Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities
Abstract
:1. Introduction
2. Overview of Magnetic Characteristics and the Basic Principles of SHG
2.1. The Magnetic Structure of 2D Magnetic Materials
2.2. Basic Principles of SHG
3. Layer- and Polarization-Dependent SHG Spectrum of 2D Magnetic Materials
3.1. Layer Dependency
3.2. Polarization Resolution
4. Magnetic Structure Detection
4.1. Detection of Magnetic Sequence
4.2. Detection of Magnetic Domain Structure and Magnetodynamic Evolution
5. SHG Combined with Other Detection Techniques
6. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Sangwan, V.K.; Hersam, M.C. Electronic Transport in Two-Dimensional Materials. Annu. Rev. Phys. Chem. 2018, 69, 299–325. [Google Scholar] [CrossRef] [PubMed]
- Koppens, F.H.L.; Mueller, T.; Avouris, P.; Ferrari, A.C.; Vitiello, M.S.; Polini, M. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 2014, 9, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, L.; Ciesielski, A.; Samorì, P. 2D Materials Beyond Graphene for High-Performance Energy Storage Applications. Adv. Energy Mater. 2016, 6, 1600671. [Google Scholar] [CrossRef]
- Fu, J.; Xu, W.; Chen, X.; Zhang, S.; Zhang, W.; Suo, P.; Lin, X.; Wang, J.; Jin, Z.; Liu, W.; et al. Thickness-Dependent Ultrafast Photocarrier Dynamics in Selenizing Platinum Thin Films. J. Phys. Chem. C 2020, 124, 10719–10726. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, Z.; Deng, B.; Wu, Z.; Xia, F.; Cao, Y.; Zhang, L.; Huang, W.; Wang, N.; Wang, L. Electrically tunable physical properties of two-dimensional materials. Nano Today 2019, 27, 99–119. [Google Scholar] [CrossRef]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J.; et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef]
- Nakatsuji, S.; Kiyohara, N.; Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 2015, 527, 212–215. [Google Scholar] [CrossRef]
- Hirohata, A.; Yamada, K.; Nakatani, Y.; Prejbeanu, I.-L.; Diény, B.; Pirro, P.; Hillebrands, B. Review on spintronics: Principles and device applications. J. Magn. Magn. Mater. 2020, 509, 166711. [Google Scholar] [CrossRef]
- Mi, M.; Xiao, H.; Yu, L.; Zhang, Y.; Wang, Y.; Cao, Q.; Wang, Y. Two-dimensional magnetic materials for spintronic devices. Mater. Today Nano 2023, 24, 100408. [Google Scholar] [CrossRef]
- Zuo, Y.; Yu, W.; Liu, C.; Cheng, X.; Qiao, R.; Liang, J.; Zhou, X.; Wang, J.; Wu, M.; Zhao, Y.; et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nat. Nanotechnol. 2020, 15, 987–991. [Google Scholar] [CrossRef]
- Chang, D.E.; Vuletić, V.; Lukin, M.D. Quantum nonlinear optics—Photon by photon. Nat. Photonics 2014, 8, 685–694. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Chen, K.; Qi, K.; Xue, T.; Zhang, H.; He, J.; Xiao, S. Niobium Carbide MXenes with Broad-Band Nonlinear Optical Response and Ultrafast Carrier Dynamics. ACS Nano 2020, 14, 10492–10502. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, J.; Li, Z.; Hong, H.; Wang, J.; Zhang, Z.; Zhou, X.; Qiao, R.; Xu, J.; Gao, P.; et al. Monitoring Local Strain Vector in Atomic-Layered MoSe2 by Second-Harmonic Generation. Nano Lett. 2017, 17, 7539–7543. [Google Scholar] [CrossRef]
- Sun, Z.; Yi, Y.; Song, T.; Clark, G.; Huang, B.; Shan, Y.; Wu, S.; Huang, D.; Gao, C.; Chen, Z.; et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 2019, 572, 497–501. [Google Scholar] [CrossRef]
- Kim, W.K.; Kim, N.; Park, M.H.; Shin, Y.H.; Cho, G.Y.; Kim, G.; Yu, W.J. High Electrical Conductance in Magnetic Emission Junction of Fe3GeTe2/ZnO/Ni Heterostructure via Selective Spin Emission through ZnO Ohmic Barrier. Adv. Mater. 2024, 2409822. [Google Scholar] [CrossRef]
- Grollier, J.; Querlioz, D.; Camsari, K.Y.; Everschor-Sitte, K.; Fukami, S.; Stiles, M.D. Neuromorphic spintronics. Nat. Electron. 2020, 3, 360–370. [Google Scholar] [CrossRef]
- Lin, X.; Yang, W.; Wang, K.L.; Zhao, W. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283. [Google Scholar] [CrossRef]
