Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of PVDF Solution
2.3. Membrane Preparation by Electrospinning Technique
2.4. Membrane Characterization
3. Results and Discussion
3.1. Membrane Morphology Analysis
3.2. Functional Groups-FTIR Analysis
3.3. Membrane Electrical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water scarcity in agriculture: An overview of causes, impacts and approaches for reducing the risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef] [PubMed]
- Javan, K.; Altaee, A.; BaniHashemi, S.; Darestani, M.; Zhou, J.; Pignatta, G. A review of interconnected challenges in the water–energy–food nexus: Urban pollution perspective towards sustainable development. Sci. Total Environ. 2024, 912, 169319. [Google Scholar] [CrossRef] [PubMed]
- Shokri, A.; Sanavi Fard, M. A sustainable approach in water desalination with the integration of renewable energy sources: Environmental engineering challenges and perspectives. Environ. Adv. 2022, 9, 100281. [Google Scholar] [CrossRef]
- Husnain, T.; Mi, B.; Riffat, R. Fouling and long-term durability of an integrated forward osmosis and membrane distillation system. Water Sci. Technol. 2015, 72, 2000–2005. [Google Scholar] [CrossRef] [PubMed]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Kumar Sharma, G.; Rachel James, N. Electrospinning: The Technique and Applications. In Recent Developments in Nanofibers Research; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Jianxin, L.; Xuedi, C.; Xiaolei, Z.; Xicheng, J.; Hengzhe, Y.; Junlin, F. Review on functional electrospun nanofibers: Theory, application and fabrication. Mater. Sci. Eng. 2024, 307, 117488. [Google Scholar] [CrossRef]
- Ravi, J.; Othman, M.H.D.; Matsuura, T.; Ro’il Bilad, M.; El-badawy, T.H.; Aziz, F.; Ismail, A.F.; Rahman, M.A.; Jaafar, J. Polymeric membranes for desalination using membrane distillation: A review. Desalination 2020, 490, 114530. [Google Scholar] [CrossRef]
- Ji, J.; Liu, F.; Hashim, N.A.; Abed, M.R.M.; Li, K. Poly(vinylidene fluoride) (PVDF) membranes for fluid separation. React. Funct. Polym. 2015, 86, 134–153. [Google Scholar] [CrossRef]
- Deng, L.; Liu, K.; Li, P.; Sun, D.; Ding, S.; Wang, X.; Hsiao, B.S. Hsiao, Engineering construction of robust superhydrophobic two-tier composite membrane with interlocked structure for membrane distillation. J. Membr. Sci. 2020, 598, 117813. [Google Scholar] [CrossRef]
- Lu, K.J.; Zuo, J.; Chung, T.S. Novel PVDF membranes comprising n-butylamine functionalized graphene oxide for direct contact membrane distillation. J. Membr. Sci. 2017, 539, 34–42. [Google Scholar] [CrossRef]
- Xiao, T.; Wang, P.; Yang, X.; Cai, X.; Lu, J. Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications. J. Membr. Sci. 2015, 489, 160–174. [Google Scholar] [CrossRef]
- Tai, Z.S.; Othman, M.H.D.; Tajul Arifin, N.D.; Shazana, N.A.; Iqbal, R.M.; Ab Rahman, M.; Wan Mustapa, W.N.F.; Kadirkhan, F.; Puteh, M.H.; Jaafar, J.; et al. Modification of PVDF hollow fiber membrane with ZnO structure via hydrothermal for enhanced antifouling property in membrane distillation. J. Memb. Sci. 2024, 692, 122294. [Google Scholar] [CrossRef]
