A Review of Strategies to Improve the Electrocatalytic Performance of Tungsten Oxide Nanostructures for the Hydrogen Evolution Reaction
Abstract
1. Introduction
2. WO3 Nanostructures for HER
3. Different Strategies for Improving Electrocatalytic Performance of WO3 for HER
3.1. Morphological Control
3.2. Phase Transition
3.3. Defect Engineering
3.3.1. Anion Vacancies
3.3.2. Cationic Doping
3.3.3. Interstitial Atoms
3.4. Constructing Heterostructure
3.5. Microenvironment Effect
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HER | hydrogen evolution reaction |
WO3 | tungsten oxide |
LSV | linear sweep voltammetry |
PDOS | projected density of state |
DFT | density functional theory |
TMOs | transition metal oxides |
OER | oxygen evolution reaction |
1D | one-dimensional |
3D | three-dimensional |
VO | oxygen vacancies |
CBM | conduction band minimum |
References
- Liu, Y.; Xiao, C.; Lyu, M.; Lin, Y.; Cai, W.; Huang, P.; Tong, W.; Zou, Y.; Xie, Y. Ultrathin Co3S4 Nanosheets that Synergistically Engineer Spin States and Exposed Polyhedra that Promote Water Oxidation under Neutral Conditions. Angew. Chem. Int. Ed. 2015, 54, 11231–11235. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yan, M.; Yang, C.; He, H.; Jiang, Q.; Yang, L.; Lu, Z.; Sun, Z.; Xu, X.; Bando, Y.; et al. Graphene Nanoarchitectonics: Recent Advances in Graphene-Based Electrocatalysts for Hydrogen Evolution Reaction. Adv. Mater. 2019, 31, 1903415. [Google Scholar] [CrossRef]
- Wang, C.; Ji, X.; Liang, J.; Zhao, S.; Zhang, X.; Qu, G.; Shao, W.; Li, C.; Zhao, G.; Xu, X.; et al. Activating and Stabilizing a Reversible four Electron Redox Reaction of I−/I+ for Aqueous Zn-Iodine Battery. Angew. Chem. Int. Ed. 2024, 63, e202403187. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Vomiero, A. 2D Transition Metal Dichalcogenides-Based Electrocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2022, 32, 2208994. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, X.; Lin, X.; Liu, G.; Ling, C.; Xi, S.; Chen, B.; Ge, Y.; Tan, C.; Lai, Z.; et al. Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature 2023, 621, 300–305. [Google Scholar] [CrossRef]
- Hu, S.; Ge, S.; Liu, H.; Kang, X.; Yu, Q.; Liu, B. Low-Dimensional Electrocatalysts for Acidic Oxygen Evolution: Intrinsic Activity, High Current Density Operation, and Long-Term Stability. Adv. Funct. Mater. 2022, 32, 2201726. [Google Scholar] [CrossRef]
- Gnanapragasam, N.V.; Reddy, B.V.; Rosen, M.A. Hydrogen production from coal gasification for effective downstream CO2 capture. Int. J. Hydrog. Energy 2010, 35, 4933–4943. [Google Scholar] [CrossRef]
- Abánades, A.; Rubbia, C.; Salmieri, D. Technological challenges for industrial development of hydrogen production based on methane cracking. Energy 2012, 46, 359–363. [Google Scholar] [CrossRef]
- Ávila-Neto, C.N.; Dantas, S.C.; Silva, F.A.; Franco, T.V.; Romanielo, L.L.; Hori, C.E.; Assis, A.J. Hydrogen production from methane reforming: Thermodynamic assessment and autothermal reactor design. J. Nat. Gas Sci. Eng. 2009, 1, 205–215. [Google Scholar] [CrossRef]
- Yan, Y.; Xia, B.; Xu, Z.; Wang, X. Recent Development of Molybdenum Sulfides as Advanced Electrocatalysts for Hydrogen Evolution Reaction. ACS Catal. 2014, 4, 1693–1705. [Google Scholar] [CrossRef]