- Kim, H.H.; Jiang, S.; Yang, B.; Zhong, S.; Tian, S.; Li, C.; Lei, H.; Shan, J.; Mak, K.F.; Tsen, A.W. Magneto-Memristive Switching in a 2D Layer Antiferromagnet. Adv. Mater. 2020, 32, 1905433. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xing, T.; Zhong, M.; Huang, L.; Lei, N.; Zhang, J.; Li, J.; Wei, Z. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958. [Google Scholar] [CrossRef] [PubMed]
- González-Herrero, H.; Gómez-Rodríguez, J.M.; Mallet, P.; Moaied, M.; Palacios, J.J.; Salgado, C.; Ugeda, M.M.; Veuillen, J.-Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441. [Google Scholar] [CrossRef]
- Tong, Y.; Guo, Y.; Mu, K.; Shan, H.; Dai, J.; Liu, Y.; Sun, Z.; Zhao, A.; Zeng, X.C.; Wu, C.; et al. Half-Metallic Behavior in 2D Transition Metal Dichalcogenides Nanosheets by Dual-Native-Defects Engineering. Adv. Mater. 2017, 29, 1703123. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.; Tang, C.; Guo, W.; Chen, C. Tunable Magnetism in Strained Graphene with Topological Line Defect. ACS Nano 2011, 5, 1012–1017. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef]
- Shiroishi, Y.; Fukuda, K.; Tagawa, I.; Iwasaki, H.; Takenoiri, S.; Tanaka, H.; Mutoh, H.; Yoshikawa, N. Future Options for HDD Storage. IEEE Trans. Magn. 2009, 45, 3816–3822. [Google Scholar] [CrossRef]
- Dieny, B.; Prejbeanu, I.L.; Garello, K.; Gambardella, P.; Freitas, P.; Lehndorff, R.; Raberg, W.; Ebels, U.; Demokritov, S.O.; Akerman, J.; et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 2020, 3, 446–459. [Google Scholar] [CrossRef]
- Baltz, V.; Manchon, A.; Tsoi, M.; Moriyama, T.; Ono, T.; Tserkovnyak, Y. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018, 90, 015005. [Google Scholar] [CrossRef]
- Mak, K.F.; Shan, J.; Ralph, D.C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661. [Google Scholar] [CrossRef]
- Liu, N.-S.; Wang, C.; Ji, W. Recent research advances in two-dimensional magnetic materials. Acta Phys. Sin. 2022, 71, 127504. [Google Scholar] [CrossRef]
- Kurebayashi, H.; Garcia, J.H.; Khan, S.; Sinova, J.; Roche, S. Magnetism, symmetry and spin transport in van der Waals layered systems. Nat. Rev. Phys. 2022, 4, 150–166. [Google Scholar] [CrossRef]
- Gibertini, M.; Koperski, M.; Morpurgo, A.F.; Novoselov, K.S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. [Google Scholar] [CrossRef]
- Goodenough, J.B. Theory of the Role of Covalence in the Perovskite-Type Manganites [La,M(II)]MnO3. Phys. Rev. 1955, 100, 564–573. [Google Scholar] [CrossRef]
- Kanamori, J. Crystal Distortion in Magnetic Compounds. J. Appl. Phys. 1960, 31, S14–S23. [Google Scholar] [CrossRef]
- Anderson, P.W. New Approach to the Theory of Superexchange Interactions. Phys. Rev. 1959, 115, 2–13. [Google Scholar] [CrossRef]
- Jacobsen, H.; Gaw, S.M.; Princep, A.J.; Hamilton, E.; Tóth, S.; Ewings, R.A.; Enderle, M.; Wheeler, E.M.H.; Prabhakaran, D.; Boothroyd, A.T. Spin dynamics and exchange interactions in CuO measured by neutron scattering. Phys. Rev. B 2018, 97, 144401. [Google Scholar] [CrossRef]
- Saiz, C.L.; McGuire, M.A.; Hennadige, S.R.J.; van Tol, J.; Singamaneni, S.R. Electron Spin Resonance Properties of CrI3 and CrCl3 Single Crystals. MRS Adv. 2019, 4, 2169–2175. [Google Scholar] [CrossRef]
- Rahman, S.; Torres, J.F.; Khan, A.R.; Lu, Y. Recent Developments in van der Waals Antiferromagnetic 2D Materials: Synthesis, Characterization, and Device Implementation. ACS Nano 2021, 15, 17175–17213. [Google Scholar] [CrossRef]
- Molina-Sánchez, A.; Catarina, G.; Sangalli, D.; Fernández-Rossier, J. Magneto-optical response of chromium trihalide monolayers: Chemical trends. J. Mater. Chem. C 2020, 8, 8856–8863. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Lee, C.; Ryu, S. Polarized Raman Spectra and Complex Raman Tensors of Antiferromagnetic Semiconductor CrPS4. J. Mater. Chem. C 2021, 125, 2691–2698. [Google Scholar] [CrossRef]
- McGuire, M.A. Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides. Crystals 2017, 7, 121. [Google Scholar] [CrossRef]