- Abuabdou, S.M.A.; Jaffari, Z.H.; Ng, C.-A.; Ho, Y.-C.; Bashir, M.J.K. A New Polyvinylidene Fluoride Membrane Synthesized by Integrating of Powdered Activated Carbon for Treatment of Stabilized Leachate. Water 2021, 13, 2282. [Google Scholar] [CrossRef]
- Gholami, S.; Llacuna, J.L.; Vatanpour, V.; Dehqan, A.; Paziresh, S.; Cortina, J.L. Impact of a new functionalization of multiwalled carbon nanotubes on antifouling and permeability of PVDF nanocomposite membranes for dye wastewater treatment. Chemosphere 2022, 294, 133699. [Google Scholar] [CrossRef] [PubMed]
- Adaval, A.; Chinya, I.; Bhatt, B.B.; Kumar, S.; Gupta, D.; Samajdar, I.; Aslam, M.; Turney, T.W.; Simon, G.P.; Bhattacharyya, A.R. Poly (vinylidene fluoride)/graphene oxide nanocomposites for piezoelectric applications: Processing, structure, dielectric and ferroelectric properties. Nano-Struct. Nano-Objects 2022, 31, 100899. [Google Scholar] [CrossRef]
- Dutta, S.; de Luis, R.F.; Goscianska, J.; Demessence, A.; Ettlinger, R.; Wuttke, S. Metal–Organic Frameworks for Water Desalination. Adv. Funct. Mater. 2024, 34. [Google Scholar] [CrossRef]
- Dyartanti, E.; Purwanto, A.; Widiasa, I.; Susanto, H. Ionic Conductivity and Cycling Stability Improvement of PVDF/Nano-Clay Using PVP as Polymer Electrolyte Membranes for LiFePO4 Batteries. Membranes 2018, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Thilagashanthi, T.; Gunasekaran, K.; Satyanarayanan, K.S. Microstructural pore analysis using SEM and ImageJ on the absorption of treated coconut shell aggregate. J. Clean. Prod. 2021, 324, 129217. [Google Scholar] [CrossRef]
- Pasieczna-Patkowska, S.; Cichy, M.; Flieger, J. Application of Fourier Transform Infrared (FTIR) Spectroscopy in Characterization of Green Synthesized Nanoparticles. Molecules 2025, 30, 684. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wang, X.; Zhou, Y.; Zhang, L. Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog. Nat. Sci. Mater. Int. 2012, 22, 250–257. [Google Scholar] [CrossRef]
- Mahalakshmi, S.; Hema, N.; Vijaya, P.P. In Vitro Biocompatibility and Antimicrobial activities of Zinc Oxide Nanoparticles (ZnO NPs) Prepared by Chemical and Green Synthetic Route— A Comparative Study. Bionanoscience 2020, 10, 112–121. [Google Scholar] [CrossRef]
- He, D.; Peng, Z.; Gong, W.; Luo, Y.; Zhao, P.; Kong, L. Mechanism of a green graphene oxide reduction with reusable potassium carbonate. RSC Adv. 2015, 5, 11966–11972. [Google Scholar] [CrossRef]
- Hatui, G.; Bhattacharya, P.; Sahoo, S.; Dhibar, S.; Das, C.K. Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites. Compos. Part A Appl. Sci. Manuf. 2014, 56, 181–191. [Google Scholar] [CrossRef]
- Baikousi, M.; Dimos, K.; Bourlinos, A.B.; Zbořil, R.; Papadas, I.; Deligiannakis, Y.; Karakassides, M.A. Surface decoration of carbon nanosheets with amino-functionalized organosilica nanoparticles. Appl. Surf. Sci. 2012, 258, 3703–3709. [Google Scholar] [CrossRef]
- Mojoudi, N.; Mirghaffari, N.; Soleimani, M.; Shariatmadari, H.; Belver, C.; Bedia, J. Phenol adsorption on high microporous activated carbons prepared from oily sludge: Equilibrium, kinetic and thermodynamic studies. Sci. Rep. 2019, 9, 19352. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Liu, Q.; Chen, R.; Liu, J.; Zhang, H.; Li, R.; Takahashi, K.; Liu, P.; Wang, J. Fabrication of ZIF-8@SiO 2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance. ACS Appl. Mater. Interfaces 2017, 9, 11106–11115. [Google Scholar] [CrossRef] [PubMed]