- Kim, J.; Kim, H.; Lee, W.J.; Ruqia, B.; Baik, H.; Oh, H.S.; Paek, S.M.; Lim, H.K.; Choi, C.H.; Choi, S.I. Theoretical and Experimental Understanding of Hydrogen Evolution Reaction Kinetics in Alkaline Electrolytes with Pt-Based Core–Shell Nanocrystals. J. Am. Chem. Soc. 2019, 141, 18256–18263. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, B.; Wang, K.; Yang, W.; Lv, F.; Li, N.; Chao, Y.; Zhou, P.; Yang, Y.; Li, Y.; et al. WOx-Surface Decorated PtNi@Pt Dendritic Nanowires as Efficient pH-Universal Hydrogen Evolution Electrocatalysts. Adv. Energy Mater. 2021, 11, 2003192. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.; Li, F.; Li, L.; Wu, J.; Liu, S.; Cheng, T.; Xu, Y.; Shao, Q.; Huang, X. Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci. Adv. 2022, 8, eabl9271. [Google Scholar] [CrossRef]
- Meng, G.; Sun, W.; Mon, A.A.; Wu, X.; Xia, L.; Han, A.; Wang, Y.; Zhuang, Z.; Liu, J.; Wang, D.; et al. Strain Regulation to Optimize the Acidic Water Oxidation Performance of Atomic-Layer IrOx. Adv. Mater. 2019, 31, 1903616. [Google Scholar] [CrossRef]
- Wang, J.; Ji, Y.; Yin, R.; Li, Y.; Shao, Q.; Huang, X. Transition metal-doped ultrathin RuO2 networked nanowires for efficient overall water splitting across a broad pH range. J. Mater. Chem. A 2019, 7, 6411–6416. [Google Scholar] [CrossRef]
- Gao, J.; Xu, C.Q.; Hung, S.F.; Liu, W.; Cai, W.; Zeng, Z.; Jia, C.; Chen, H.M.; Xiao, H.; Li, J.; et al. Breaking Long-Range Order in Iridium Oxide by Alkali Ion for Efficient Water Oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zheng, Y.; Jiao, Y.; Wang, Z.; Lu, Z.; Vasileff, A.; Qiao, S.Z. NiO as a Bifunctional Promoter for RuO2 toward Superior Overall Water Splitting. Small 2018, 14, 1704073. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Zhou, P.; Zhai, G.; Lv, X.; Liu, Y.; Wang, Z.; Wang, P.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B. Boosting the electrocatalytic HER performance of Ni3N-V2O3 via the interface coupling effect. Appl. Catal. B Environ. 2021, 283, 119590. [Google Scholar] [CrossRef]
- Li, Y.H.; Liu, P.F.; Pan, L.F.; Wang, H.F.; Yang, Z.Z.; Zheng, L.R.; Hu, P.; Zhao, H.J.; Gu, L.; Yang, H.G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 2015, 6, 8064. [Google Scholar] [CrossRef]
- Li, T.; Niu, K.; Yang, M.; Shrestha, N.K.; Gao, Z.; Song, Y.-Y. Ultrathin CoS2 shells anchored on Co3O4 nanoneedles for efficient hydrogen evolution electrocatalysis. J. Power Sources 2017, 356, 89–96. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Wang, J.; Da, Y.; Zhang, J.; Li, L.; Zhong, C.; Deng, Y.; Han, X.; Hu, W. Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3/Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Adv. Mater. 2020, 32, 2003414. [Google Scholar] [CrossRef]
- Liu, P.F.; Yang, S.; Zhang, B.; Yang, H.G. Defect-Rich Ultrathin Cobalt–Iron Layered Double Hydroxide for Electrochemical Overall Water Splitting. ACS Appl. Mater. Interfaces 2016, 8, 34474–34481. [Google Scholar] [CrossRef]
- Hu, J.; Li, S.; Li, Y.; Wang, J.; Du, Y.; Li, Z.; Han, X.; Sun, J.; Xu, P. A crystalline–amorphous Ni–Ni(OH)2 core–shell catalyst for the alkaline hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 23323–23329. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, M.; Tian, Y.; Zhao, G.; Huang, J.; Xu, X. In-situ growth of 3D hierarchical γ-FeOOH/Ni3S2 heterostructure as high performance electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2023, 639, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ding, M.; Qin, Y.; Zhang, B.; Zhang, Y.; Huang, J. Crystalline/Amorphous Mo-Ni(OH)2/FexNiy(OH)3x+2y hierarchical nanotubes as efficient electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2024, 657, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hou, D.; Zhou, Y.; Zhou, W.; Li, G.; Tang, Z.; Li, L.; Chen, S. MoS2 nanosheet-coated CoS2 nanowire arrays on carbon cloth as three-dimensional electrodes for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2015, 3, 22886–22891. [Google Scholar] [CrossRef]