- Du, K.-z.; Wang, X.-z.; Liu, Y.; Hu, P.; Utama, M.I.B.; Gan, C.K.; Xiong, Q.; Kloc, C. Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. ACS Nano 2016, 10, 1738–1743. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Rondinelli, J.M. Nonlinear phononic control and emergent magnetism in Mott insulating titanates. Phys. Rev. B 2018, 98, 024102. [Google Scholar] [CrossRef]
- Bazazzadeh, N.; Hamdi, M.; Haddadi, F.; Khavasi, A.; Sadeghi, A.; Mohseni, S.M. Symmetry enhanced spin-Nernst effect in honeycomb antiferromagnetic transition metal trichalcogenide monolayers. Phys. Rev. B 2021, 103, 014425. [Google Scholar] [CrossRef]
- Zvereva, E.A.; Stratan, M.I.; Ovchenkov, Y.A.; Nalbandyan, V.B.; Lin, J.Y.; Vavilova, E.L.; Iakovleva, M.F.; Abdel-Hafiez, M.; Silhanek, A.V.; Chen, X.J.; et al. Zigzag antiferromagnetic quantum ground state in monoclinic honeycomb lattice antimonates A3Ni2SbO6 (A = Li, Na). Phys. Rev. B 2015, 92, 144401. [Google Scholar] [CrossRef]
- Lee, K.H.; Chung, S.B.; Park, K.; Park, J.-G. Magnonic quantum spin Hall state in the zigzag and stripe phases of the antiferromagnetic honeycomb lattice. Phys. Rev. B 2018, 97, 180401. [Google Scholar] [CrossRef]
- Mermin, N.D.; Wagner, H. Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 1966, 17, 1133–1136. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, K.; Wang, J.; Chai, Q.; Yuan, Z.; Liu, Y.; Zhang, R.; Sang, S.; Ge, Y. Electric Field-Induced Magnetic Anisotropies in Fe3GeTe2-Based Nanoheterostructures. ACS Appl. Nano Mater. 2024, 7, 2836–2842. [Google Scholar] [CrossRef]
- Zhao, C.; Yan, S.; Gao, S.; Qiao, W.; Bai, R.; Zhou, T. Strain-Control Magnetic Anisotropy of Antiferromagnetism in Two-Dimensional MXene V2C(OH)2. J. Phys. Chem. C 2024, 128, 20350–20359. [Google Scholar] [CrossRef]
- Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wong, P.K.J.; Zhu, R.; Wee, A.T.S. Van der Waals magnets: Wonder building blocks for two-dimensional spintronics? InfoMat 2019, 1, 479–495. [Google Scholar] [CrossRef]
- Železný, J.; Wadley, P.; Olejník, K.; Hoffmann, A.; Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 2018, 14, 220–228. [Google Scholar] [CrossRef]
- Wang, H.; Lu, C.; Chen, J.; Liu, Y.; Yuan, S.L.; Cheong, S.-W.; Dong, S.; Liu, J.-M. Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet Sr2IrO4. Nat. Commun. 2019, 10, 2280. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Sanderink, J.G.M.; Bolhuis, T.; van der Wiel, W.G.; de Jong, M.P. Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers. Sci. Rep. 2015, 5, 15498. [Google Scholar] [CrossRef]
- Jiang, X.-H.; Qin, S.-C.; Xing, Z.-Y.; Zou, X.-Y.; Deng, Y.-F.; Wang, W.; Wang, L. Study on physical properties and magnetism controlling of two-dimensional magnetic materials. Acta Phys. Sin. 2021, 70, 127801. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, W.; Yang, L.; Wang, J.; Li, J.; Li, L.; Gao, Y.; Zhang, L.; Du, J.; Shu, H.; et al. Strong intrinsic room-temperature ferromagnetism in freestanding non-van der Waals ultrathin 2D crystals. Nat. Commun. 2021, 12, 5688. [Google Scholar] [CrossRef]
- Jiang, S.; Li, L.; Wang, Z.; Mak, K.F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553. [Google Scholar] [CrossRef]
- Pantazis, P.; Maloney, J.; Wu, D.; Fraser, S.E. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc. Natl. Acad. Sci. USA 2010, 107, 14535–14540. [Google Scholar] [CrossRef]
- Kirilyuk, A.; Rasing, T. Magnetization-induced-second-harmonic generation from surfaces and interfaces. J. Opt. Soc. Am. 2005, 22, 148–167. [Google Scholar] [CrossRef]
- Fiebig, M.; Pavlov, V.V.; Pisarev, R.V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: Review. J. Opt. Soc. Am. 2005, 22, 96–118. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, Y.; Wei, K.; Jiang, T. Progress of Research on Two-dimensional Antiferromagnets with Magneto-optic Properties. Chin. J. Lasers 2023, 50, 0113007. [Google Scholar]
- Wu, D.; Ye, M.; Chen, H.; Xu, Y.; Duan, W. Giant and controllable nonlinear magneto-optical effects in two-dimensional magnets. Npj Comput. Mater. 2024, 10, 79. [Google Scholar] [CrossRef]
- Franken, P.A.; Hill, A.E.; Peters, C.W.; Weinreich, G. Generation of Optical Harmonics. Phys. Rev. Lett. 1961, 7, 118–119. [Google Scholar] [CrossRef]
