 | 1.179 | 2.017 | 1.769 | 1.304 | |
3.367 | 2.821 | 2.270 | 3.569 | 2.963 | 2.332 | |
1.783 | 1.483 | 1.305 | 1.973 | 1.650 | 1.502 | |
3.659 | 3.185 | 2.698 | 4.413 | 3.875 | 3.280 | |
1.929 | 1.665 | 1.519 | 2.395 | 2.106 | 1.976 | |
−1.190 | −1.170 | −1.142 | −1.305 | −1.310 | −1.221 | |
−0.493 | −0.411 | −0.012 | −0.586 | −0.455 | −0.212 | |
1.060 | 0.921 | 0.578 | 1.299 | 1.119 | 0.860 | |
−0.800 | −0.774 | −0.768 | −0.836 | −0.829 | −0.816 | |
0.961 | 0.800 | 0.873 | 1.512 | 1.375 | 1.624 | |
−0.777 | −0.675 | −0.667 | −1.245 | −1.161 | −1.346 | |
−0.831 | −0.819 | −0.826 | −0.925 | −0.941 | −0.932 | |
0.838 | 0.654 | 0.710 | 1.071 | 0.902 | 0.953 | |
−0.637 | −0.505 | −0.470 | −0.756 | −0.628 | −0.615 | |
−1.545 | −1.292 | 0.956 | −1.850 | −1.565 | −1.244 | |
−0.306 | −0.236 | 0.286 | −0.303 | −0.246 | −0.204 | |
−1.065 | −1.001 | 0.841 | −1.228 | −1.148 | −0.938 | |
1.739 | 1.475 | 1.540 | 2.757 | 2.535 | 2.969 | |
1.474 | 1.160 | 1.180 | 1.828 | 1.530 | 1.568 | |
−0.023 | −0.098 | −0.101 | 0.409 | 0.332 | 0.530 | |
−1.762 | −1.573 | −1.641 | −2.348 | −2.204 | −2.439 | |
−0.194 | −0.314 | −0.356 | −0.168 | −0.313 | −0.317 | |
−1.669 | −1.473 | −1.536 | −1.996 | −1.843 | −1.884 |
References
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1102–1120. [Google Scholar] [CrossRef]
- Sun, Z.P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 2016, 10, 227–238. [Google Scholar] [CrossRef]
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Ashish, A. Magneto-optics of layered two-dimensional semiconductors and heterostructures: Progress and prospects. J. Appl. Phys. 2021, 129, 120902. [Google Scholar] [CrossRef]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef]
- Sallen, G.; Bouet, L.; Marie, X.; Wang, G.; Zhu, C.R.; Han, W.P.; Lu, Y.; Tan, P.H.; Am, T.; Liu, B.L.; et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 2012, 86, 081301. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI Dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802. [Google Scholar] [CrossRef]
- Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493. [Google Scholar] [CrossRef]
- Wu, S.; Ross, J.S.; Liu, G.B.; Aivazian, G.; Jones, A.; Fei, Z.; Zhu, W.; Xiao, D.; Yao, W.; Cobden, D.; et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149–153. [Google Scholar] [CrossRef]
- Liu, G.B.; Xiao, D.; Yao, Y.; Xu, X.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663. [Google Scholar] [CrossRef]
- Roldàn, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Cond. Matter 2015, 27, 313201. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Zhang, S.; He, J.; Yu, J.; Liu, Z. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711. [Google Scholar] [CrossRef]
- Soni, A.; Pal, S.K. Valley degree of freedom in two-dimensional van der Waals materials. J. Phys. D Appl. Phys. 2022, 55, 303003. [Google Scholar] [CrossRef]
- Mak, K.F.; He, K.; Shan, J.; Heinz, T.F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Wang, G.; Han, W.; Ye, H.; Zhu, C.; Shi, J.; Niu, Q.; Tan, P.; Wang, E.; Liu, B.; et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, D.; Bouet, L.; Marie, X.; Zhu, C.R.; Liu, B.L.; Am, T.; Tan, P.H.; Urbaszek, B. Carrier and Polarization Dynamics in Monolayer MoS2. Phys. Rev. Lett. 2014, 112, 047401. [Google Scholar] [CrossRef] [PubMed]