- Wang, D.Y.; Gong, M.; Chou, H.L.; Pan, C.J.; Chen, H.A.; Wu, Y.; Lin, M.C.; Guan, M.; Yang, J.; Chen, C.W.; et al. Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets–Carbon Nanotubes for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592. [Google Scholar] [CrossRef]
- Jiang, N.; Tang, Q.; Sheng, M.; You, B.; Jiang, D.E.; Sun, Y. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077–1084. [Google Scholar] [CrossRef]
- Ling, Y.; Yang, Z.; Zhang, Q.; Zhang, Y.; Cai, W.; Cheng, H. A self-template synthesis of defect-rich WS2 as a highly efficient electrocatalyst for the hydrogen evolution reaction. Chem. Commun. 2018, 54, 2631–2634. [Google Scholar] [CrossRef]
- Li, W.; Xiong, D.; Gao, X.; Song, W.G.; Xia, F.; Liu, L. Self-supported Co-Ni-P ternary nanowire electrodes for highly efficient and stable electrocatalytic hydrogen evolution in acidic solution. Catal. Today 2017, 287, 122–129. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, H.; Wang, M.; Yang, Y.; Jiang, J.; Zhang, B.; Duan, L.; Daniel, Q.; Li, F.; Sun, L. Gas-templating of hierarchically structured Ni–Co–P for efficient electrocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 7564–7570. [Google Scholar] [CrossRef]
- Liu, H.; Ma, X.; Hu, H.; Pan, Y.; Zhao, W.; Liu, J.; Zhao, X.; Wang, J.; Yang, Z.; Zhao, Q.; et al. Robust NiCoP/CoP Heterostructures for Highly Efficient Hydrogen Evolution Electrocatalysis in Alkaline Solution. ACS Appl. Mater. Interfaces 2019, 11, 15528–15536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, Y.; Deng, S.; Shen, S.; Zhang, Y.; Pan, G.; Xiong, Q.; Liu, Q.; Xia, X.; Wang, X.; et al. Molybdenum Selenide Electrocatalysts for Electrochemical Hydrogen Evolution Reaction. ChemElectroChem 2019, 6, 3530–3548. [Google Scholar] [CrossRef]
- Sun, J.; Li, J.; Li, Z.; Hu, X.; Bai, H.; Meng, X. Phase Transition in Cobalt Selenide with a Greatly Improved Electrocatalytic Activity in Hydrogen Evolution Reactions. ACS Sustain. Chem. Eng. 2022, 10, 4022–4030. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, J.; Wang, T.; Xiao, W.; Tao, K.; Xue, D.; Ding, J. Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J. Mater. Chem. A 2016, 4, 17363–17369. [Google Scholar] [CrossRef]
- Liu, B.; He, B.; Peng, H.Q.; Zhao, Y.; Cheng, J.; Xia, J.; Shen, J.; Ng, T.W.; Meng, X.; Lee, C.S.; et al. Unconventional Nickel Nitride Enriched with Nitrogen Vacancies as a High-Efficiency Electrocatalyst for Hydrogen Evolution. Adv. Sci. 2018, 5, 1800406. [Google Scholar] [CrossRef]
- Kumar, R.; Gaur, A.; Maruyama, T.; Bera, C.; Bagchi, V. Strong Interactions between the Nanointerfaces of Silica-Supported Mo2C/MoP Heterojunction Promote Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2020, 12, 57898–57906. [Google Scholar] [CrossRef]
- Yang, Y.; Qian, Y.; Luo, Z.; Li, H.; Chen, L.; Cao, X.; Wei, S.; Zhou, B.; Zhang, Z.; Chen, S.; et al. Water induced ultrathin Mo2C nanosheets with high-density grain boundaries for enhanced hydrogen evolution. Nat. Commun. 2022, 13, 7225. [Google Scholar] [CrossRef]
- Chen, W.; Niu, M.; Zhang, Z.; Chen, L.; Li, X.; Zhang, J.; Sun, R.; Cao, H.; Wang, X. Phase-Transition of Mo2C Induced by Tungsten Doping as Heterointerface-Rich Electrocatalyst for Optimizing Hydrogen Evolution Activity. Small 2024, 20, 2311026. [Google Scholar] [CrossRef]