- Hou, D.; Jiang, Z.; Xiao, R.-C.; Liu, C.; Chang, X.; Liu, Y.; Wang, Z.; Li, B.; Liu, X.; Hu, X.; et al. Extraordinary Magnetic Second Harmonic Generation in Monolayer CrPS4. Adv. Opt. Mater. 2024, 12, 2400943. [Google Scholar] [CrossRef]
- Trzeciecki, M.; Hübner, W. Time-reversal symmetry in nonlinear optics. Phys. Rev. B 2000, 62, 13888–13891. [Google Scholar] [CrossRef]
- Chang, K.; Hai, X.; Pang, H.; Zhang, H.; Shi, L.; Liu, G.; Liu, H.; Zhao, G.; Li, M.; Ye, J. Targeted Synthesis of 2H- and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution. Adv. Mater. 2016, 28, 10033–10041. [Google Scholar] [CrossRef]
- Toh, R.J.; Sofer, Z.; Luxa, J.; Sedmidubský, D.; Pumera, M. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem. Commun. 2017, 53, 3054–3057. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, J.; Yang, S.; Wang, Y.; Zhang, X. Second harmonic generation spectroscopy on two-dimensional materials. Opt. Mater. Express 2019, 9, 1136–1149. [Google Scholar] [CrossRef]
- Shi, J.; Yu, P.; Liu, F.; He, P.; Wang, R.; Qin, L.; Zhou, J.; Li, X.; Zhou, J.; Sui, X.; et al. 3R MoS2 with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device. Adv. Mater. 2017, 29, 1701486. [Google Scholar] [CrossRef]
- Malard, L.M.; Alencar, T.V.; Barboza, A.P.M.; Mak, K.F.; de Paula, A.M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 2013, 87, 201401. [Google Scholar] [CrossRef]
- Rosa, H.G.; Ho, Y.W.; Verzhbitskiy, I.; Rodrigues, M.J.F.L.; Taniguchi, T.; Watanabe, K.; Eda, G.; Pereira, V.M.; Gomes, J.C.V. Characterization of the second- and third-harmonic optical susceptibilities of atomically thin tungsten diselenide. Sci. Rep. 2018, 8, 10035. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Rao, Y.; Mak, K.F.; You, Y.; Wang, S.; Dean, C.R.; Heinz, T.F. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 2013, 13, 3329–3333. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Haglund, A.V.; Wang, H.; Xu, B.; Bernhard, C.; Mandrus, D.G.; Qian, X.; Mele, E.J.; Kane, C.L.; Wu, L. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order. Nat. Nanotechnol. 2021, 16, 782–787. [Google Scholar] [CrossRef]
- Lee, K.; Dismukes, A.; Telford, E.; Wiscons, R.; Wang, J.; Xu, X.; Nuckolls, C.; Dean, C.; Roy, X.; Zhu, X. Magnetic Order and Symmetry in the 2D Semiconductor CrSBr. Nano Lett. 2021, 21, 3511–3517. [Google Scholar] [CrossRef]
- Shan, Y.; Li, Y.; Huang, D.; Tong, Q.; Yao, W.; Liu, W.-T.; Wu, S. Stacking symmetry governed second harmonic generation in graphene trilayers. Sci. Adv. 2018, 4, eaat0074. [Google Scholar] [CrossRef]
- Janisch, C.; Wang, Y.; Ma, D.; Mehta, N.; Elías, A.L.; Perea-López, N.; Terrones, M.; Crespi, V.; Liu, Z. Extraordinary Second Harmonic Generation in Tungsten Disulfide Monolayers. Sci. Rep. 2014, 4, 5530. [Google Scholar] [CrossRef]
- Kumar, N.; Najmaei, S.; Cui, Q.; Ceballos, F.; Ajayan, P.M.; Lou, J.; Zhao, H. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 2013, 87, 161403. [Google Scholar] [CrossRef]
- Song, Y.; Hu, S.; Lin, M.-L.; Gan, X.; Tan, P.-H.; Zhao, J. Extraordinary Second Harmonic Generation in ReS2 Atomic Crystals. ACS Photonics 2018, 5, 3485–3491. [Google Scholar] [CrossRef]
- Le, C.T.; Clark, D.J.; Ullah, F.; Jang, J.I.; Senthilkumar, V.; Sim, Y.; Seong, M.-J.; Chung, K.-H.; Kim, J.W.; Park, S.; et al. Impact of Selenium Doping on Resonant Second-Harmonic Generation in Monolayer MoS2. ACS Photonics 2017, 4, 38–44. [Google Scholar] [CrossRef]
- Song, Y.; Tian, R.; Yang, J.; Yin, R.; Zhao, J.; Gan, X. Second Harmonic Generation in Atomically Thin MoTe2. Adv. Opt. Mater. 2018, 6, 1701334. [Google Scholar] [CrossRef]
- Hao, Q.; Yi, H.; Su, H.; Wei, B.; Wang, Z.; Lao, Z.; Chai, Y.; Wang, Z.; Jin, C.; Dai, J.; et al. Phase Identification and Strong Second Harmonic Generation in Pure ε-InSe and Its Alloys. Nano Lett. 2019, 19, 2634–2640. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Cheng, J.; Zhou, Y.; Cao, T.; Hong, H.; Liao, Z.; Wu, S.; Peng, H.; Liu, K.; Yu, D. Strong Second-Harmonic Generation in Atomic Layered GaSe. J. Am. Chem. Soc. 2015, 137, 7994–7997. [Google Scholar] [CrossRef] [PubMed]