- Plechinger, G.; Nagler, P.; Korn, T. Time-resolved Kerr rotation spectroscopy of valley dynamics in single-layer MoS2. arXiv 2014, arXiv:1404.7674. [Google Scholar]
- Zhu, C.R.; Zhang, K.; Glazov, M.; Urbaszek, B.; Am, T.; Ji, Z.W.; Liu, B.L.; Marie, X. Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 2014, 90, 161302. [Google Scholar] [CrossRef]
- Dal Conte, S.; Bottegoni, F.; Pogna, E.A.A.; De Fazio, D.; Ambrogio, S.; Bargigia, I.; D’Andrea, C.; Lombardo, A.; Bruna, M.; Ciccacci, F.; et al. Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques. Phys. Rev. B 2015, 92, 235425. [Google Scholar] [CrossRef]
- Plechinger, G.; Nagler, P.; Arora, A.; Schmidt, R.; Chernikov, A.; Lupton, J.; Bratschitsch, R.; Schueller, C.; Korn, T. Valley dynamics of excitons in monolayer dichalcogenides. Phys. Stat. Solidi—Rapid Res. Lett. 2017, 11, 1700131. [Google Scholar] [CrossRef]
- McCormick, E.J.; Newburger, M.J.; Luo, Y.K.; McCreary, K.M.; Singh, S.; Martin, I.B.; Cichewicz, E.J.; Jonker, B.T.; Kawakami, R.K. Imaging spin dynamics in monolayer WS2 by time-resolved Kerr rotation microscopy. 2D Mater. 2017, 5, 011010. [Google Scholar] [CrossRef]
- Van der Donck, M.; Zarenia, M.; Peeters, F.M. Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field. Phys. Rev. B 2018, 97, 081109. [Google Scholar] [CrossRef]
- Hung, T.Y.; Camsari, K.Y.; Zhang, S.; Upadhyaya, P.; Chen, Z. Direct observation of valley-coupled topological current in MoS2. Sci. Adv. 2019, 5, eaau6478. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.Q.; Ong, C.S.; Bange, S.; Faria Junior, P.E.; Peng, B.; Ziegler, J.D.; Zipfel, J.; Bäuml, C.; Paradiso, N.; Watanabe, K.; et al. Narrow-band high-lying excitons with negative-mass electrons in monolayer WSe2. Nat. Commun. 2021, 12, 5500. [Google Scholar] [CrossRef]
- Lin, K.Q.; Ziegler, J.D.; Semina, M.A.; Mamedov, J.V.; Watanabe, K.; Taniguchi, T.; Bange, S.; Chernikov, A.; Glazov, M.M.; Lupton, J.M. High-lying valley-polarized trions in 2D semiconductors. Nat. Commun. 2022, 13, 6980. [Google Scholar] [CrossRef] [PubMed]
- Szczęśniak, D.; Kais, S. Gap states and valley-spin filtering in transition metal dichalcogenide monolayers. Phys. Rev. B 2020, 101, 115423. [Google Scholar] [CrossRef]
- Kiemle, J.; Zimmermann, P.; Holleitner, A.W.; Kastl, C. Light-field and spin-orbit-driven currents in van der Waals materials. Nanophotonics 2020, 9, 2693–2708. [Google Scholar] [CrossRef]
- Caruso, F.; Schebek, M.; Pan, Y.; Vona, C.; Draxl, C. Chirality of Valley Excitons in Monolayer Transition-Metal Dichalcogenides. J. Phys. Chem. Lett. 2022, 13, 5894–5899. [Google Scholar] [CrossRef]
- Mak, K.F.; McGill, K.L.; Park, J.; McEuen, P.L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492. [Google Scholar] [CrossRef]
- Rostami, H.; Volckaert, K.; Lanata, N.; Mahatha, S.K.; Sanders, C.E.; Bianchi, M.; Lizzit, D.; Bignardi, L.; Lizzit, S.; Miwa, J.A.; et al. Layer and orbital interference effects in photoemission from transition metal dichalcogenides. Phys. Rev. B 2019, 100, 235423. [Google Scholar] [CrossRef]
- Wang, Q.; Ge, S.; Li, X.; Qiu, J.; Ji, Y.; Feng, J.; Sun, D. Valley Carrier Dynamics in Monolayer Molybdenum Disulfide from Helicity-Resolved Ultrafast Pump—Probe Spectroscopy. ACS Nano 2013, 7, 11087–11093. [Google Scholar] [CrossRef] [PubMed]