- Masa, J.; Xia, W.; Sinev, I.; Zhao, A.; Sun, Z.; Grützke, S.; Weide, P.; Muhler, M.; Schuhmann, W. MnxOy/NC and CoxOy/NC Nanoparticles Embedded in a Nitrogen-Doped Carbon Matrix for High-Performance Bifunctional Oxygen Electrodes. Angew. Chem. Int. Ed. 2014, 53, 8508–8512. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.; Suib, S.L. Structure–Property Relationship of Bifunctional MnO2 Nanostructures: Highly Efficient, Ultra-Stable Electrochemical Water Oxidation and Oxygen Reduction Reaction Catalysts Identified in Alkaline Media. J. Am. Chem. Soc. 2014, 136, 11452–11464. [Google Scholar] [CrossRef]
- Prabu, M.; Ketpang, K.; Shanmugam, S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries. Nanoscale 2014, 6, 3173–3181. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, H.; Chen, D.; Chen, C.; Ciucci, F. In situ synthesis of mesoporous manganese oxide/sulfur-doped graphitized carbon as a bifunctional catalyst for oxygen evolution/reduction reactions. Carbon 2015, 94, 1028–1036. [Google Scholar] [CrossRef]
- Chen, J.; Yu, D.; Liao, W.; Zheng, M.; Xiao, L.; Zhu, H.; Zhang, M.; Du, M.; Yao, J. WO3–x Nanoplates Grown on Carbon Nanofibers for an Efficient Electrocatalytic Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2016, 8, 18132–18139. [Google Scholar] [CrossRef]
- Osgood, H.; Devaguptapu, S.V.; Xu, H.; Cho, J.; Wu, G. Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today 2016, 11, 601–625. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, X.C.; Liu, X.H.; Wen, H.R. Core–shell hierarchical WO2/WO3 microspheres as an electrocatalyst support for methanol electrooxidation. Chem. Commun. 2015, 51, 15297–15299. [Google Scholar] [CrossRef]
- Li, W.; Da, P.; Zhang, Y.; Wang, Y.; Lin, X.; Gong, X.; Zheng, G. WO3 Nanoflakes for Enhanced Photoelectrochemical Conversion. ACS Nano 2014, 8, 11770–11777. [Google Scholar] [CrossRef]
- Zheng, H.; Ou, J.Z.; Strano, M.S.; Kaner, R.B.; Mitchell, A.; Kalantar zadeh, K. Nanostructured Tungsten Oxide—Properties, Synthesis, and Applications. Adv. Funct. Mater. 2011, 21, 2175–2196. [Google Scholar] [CrossRef]
- Pathak, R.; Gurung, A.; Elbohy, H.; Chen, K.; Reza, K.M.; Bahrami, B.; Mabrouk, S.; Ghimire, R.; Hummel, M.; Gu, Z.; et al. Self-recovery in Li-metal hybrid lithium-ion batteries via WO3 reduction. Nanoscale 2018, 10, 15956–15966. [Google Scholar] [CrossRef] [PubMed]
- Epifani, M.; Comini, E.; Díaz, R.; Andreu, T.; Genç, A.; Arbiol, J.; Siciliano, P.; Faglia, G.; Morante, J.R. Solvothermal, Chloroalkoxide-based Synthesis of Monoclinic WO3 Quantum Dots and Gas-Sensing Enhancement by Surface Oxygen Vacancies. ACS Appl. Mater. Interfaces 2014, 6, 16808–16816. [Google Scholar] [CrossRef]
- Hu, X.; Li, X.; Yang, H.; Liu, S.; Qin, Z.; Xie, C.; Zeng, D. Active edge effect of pothole-rich WO3 nanosheets for enhancing dimethyl trisulfide gas sensing performance. Sens. Actuators B Chem. 2022, 352, 131103. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Yu, W.; Chen, J.; Shang, T.; Chen, L.; Gu, L.; Peng, T. Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl. Catal. B Environ. 2017, 219, 693–704. [Google Scholar] [CrossRef]
- Pehlivan, İ.B.; Atak, G.; Niklasson, G.A.; Stolt, L.; Edoff, M.; Edvinsson, T. Electrochromic solar water splitting using a cathodic WO3 electrocatalyst. Nano Energy 2021, 81, 105620. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Zhang, P.; Peng, F.; Bowen, C.; Huo, J.; Deng, L. Tailoring the geometric and electronic structure of tungsten oxide with manganese or vanadium doping toward highly efficient electrochemical and photoelectrochemical water splitting. J. Mater. Chem. A 2019, 7, 6161–6172. [Google Scholar] [CrossRef]