- Karvonen, L.; Säynätjoki, A.; Mehravar, S.; Rodriguez, R.D.; Hartmann, S.; Zahn, D.R.T.; Honkanen, S.; Norwood, R.A.; Peyghambarian, N.; Kieu, K.; et al. Investigation of Second- and Third-Harmonic Generation in Few-Layer Gallium Selenide by Multiphoton Microscopy. Sci. Rep. 2015, 5, 10334. [Google Scholar] [CrossRef]
- Susoma, J.; Karvonen, L.; Säynätjoki, A.; Mehravar, S.; Norwood, R.A.; Peyghambarian, N.; Kieu, K.; Lipsanen, H.; Riikonen, J. Second and third harmonic generation in few-layer gallium telluride characterized by multiphoton microscopy. Appl. Phys. Lett. 2016, 108, 073103. [Google Scholar] [CrossRef]
- Ahmed, S.; Cheng, P.K.; Qiao, J.; Gao, W.; Saleque, A.M.; Al Subri Ivan, M.N.; Wang, T.; Alam, T.I.; Hani, S.U.; Guo, Z.L.; et al. Nonlinear Optical Activities in Two-Dimensional Gallium Sulfide: A Comprehensive Study. ACS Nano 2022, 16, 12390–12402. [Google Scholar] [CrossRef]
- Yu, J.; Kuang, X.; Li, J.; Zhong, J.; Zeng, C.; Cao, L.; Liu, Z.; Zeng, Z.; Luo, Z.; He, T.; et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083. [Google Scholar] [CrossRef]
- Zhu, S.; Duan, R.; Xu, X.; Sun, F.; Chen, W.; Wang, F.; Li, S.; Ye, M.; Zhou, X.; Cheng, J.; et al. Strong nonlinear optical processes with extraordinary polarization anisotropy in inversion-symmetry broken two-dimensional PdPSe. Light Sci. Appl. 2024, 13, 119. [Google Scholar] [CrossRef]
- Abdelwahab, I.; Tilmann, B.; Wu, Y.; Giovanni, D.; Verzhbitskiy, I.; Zhu, M.; Berté, R.; Xuan, F.; Menezes, L.d.S.; Eda, G.; et al. Giant second-harmonic generation in ferroelectric NbOI2. Nat. Photonics 2022, 16, 644–650. [Google Scholar] [CrossRef]
- Wang, J.-P.; Fang, Y.-Q.; He, W.; Liu, Q.; Fu, J.-R.; Li, X.-Y.; Liu, Y.; Gao, B.; Zhen, L.; Xu, C.-Y.; et al. Non-Centrosymmetric 2D Nb3SeI7 with High In-Plane Anisotropy and Optical Nonlinearity. Adv. Opt. Mater. 2023, 11, 2300031. [Google Scholar] [CrossRef]
- Shi, J.; Feng, S.; He, P.; Fu, Y.; Zhang, X. Nonlinear Optical Properties from Engineered 2D Materials. Molecules 2023, 28, 6737. [Google Scholar] [CrossRef]
- Frohna, K.; Deshpande, T.; Harter, J.; Peng, W.; Barker, B.A.; Neaton, J.B.; Louie, S.G.; Bakr, O.M.; Hsieh, D.; Bernardi, M. Inversion symmetry and bulk Rashba effect in methylammonium lead iodide perovskite single crystals. Nat. Commun. 2018, 9, 1829. [Google Scholar] [CrossRef] [PubMed]
- Hardhienata, H.; Al Kharfan, H.; Faci, S.; Birowosuto, M.D.; Alatas, H. Bond model of second harmonic generation in tetragonal and orthorhombic perovskite structures. J. Opt. Soc. Am. B 2023, 40, 2773–2781. [Google Scholar] [CrossRef]
- Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P.M.; Yakobson, B.I.; Idrobo, J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. Nano Lett. 2013, 13, 2615–2622. [Google Scholar] [CrossRef] [PubMed]
- Ataca, C.; Ciraci, S. Functionalization of Single-Layer MoS2 Honeycomb Structures. J. Phys. Chem. C 2011, 115, 13303–13311. [Google Scholar] [CrossRef]
- Zou, X.; Liu, Y.; Yakobson, B.I. Predicting Dislocations and Grain Boundaries in Two-Dimensional Metal-Disulfides from the First Principles. Nano Lett. 2013, 13, 253–258. [Google Scholar] [CrossRef]
- Murray, W.; Lucking, M.; Kahn, E.; Zhang, T.; Fujisawa, K.; Perea-Lopez, N.; Laura Elias, A.; Terrones, H.; Terrones, M.; Liu, Z. Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. 2D Mater. 2020, 7, 045020. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, H.; Dong, J.; Xu, W.; Zhu, G.; Li, Y.; Gu, B.; Yang, X.; Shi, Z.; Xu, C.; et al. Visualizing Structural Defects at Hidden Interfaces of Micro-Optoelectronic Devices by Second Harmonic Generation Microscopy. AC Appl. Opt. Mater. 2024, 2, 1566–1572. [Google Scholar] [CrossRef]
- Clarke, J.; Hatridge, M.; Mößle, M. SQUID-Detected Magnetic Resonance Imaging in Microtesla Fields. Annu. Rev. Biomed. Eng. 2007, 9, 389–413. [Google Scholar] [CrossRef]
- Mühlbauer, S.; Honecker, D.; Périgo, É.A.; Bergner, F.; Disch, S.; Heinemann, A.; Erokhin, S.; Berkov, D.; Leighton, C.; Eskildsen, M.R.; et al. Magnetic small-angle neutron scattering. Rev. Mod. Phys. 2019, 91, 015004. [Google Scholar] [CrossRef]