- Mai, C.; Barrette, A.; Yu, Y.; Semenov, Y.G.; Kim, K.W.; Cao, L.; Gundogdu, K. Many-Body Effects in Valleytronics: Direct Measurement of Valley Lifetimes in Single-Layer MoS2. Nano Lett. 2014, 14, 202–206. [Google Scholar] [CrossRef]
- Yang, L.; Sinitsyn, N.A.; Chen, W.; Yuan, J.; Zhang, J.; Lou, J.; Crooker, S.A. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2. Nat. Phys. 2015, 11, 830–834. [Google Scholar] [CrossRef]
- Molina-Sánchez, A.; Sangalli, D.; Wirtz, L.; Marini, A. Ab Initio Calculations of Ultrashort Carrier Dynamics in Two-Dimensional Materials: Valley Depolarization in Single-Layer WSe2. Nano Lett. 2017, 17, 4549–4555. [Google Scholar] [CrossRef] [PubMed]
- Levallois, J.; Tran, M.; Kuzmenko, A.B. Decrypting the cyclotron effect in graphite using Kerr rotation spectroscopy. Solid State Commun. 2012, 152, 1294–1300. [Google Scholar] [CrossRef]
- Levallois, J.; Nedoliuk, I.O.; Crassee, I.; Kuzmenko, A.B. Magneto-optical Kramers-Kronig analysis. Rev. Sci. Instrum. 2015, 86, 033906. [Google Scholar] [CrossRef]
- Catarina, G.; Peres, N.M.; Fernández-Rossier, J. Magneto-optical Kerr effect in spin split two-dimensional massive Dirac materials. 2D Mater. 2020, 7, 025011. [Google Scholar] [CrossRef]
- Kimel, A.V.; Kirilyuk, A.; Usachev, P.A.; Pisarev, R.V.; Balbashov, A.M.; Rasing, T. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 2005, 435, 655–657. [Google Scholar] [CrossRef]
- Yan, T.; Yang, S.; Li, D.; Cui, X. Long valley relaxation time of free carriers in monolayer WSe2. Phys. Rev. B 2017, 95, 241406. [Google Scholar] [CrossRef]
- Perlangeli, M.; Peli, S.; Soranzio, D.; Puntel, D.; Parmigiani, F.; Cilento, F. Polarization-resolved broadband time-resolved optical spectroscopy for complex materials: Application to the case of MoTe2 polytypes. Opt. Express 2020, 28, 8819–8829. [Google Scholar] [CrossRef] [PubMed]
- Kormányos, A.; Zólyomi, V.; Drummond, N.D.; Rakyta, P.; Burkard, G.; Fal’Ko, V.I. Monolayer MoS2: Trigonal warping, the Γ valley, and spin-orbit coupling effects. Phys. Rev. B 2013, 88, 045416. [Google Scholar] [CrossRef]
- Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N.D.; Fal’ko, V. k · p theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2015, 2, 022001. [Google Scholar] [CrossRef]
- Rostami, H.; Roldán, R.; Cappelluti, E.; Asgari, R.; Guinea, F. Theory of strain in single-layer transition metal dichalcogenides. Phys. Rev. B 2015, 92, 195402. [Google Scholar] [CrossRef]
- Rostami, H.; Moghaddam, A.G.; Asgari, R. Effective lattice Hamiltonian for monolayer MoS2: Tailoring electronic structure with perpendicular electric and magnetic fields. Phys. Rev. B 2013, 88, 085440. [Google Scholar] [CrossRef]
- Cappelluti, E.; Roldán, R.; Silva-Guillén, J.A.; Ordejón, P.; Guinea, F. Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2. Phys. Rev. B 2013, 88, 075409. [Google Scholar] [CrossRef]
- Zahid, F.; Liu, L.; Zhu, Y.; Wang, J.; Guo, H. A generic tight-binding model for monolayer, bilayer and bulk MoS2. AIP Adv. 2013, 3, 052111. [Google Scholar] [CrossRef]
- Wu, F.; Qu, F.; MacDonald, A.H. Exciton band structure of monolayer MoS2. Phys. Rev. B 2015, 91, 075310. [Google Scholar] [CrossRef]
- Fang, S.; Defo, R.K.; Shirodkar, S.N.; Lieu, S.; Tritsaris, G.A.; Kaxiras, E. Ab initio tight-binding Hamiltonian for transition metal dichalcogenides. Phys. Rev. B 2015, 92, 205108. [Google Scholar] [CrossRef]