- Meng, G.; Yao, H.; Tian, H.; Kong, F.; Cui, X.; Cao, S.; Chen, Y.; Chang, Z.; Chen, C.; Shi, J. An electrochemically reconstructed WC/WO2–WO3 heterostructure as a highly efficient hydrogen oxidation electrocatalyst. J. Mater. Chem. A 2022, 10, 622–631. [Google Scholar] [CrossRef]
- Chen, Z.; Gong, W.; Wang, J.; Hou, S.; Yang, G.; Zhu, C.; Fan, X.; Li, Y.; Gao, R.; Cui, Y. Metallic W/WO2 solid-acid catalyst boosts hydrogen evolution reaction in alkaline electrolyte. Nat. Commun. 2023, 14, 5363. [Google Scholar] [CrossRef]
- Huang, H.; Xu, L.; Woo, D.Y.; Kim, S.; Kim, S.M.; Kim, Y.K.; Byeon, J.; Lee, J. Refining the surface properties of WO2.7 by vacancy engineering and transition metals doping for enhanced alkaline hydrogen evolution reaction. Chem. Eng. J. 2023, 451, 138939. [Google Scholar] [CrossRef]
- Chen, H.; Song, L.; Ouyang, S.; Wang, J.; Lv, J.; Ye, J. Co and Fe Codoped WO2.72 as Alkaline-Solution-Available Oxygen Evolution Reaction Catalyst to Construct Photovoltaic Water Splitting System with Solar-To-Hydrogen Efficiency of 16.9%. Adv. Sci. 2019, 6, 1900465. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, R.; Dong, L.; Yin, S.; Chu, B.; Chen, Z.; Wang, J.; Li, B.; Fan, M. Heterointerface and Defect Dual Engineering in a Superhydrophilic Ni2P/WO2.83 Microsphere for Boosting Alkaline Hydrogen Evolution Reaction at High Current Density. ACS Appl. Mater. Interfaces 2022, 14, 18816–18824. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; He, Q.; Hu, Y.; Isimjan, T.T.; Hou, R.; Yang, X. Interface engineering of porous Fe2P-WO2.92 catalyst with oxygen vacancies for highly active and stable large-current oxygen evolution and overall water splitting. J. Energy Chem. 2022, 65, 574–582. [Google Scholar] [CrossRef]
- Ham, D.J.; Phuruangrat, A.; Thongtem, S.; Lee, J.S. Hydrothermal synthesis of monoclinic WO3 nanoplates and nanorods used as an electrocatalyst for hydrogen evolution reactions from water. Chem. Eng. J. 2010, 165, 365–369. [Google Scholar] [CrossRef]
- Zheng, X.; Shi, X.; Ning, H.; Yang, R.; Lu, B.; Luo, Q.; Mao, S.; Xi, L.; Wang, Y. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat. Commun. 2023, 14, 4209. [Google Scholar] [CrossRef]
- Koltypin, Y.; Nikitenko, S.I.; Gedanken, A. The sonochemical preparation of tungsten oxide nanoparticles. J. Mater. Chem. 2002, 12, 1107–1110. [Google Scholar] [CrossRef]
- Ganesan, R.; Gedanken, A. Synthesis of WO3 nanoparticles using a biopolymer as a template for electrocatalytic hydrogen evolution. Nanotechnology 2008, 19, 025702. [Google Scholar] [CrossRef]
- Yan, Z.; Wei, W.; Xie, J.; Meng, S.; Lü, X.; Zhu, J. An ion exchange route to produce WO3 nanobars as Pt electrocatalyst promoter for oxygen reduction reaction. J. Power Sources 2013, 222, 218–224. [Google Scholar] [CrossRef]
- Chen, D.; Gao, L.; Yasumori, A.; Kuroda, K.; Sugahara, Y. Size- and Shape-Controlled Conversion of Tungstate-Based Inorganic–Organic Hybrid Belts to WO3 Nanoplates with High Specific Surface Areas. Small 2008, 4, 1813–1822. [Google Scholar] [CrossRef]
- Mohamed, M.J.S.; Gondal, M.A.; Hassan, M.; Almessiere, M.A.; Tahir, A.A.; Roy, A. Effective Hydrogen Production from Alkaline and Natural Seawater using WO3–x@CdS1–x Nanocomposite-Based Electrocatalysts. ACS Omega 2023, 8, 33332–33341. [Google Scholar] [CrossRef]