- Foner, S. Versatile and Sensitive Vibrating-Sample Magnetometer. Rev. Sci. Instrum. 1959, 30, 548–557. [Google Scholar] [CrossRef]
- Higo, T.; Man, H.; Gopman, D.B.; Wu, L.; Koretsune, T.; van ’t Erve, O.M.J.; Kabanov, Y.P.; Rees, D.; Li, Y.; Suzuki, M.-T.; et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics 2018, 12, 73–78. [Google Scholar] [CrossRef] [PubMed]
- McCreary, A.; Mai, T.T.; Utermohlen, F.G.; Simpson, J.R.; Garrity, K.F.; Feng, X.; Shcherbakov, D.; Zhu, Y.; Hu, J.; Weber, D.; et al. Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3. Nat. Commun. 2020, 11, 3879. [Google Scholar] [CrossRef]
- Wang, Z.; Gutiérrez-Lezama, I.; Ubrig, N.; Kroner, M.; Gibertini, M.; Taniguchi, T.; Watanabe, K.; Imamoğlu, A.; Giannini, E.; Morpurgo, A.F. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 2018, 9, 2516. [Google Scholar] [CrossRef]
- Chu, H.; Roh, C.J.; Island, J.O.; Li, C.; Lee, S.; Chen, J.; Park, J.-G.; Young, A.F.; Lee, J.S.; Hsieh, D. Linear Magnetoelectric Phase in Ultrathin MnPS3 Probed by Optical Second Harmonic Generation. Phys. Rev. Lett. 2020, 124, 027601. [Google Scholar] [CrossRef]
- Fiebig, M.; Fröhlich, D.; Krichevtsov, B.B.; Pisarev, R.V. Second Harmonic Generation and Magnetic-Dipole-Electric-Dipole Interference in Antiferromagnetic Cr2O3. Phys. Rev. Lett. 1994, 73, 2127–2130. [Google Scholar] [CrossRef]
- Tong, Q.; Liu, F.; Xiao, J.; Yao, W. Skyrmions in the Moiré of van der Waals 2D Magnets. Nano Lett. 2018, 18, 7194–7199. [Google Scholar] [CrossRef]
- Kumar, R.; Jenjeti, R.N.; Austeria, M.P.; Sampath, S. Bulk and few-layer MnPS3: A new candidate for field effect transistors and UV photodetectors. J. Mater. Chem. C 2019, 7, 324–329. [Google Scholar] [CrossRef]
- Xu, T.; Luo, M.; Shen, N.; Yu, Y.; Wang, Z.; Cui, Z.; Qin, J.; Liang, F.; Chen, Y.; Zhou, Y.; et al. Ternary 2D Layered Material FePSe3 and Near-Infrared Photodetector. Adv. Electron. Mater. 2021, 7, 2100207. [Google Scholar] [CrossRef]
- Fiebig, M.; Fröhlich, D.; Lottermoser, T.; Pavlov, V.V.; Pisarev, R.V.; Weber, H.J. Second Harmonic Generation in the Centrosymmetric Antiferromagnet NiO. Phys. Rev. Lett. 2001, 87, 137202. [Google Scholar] [CrossRef]
- Ni, Z.; Zhang, H.; Hopper, D.A.; Haglund, A.V.; Huang, N.; Jariwala, D.; Bassett, L.C.; Mandrus, D.G.; Mele, E.J.; Kane, C.L.; et al. Direct Imaging of Antiferromagnetic Domains and Anomalous Layer-Dependent Mirror Symmetry Breaking in Atomically Thin MnPS3. Phys. Rev. Lett. 2021, 127, 187201. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.-C.; Shao, D.-F.; Gan, W.; Wang, H.-W.; Han, H.; Sheng, Z.G.; Zhang, C.; Jiang, H.; Li, H. Classification of second harmonic generation effect in magnetically ordered materials. Npj Quantum Mater. 2023, 8, 62. [Google Scholar] [CrossRef]
- Litvin, S.Y.; Litvin, D.B.J.A.C.S.A. Rank 0, 1, 2 and 3 magnetic and non-magnetic physical-property tensors. Acta Crystallogr. A 1991, 47, 290–292. [Google Scholar] [CrossRef]
- Gallego, S.V.; Etxebarria, J.; Elcoro, L.; Tasci, E.S.; Perez-Mato, J.M. Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: A new tool of the Bilbao Crystallographic Server. Acta. Cryst. A 2019, 75, 438–447. [Google Scholar] [CrossRef]
- Wang, X.; Du, K.; Fredrik Liu, Y.Y.; Hu, P.; Zhang, J.; Zhang, Q.; Owen, M.H.S.; Lu, X.; Gan, C.K.; Sengupta, P.; et al. Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals. 2D Mater. 2016, 3, 031009. [Google Scholar] [CrossRef]
- Sun, Y.-J.; Pang, S.-M.; Zhang, J. Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials. Chin. Phys. B 2021, 30, 117104. [Google Scholar] [CrossRef]
- Lee, J.-U.; Lee, S.; Ryoo, J.H.; Kang, S.; Kim, T.Y.; Kim, P.; Park, C.-H.; Park, J.-G.; Cheong, H. Ising-Type Magnetic Ordering in Atomically Thin FePS3. Nano Lett. 2016, 16, 7433–7438. [Google Scholar] [CrossRef]