- Hao, C.; Zhou, D.; Xu, J.; Hong, S.; Wei, W.; Zhao, T.; Huang, H.; Fang, W. One-pot synthesis of vancomycin-encapsulated ZIF-8 nanoparticles as multivalent and photocatalytic antibacterial agents for selective-killing of pathogenic gram-positive bacteria. J. Mater. Sci. 2021, 56, 9434–9444. [Google Scholar] [CrossRef]
Material | Properties |
---|---|
Zinc oxide particles (ZnOs) | <5 μm particle size, 99.9% purity |
Graphene oxide particles (GOs) | 0.5–10 μm size, 0.55–50 nm thickness, industrial grade, better than 97% purity |
Multiwalled carbon nanotubes (MWCNs) | 50–90 nm diameter, better than 95% purity (carbon basis) |
Zeolitic imidazolate framework-8 (ZIF-8) | Zinc ions linked with 2-methylimidazole |
Activated carbons (AC) | Research grade purity |
Dimethylformamide (DMF) | Better than 99.9% purity |
Acetone | Better than 99.9% purity |
Sulfuric acid (H2SO4) | Better than 98% purity |
Parameters | PVDF Samples | |||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
Mass of polymer (g) | 1 | 1 | 1 | 1 | 1 | 1 |
DMF/acetone volume ratio (mL/mL) | 9:1 | 9:1 | 7:3 | 7:3 | 7:3 | 6:4 |
Polymer concentration (wt.%) | 10 | 10 | 10 | 10 | 10 | 10 |
Needle–collector distance (cm) | 15 | 15 | 15 | 15 | 15 | 15 |
Voltage (kV) | 25 | 25 | 25 | 25 | 25 | 25 |
Drum speed (rpm) | 300 | 300 | 300 | 300 | 300 | 300 |
Syringe capacity (mL) | 10 | 10 | 10 | 10 | 10 | 10 |
Flow rate (mL/h) | 20 | 10 | 5 | 3 | 2 | 5 |
Duration of electrospinning (h) | 0:30 | 1:00 | 2:00 | 5:00 | 10:00 | 2:00 |
Membrane | ||
---|---|---|
Pure PVDF | 0.298 | 0.931 |
PVDF/AC | 0.515 | 1.617 |
PVDF/CNTs | 0.384 | 1.207 |
PVDF/GO | 0.664 | 2.086 |
PVDF/MOFs | 0.349 | 1.096 |
PVDF/ZnO | 0.343 | 1.077 |
Mixed Matrix Membrane | Composition (wt.%) | ) | ) | |
---|---|---|---|---|
PVDF/no additives | - | 195.6122 | 0.0457 | 0.3677 |
PVDF/GO | 0.18 | 56.1237 | 0.0533 | 1.4995 |
PVDF/GO | 0.45 | 23.3349 | 0.0832 | 5.6106 |
PVDF/AC | 0.18 | 84.8904 | 0.0802 | 1.4983 |
PVDF/AC | 0.45 | 59.3602 | 0.0891 | 1.7742 |
PVDF/ZnO | 0.18 | 85.4439 | 0.0511 | 0.9414 |
PVDF/ZnO | 0.45 | 67.0813 | 0.0821 | 1.9220 |
PVDF/MOFs | 0.18 | 109.9002 | 0.0612 | 0.8761 |
PVDF/MOFs | 0.45 | 88.9310 | 0.0753 | 1.3349 |
PVDF/CNTs | 0.18 | 112.0672 | 0.0834 | 1.7311 |
PVDF/CNTs | 0.45 | 55.8628 | 0.0923 | 2.6033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taleb, H.; Gopal, V.; Kanan, S.; Hashaikeh, R.; Hilal, N.; Darwish, N. Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives. Nanomaterials 2025, 15, 1151. https://doi.org/10.3390/nano15151151
Taleb H, Gopal V, Kanan S, Hashaikeh R, Hilal N, Darwish N. Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives. Nanomaterials. 2025; 15(15):1151. https://doi.org/10.3390/nano15151151
Chicago/Turabian StyleTaleb, Haya, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal, and Naif Darwish. 2025. "Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives" Nanomaterials 15, no. 15: 1151. https://doi.org/10.3390/nano15151151
APA StyleTaleb, H., Gopal, V., Kanan, S., Hashaikeh, R., Hilal, N., & Darwish, N. (2025). Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives. Nanomaterials, 15(15), 1151. https://doi.org/10.3390/nano15151151