- Rajeswari, J.; Kishore, P.; Viswanathan, B.; Varadarajan, T. Facile Hydrogen Evolution Reaction on WO3 Nanorods. Nanoscale Res. Lett. 2007, 2, 496. [Google Scholar] [CrossRef]
- Phuruangrat, A.; Ham, D.J.; Hong, S.J.; Thongtem, S.; Lee, J.S. Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J. Mater. Chem. 2010, 20, 1683–1690. [Google Scholar] [CrossRef]
- Zheng, H.; Mathe, M. Hydrogen evolution reaction on single crystal WO3/C nanoparticles supported on carbon in acid and alkaline solution. Int. J. Hydrog. Energy 2011, 36, 1960–1964. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, G.; Wang, D.; Chen, Z.; Zhao, M.; Xi, G. Crystallographic phase and morphology dependent hydrothermal synthesis of tungsten oxide for robust hydrogen evolution reaction. J. Alloys Compd. 2021, 875, 160054. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Rebekah, A.; Viswanathan, C.; Ponpandian, N. Evolution of intrinsic 1-3D WO3 nanostructures: Tailoring their phase structure and morphology for robust hydrogen evolution reaction. Chem. Eng. J. 2022, 428, 132013. [Google Scholar] [CrossRef]
- Nayak, A.K.; Verma, M.; Sohn, Y.; Deshpande, P.A.; Pradhan, D. Highly Active Tungsten Oxide Nanoplate Electrocatalysts for the Hydrogen Evolution Reaction in Acidic and Near Neutral Electrolytes. ACS Omega 2017, 2, 7039–7047. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S.Z. Advancing the Electrochemistry of the Hydrogen-Evolution Reaction through Combining Experiment and Theory. Angew. Chem. Int. Ed. 2015, 54, 52–65. [Google Scholar] [CrossRef]
- Mohamed, M.M.; Salama, T.M.; Hegazy, M.A.; Abou Shahba, R.M.; Mohamed, S.H. Synthesis of hexagonal WO3 nanocrystals with various morphologies and their enhanced electrocatalytic activities toward hydrogen evolution. Int. J. Hydrog. Energy 2019, 44, 4724–4736. [Google Scholar] [CrossRef]
- Qian, Y.; Yu, J.; Zhang, Y.; Zhang, F.; Kang, Y.; Su, C.; Shi, H.; Kang, D.J.; Pang, H. Interfacial Microenvironment Modulation Enhancing Catalytic Kinetics of Binary Metal Sulfides Heterostructures for Advanced Water Splitting Electrocatalysts. Small Methods 2022, 6, 2101186. [Google Scholar] [CrossRef]
- Seh, Z.W.; Kibsgaard, J.; Dickens, C.F.; Chorkendorff, I.; Nørskov, J.K.; Jaramillo, T.F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, Z.; Hu, L.; Tian, R.; Wang, Y.; Arandiyan, H.; Chen, F.; Li, M.; Wan, T.; Han, Z.; et al. A facile approach to tailor electrocatalytic properties of MnO2 through tuning phase transition, surface morphology and band structure. Chem. Eng. J. 2022, 438, 135561. [Google Scholar] [CrossRef]
- Greeley, J.; Jaramillo, T.F.; Bonde, J.; Chorkendorff, I.; Nørskov, J.K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913. [Google Scholar] [CrossRef]
- Saleem, M.S.; Cui, B.; Song, C.; Sun, Y.; Gu, Y.; Zhang, R.; Fayaz, M.U.; Zhou, X.; Werner, P.; Parkin, S.S.P.; et al. Electric Field Control of Phase Transition and Tunable Resistive Switching in SrFeO2.5. ACS Appl. Mater. Interfaces 2019, 11, 6581–6588. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.P.; Bhattacharyya, S.; Zhu, J.; Liu, J.; Wu, X.; Pandey, T.; Jin, C.; Singh, A.K.; Akinwande, D.; Lin, J.F. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide. Nat. Commun. 2014, 5, 3731. [Google Scholar] [CrossRef] [PubMed]
- Blunt, M.O.; Adisoejoso, J.; Tahara, K.; Katayama, K.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S. Temperature-Induced Structural Phase Transitions in a Two-Dimensional Self-Assembled Network. J. Am. Chem. Soc. 2013, 135, 12068–12075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zheng, X.; Xu, Q.; Zhang, J.; Liu, W.; Chen, J. Carbon nanotube-induced phase and stability engineering: A strained cobalt-doped WSe2/MWNT heterostructure for enhanced hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 4793–4800. [Google Scholar] [CrossRef]