- Kim, K.; Lim, S.Y.; Lee, J.-U.; Lee, S.; Kim, T.Y.; Park, K.; Jeon, G.S.; Park, C.-H.; Park, J.-G.; Cheong, H. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 2019, 10, 345. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Hu, J.; Duan, H.; Wang, C.; Cai, L.; Feng, S.; Wang, Y.; Liu, R.; Hou, D.; et al. Probing the Néel-Type Antiferromagnetic Order and Coherent Magnon–Exciton Coupling in Van Der Waals VPS3. Adv. Mater. 2023, 35, 2300247. [Google Scholar] [CrossRef]
- Fonseca, J.; Diederich, G.M.; Ovchinnikov, D.; Cai, J.; Wang, C.; Yan, J.; Xiao, D.; Xu, X. Anomalous Second Harmonic Generation from Atomically Thin MnBi2Te4. Nano Lett. 2022, 22, 10134–10139. [Google Scholar] [CrossRef]
- Ryu, S.H.; Reichenbach, G.; Jozwiak, C.M.; Bostwick, A.; Richter, P.; Seyller, T.; Rotenberg, E. magnetoARPES: Angle Resolved Photoemission Spectroscopy with magnetic field control. J. Electron Spectrosc. Relat. Phenom. 2023, 266, 147357. [Google Scholar] [CrossRef]
- Shibata, N.; Kohno, Y.; Nakamura, A.; Morishita, S.; Seki, T.; Kumamoto, A.; Sawada, H.; Matsumoto, T.; Findlay, S.D.; Ikuhara, Y. Atomic resolution electron microscopy in a magnetic field free environment. Nat. Commun. 2019, 10, 2308. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, D.; Huang, X.; Lin, Z.; Fei, Z.; Cai, J.; Song, T.; He, M.; Jiang, Q.; Wang, C.; Li, H.; et al. Intertwined Topological and Magnetic Orders in Atomically Thin Chern Insulator MnBi2Te4. Nano Lett. 2021, 21, 2544–2550. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, X.-K.; Xin, W.; Chen, X.D.; Liu, Z.-b.; Tian, J.G. Fabrication, optical properties, and applications of twisted two-dimensional materials. Nanophotonics 2020, 9, 1717–1742. [Google Scholar] [CrossRef]
- Lan, T.; Ding, B.; Liu, B. Magneto-optic effect of two-dimensional materials and related applications. Nano Select 2020, 1, 298–310. [Google Scholar] [CrossRef]
- Zhang, G.P.; Hübner, W.; Lefkidis, G.; Bai, Y.; George, T.F. Paradigm of the time-resolved magneto-optical Kerr effect for femtosecond magnetism. Nat. Phys. 2009, 5, 499–502. [Google Scholar] [CrossRef]
- Pathak, S.; Sharma, M. Polar magneto-optical Kerr effect instrument for 1-dimensional magnetic nanostructures. J. Appl. Phys. 2014, 115, 043906. [Google Scholar] [CrossRef]
- Siegrist, F.; Gessner, J.A.; Ossiander, M.; Denker, C.; Chang, Y.-P.; Schröder, M.C.; Guggenmos, A.; Cui, Y.; Walowski, J.; Martens, U.; et al. Light-wave dynamic control of magnetism. Nature 2019, 571, 240–244. [Google Scholar] [CrossRef]
- Kimura, A.; Matsuno, J.; Okabayashi, J.; Fujimori, A.; Shishidou, T.; Kulatov, E.; Kanomata, T. Soft x-ray magnetic circular dichroism study of the ferromagnetic spinel-type Cr chalcogenides. Phys. Rev. B 2001, 63, 224420. [Google Scholar] [CrossRef]
- Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A.F.; et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 2018, 17, 778–782. [Google Scholar] [CrossRef]
- Suzuki, T.; Someya, T.; Hashimoto, T.; Michimae, S.; Watanabe, M.; Fujisawa, M.; Kanai, T.; Ishii, N.; Itatani, J.; Kasahara, S.; et al. Photoinduced possible superconducting state with long-lived disproportionate band filling in FeSe. Commun. Phys. 2019, 2, 115. [Google Scholar] [CrossRef]
- Huang, J.; Yue, Z.; Baydin, A.; Zhu, H.; Nojiri, H.; Kono, J.; He, Y.; Yi, M. Angle-resolved photoemission spectroscopy with an in situ tunable magnetic field. Rev. Sci. Instrum. 2023, 94, 093902. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Guo, K.; Hu, G.; Shi, Z.; Li, Y.; Zhang, L.; Chen, H.; Zhang, L.; Zhou, P.; Lu, H.; et al. Observation of nonreciprocal magnetophonon effect in nonencapsulated few-layered CrI3. Sci. Adv. 2020, 6, eabc7628. [Google Scholar] [CrossRef]
- Bonilla, M.; Kolekar, S.; Ma, Y.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.-H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Kumar, D.; Galivarapu, J.K.; Banerjee, A.; Nemkovski, K.S.; Su, Y.; Rath, C. Size-dependent magnetic transitions in CoFe0.1Cr1.9O4 nanoparticles studied by magnetic and neutron-polarization analysis. Nanotechnology 2016, 27, 175702. [Google Scholar] [CrossRef]
- Razpopov, A.; Kaib, D.A.S.; Backes, S.; Balents, L.; Wilson, S.D.; Ferrari, F.; Riedl, K.; Valentí, R. A jeff = 1/2 Kitaev material on the triangular lattice: The case of NaRuO2. Npj Quantum Mater. 2023, 8, 36. [Google Scholar] [CrossRef]