- Ridolfi, E.; Le, D.; Rahman, T.S.; Mucciolo, E.R.; Lewenkopf, C.H. A tight-binding model for MoS2 monolayers. J. Phys. Condens. Matter 2015, 27, 365501. [Google Scholar] [CrossRef]
- Dias, A.C.; Qu, F.; Azevedo, D.L.; Fu, J. Band structure of monolayer transition-metal dichalcogenides and topological properties of their nanoribbons: Next-nearest-neighbor hopping. Phys. Rev. B 2018, 98, 075202. [Google Scholar] [CrossRef]
- Jorissen, B.; Covaci, L.; Partoens, B. Comparative analysis of tight-binding models for transition metal dichalcogenides. SciPost Phys. Core 2024, 7, 004. [Google Scholar] [CrossRef]
- Liu, G.B.; Shan, W.Y.; Yao, Y.; Yao, W.; Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 2013, 88, 085433. [Google Scholar] [CrossRef]
- Roldan, R.; López-Sancho, M.P.; Guinea, F.; Cappelluti, E.; Silva-Guillén, J.A.; Ordejón, P. Momentum dependence of spin–orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides. 2D Mater. 2014, 1, 034003. [Google Scholar] [CrossRef]
- Carvalho, A.; Ribeiro, R.M.; Castro Neto, A.H. Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys. Rev. B 2013, 88, 115205. [Google Scholar] [CrossRef]
- Gibertini, M.; Pellegrino, F.M.; Marzari, N.; Polini, M. Spin-resolved optical conductivity of two-dimensional group-VIB transition-metal dichalcogenides. Phys. Rev. B 2014, 90, 245411. [Google Scholar] [CrossRef]
- Kozawa, D.; Kumar, R.; Carvalho, A.; Kumar Amara, K.; Zhao, W.; Wang, S.; Toh, M.; Ribeiro, R.M.; Castro Neto, A.H.; Matsuda, K.; et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat. Commun. 2014, 5, 4543. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, R.; Nicholson, C.W.; Waldecker, L.; Hübener, H.; Monney, C.; De Giovannini, U.; Puppin, M.; Hoesch, M.; Springate, E.; Chapman, R.T.; et al. Generation and Evolution of Spin-, Valley-, and Layer-Polarized Excited Carriers in Inversion-Symmetric WSe2. Phys. Rev. Lett. 2016, 117, 277201. [Google Scholar] [CrossRef]
- Schmidt, R.; Berghauser, G.; Schneider, R.; Selig, M.; Tonndorf, P.; Malic, E.; Knorr, A.; de Vasconcellos, S.M.; Bratschitsch, R. Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2. Nano Lett. 2016, 16, 2945–2950. [Google Scholar] [CrossRef]
- Yu, T.; Wu, M.W. Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2. Phys. Rev. B 2014, 89, 205303. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostami, H.; Cilento, F.; Cappelluti, E. Pump-Driven Opto-Magnetic Properties in Semiconducting Transition-Metal Dichalcogenides: An Analytical Model. Nanomaterials 2024, 14, 707. https://doi.org/10.3390/nano14080707
Rostami H, Cilento F, Cappelluti E. Pump-Driven Opto-Magnetic Properties in Semiconducting Transition-Metal Dichalcogenides: An Analytical Model. Nanomaterials. 2024; 14(8):707. https://doi.org/10.3390/nano14080707
Chicago/Turabian StyleRostami, Habib, Federico Cilento, and Emmanuele Cappelluti. 2024. "Pump-Driven Opto-Magnetic Properties in Semiconducting Transition-Metal Dichalcogenides: An Analytical Model" Nanomaterials 14, no. 8: 707. https://doi.org/10.3390/nano14080707
APA StyleRostami, H., Cilento, F., & Cappelluti, E. (2024). Pump-Driven Opto-Magnetic Properties in Semiconducting Transition-Metal Dichalcogenides: An Analytical Model. Nanomaterials, 14(8), 707. https://doi.org/10.3390/nano14080707