- Lumetzberger, J.; Buchner, M.; Pile, S.; Ney, V.; Gaderbauer, W.; Daffé, N.; Moro, M.V.; Primetzhofer, D.; Lenz, K.; Ney, A. Influence of structure and cation distribution on magnetic anisotropy and damping in Zn/Al doped nickel ferrites. Phys. Rev. B 2020, 102, 054402. [Google Scholar] [CrossRef]
- Yang, L.; Wysocki, L.; Schöpf, J.; Jin, L.; Kovács, A.; Gunkel, F.; Dittmann, R.; van Loosdrecht, P.H.M.; Lindfors-Vrejoiu, I. Origin of the hump anomalies in the Hall resistance loops of ultrathin SrRuO3/SrIrO3 multilayers. Phys. Rev. Mater. 2021, 5, 014403. [Google Scholar] [CrossRef]
- Hu, T.; Ma, Y.; Lu, L.; Deng, Y.; Wang, M.; Zhu, K.; Xi, L.; Xiong, Y.; Kan, X.; Wang, G.; et al. Enhanced magnetic transition temperature through ferromagnetic and antiferromagnetic interaction in cobalt-substituted Fe5GeTe2. Appl. Phys. Lett. 2024, 125, 022403. [Google Scholar] [CrossRef]
- Tan, C.; Liao, J.-H.; Zheng, G.; Algarni, M.; Lin, J.-Y.; Ma, X.; Mayes, E.L.H.; Field, M.R.; Albarakati, S.; Panahandeh-Fard, M.; et al. Room-Temperature Magnetic Phase Transition in an Electrically Tuned van der Waals Ferromagnet. Phys. Rev. Lett. 2023, 131, 166703. [Google Scholar] [CrossRef]
- Jungwirth, T.; Marti, X.; Wadley, P.; Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016, 11, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Němec, P.; Fiebig, M.; Kampfrath, T.; Kimel, A.V. Antiferromagnetic opto-spintronics. Nat. Phys. 2018, 14, 229–241. [Google Scholar] [CrossRef]
Material | Thickness | Substrate | χ(2) (pm/V) | Excitation Wavelength (nm) | Ref. |
---|---|---|---|---|---|
Graphene | Monolayer | Si02/Si | 90 | 1300 nm | [77] |
WS2 | Monolayer | Si02/Si | 4500 (deff) | 832 nm | [78] |
MoS2 | Monolayer | Si02/Si | 5000 | 810 nm | [79] |
MoS2 (3R) | Monolayer | Si02/Si | 405 | 1200 nm | [70] |
ReS2 | Bilayer | Si02/Si | 900 | 1558 nm | [80] |
MoSe2 | Monolayer | Si02/Si | 100 | 1600 nm | [81] |
MoTe2 (2H) | Monolayer | Si02/Si | 2500 | 1550 nm | [82] |
ε-InSe | 20 nm | Si02/Si | 13 | 800 nm | [83] |
ε-GaSe | 20 nm | Si02/Si | 11 | 800 nm | [83] |
GaSe | Monolayer | Si02/Si | 700 | 1600 nm | [84] |
GaSe | 9 nm (9 L) | Si02/Si | 9.3 | 1560 nm | [85] |
GaTe | Monolayer | Si02/Si | 1.15 | 1560 nm | [86] |
GaS | Monolayer | quartz | 47.98 | 800 nm | [87] |
h-BN | Monolayer | quartz | 30 | 900 nm | [73] |
PdSe2 | Monolayer | Si02/Si | 51.7 | 880 nm | [88] |
PbPSe | 4.3 nm (6 L) | Si02/Si | 64 | 1300 nm | [89] |
NbOI2 | Monolayer | Si02/Si | 190 | 1050 nm | [90] |
Nb3SeI7 | Monolayer | Si02/Si | 6.71 | 1064 nm | [91] |
CrI3 | 1.4 nm | Si02/Si | 2000 | 900 nm | [17] |
CrPS4 | Monolayer | Si02/Si | 1 | 800 nm | [65] |
Technique | Sensitivity | Advantages | Limitations | Refs. |
---|---|---|---|---|
SHG | High (sub-monolayer sensitive) |
|
| [17,120,121,124,125] |
MOKE | High (monolayer sensitive) |
|
| [103,126,127,128] |
MCD | High (surface-sensitive, ~monolayer) |
|
| [129,130,131] |
ARPES | High (surface-sensitive, ~monolayer) |
|
| [132,133,134] |
Raman | High (monolayer sensitive) |
|
| [43,118,119,135] |
Neutron scattering | Low (bulk-sensitive) |
|
| [136,137,138] |
Magnetometry (SQUID, VSM) | Low (bulk-sensitive) |
|
| [139,140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, Z.; Xue, B.; Chang, W.; Zhang, X.; Shi, J. Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities. Nanomaterials 2025, 15, 63. https://doi.org/10.3390/nano15010063
Xin Z, Xue B, Chang W, Zhang X, Shi J. Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities. Nanomaterials. 2025; 15(1):63. https://doi.org/10.3390/nano15010063
Chicago/Turabian StyleXin, Ziqian, Bingyuan Xue, Wenbo Chang, Xinping Zhang, and Jia Shi. 2025. "Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities" Nanomaterials 15, no. 1: 63. https://doi.org/10.3390/nano15010063
APA StyleXin, Z., Xue, B., Chang, W., Zhang, X., & Shi, J. (2025). Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities. Nanomaterials, 15(1), 63. https://doi.org/10.3390/nano15010063