- Duerloo, K.-A.N.; Li, Y.; Reed, E.J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214. [Google Scholar] [CrossRef]
- Xie, C.; Chen, W.; Du, S.; Yan, D.; Zhang, Y.; Chen, J.; Liu, B.; Wang, S. In-situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy 2020, 71, 104653. [Google Scholar] [CrossRef]
- Yang, J.; Chen, X.; Liu, X.; Cao, Y.; Huang, J.; Li, Y.; Liu, F. From Hexagonal to Monoclinic: Engineering Crystalline Phase to Boost the Intrinsic Catalytic Activity of Tungsten Oxides for the Hydrogen Evolution Reaction. ACS Sustain. Chem. Eng. 2021, 9, 5642–5650. [Google Scholar] [CrossRef]
- Zheng, T.; Sang, W.; He, Z.; Wei, Q.; Chen, B.; Li, H.; Cao, C.; Huang, R.; Yan, X.; Pan, B.; et al. Conductive Tungsten Oxide Nanosheets for Highly Efficient Hydrogen Evolution. Nano Lett. 2017, 17, 7968–7973. [Google Scholar] [CrossRef]
- Tang, T.; Wang, Z.; Guan, J. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 636–678. [Google Scholar] [CrossRef]
- Huang, Z.H.; Li, H.; Li, W.H.; Henkelman, G.; Jia, B.; Ma, T. Electrical and Structural Dual Function of Oxygen Vacancies for Promoting Electrochemical Capacitance in Tungsten Oxide. Small 2020, 16, 2004709. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, Y.; Yu, Y.; Du, Y.; Zhang, B. Engineering Sulfur Defects, Atomic Thickness, and Porous Structures into Cobalt Sulfide Nanosheets for Efficient Electrocatalytic Alkaline Hydrogen Evolution. ACS Catal. 2018, 8, 8077–8083. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, J.; Shi, Y.; Liu, D.; Zhang, B. Metallic WO2–Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 6983–6986. [Google Scholar] [CrossRef]
- Diao, J.; Yuan, W.; Qiu, Y.; Cheng, L.; Guo, X. A hierarchical oxygen vacancy-rich WO3 with “nanowire-array-on-nanosheet-array” structure for highly efficient oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 6730–6739. [Google Scholar] [CrossRef]
- Cheng, H.; Klapproth, M.; Sagaltchik, A.; Li, S.; Thomas, A. Ordered mesoporous WO2.83: Selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. J. Mater. Chem. A 2018, 6, 2249–2256. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, Y.; Wang, Y.; Zhang, Z.; Liu, J.; Wu, T.; Qin, W.; Liu, S.; Jia, B.; Wu, H.; et al. Single-Atom Co Doped in Ultrathin WO3 Arrays for the Enhanced Hydrogen Evolution Reaction in a Wide pH Range. ACS Appl. Mater. Interfaces 2021, 13, 53915–53924. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Sun, Y.; Chen, X.; Zhuang, G.; Li, X.; Wang, J.G. Mo Doping Induced More Active Sites in Urchin-Like W18O49 Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2016, 26, 5778–5786. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, Q.; Yang, P.; He, B. Robust electrocatalysts from metal doped W18O49 nanofibers for hydrogen evolution. Chem. Commun. 2017, 53, 4323–4326. [Google Scholar] [CrossRef]
- Hai, G.; Huang, J.; Cao, L.; Kajiyoshi, K.; Wang, L.; Feng, L.; Chen, J. Activation of urchin-like Ni-doped W18O49/NF by electrochemical tuning for efficient water splitting. J. Energy Chem. 2021, 63, 642–650. [Google Scholar] [CrossRef]
- Zhao, Y.; Tang, Q.; He, B.; Yang, P. Mo incorporated W18O49 nanofibers as robust electrocatalysts for high-efficiency hydrogen evolution. Int. J. Hydrog. Energy 2017, 42, 14534–14546. [Google Scholar] [CrossRef]
- Liang, W.; Zhou, M.; Lin, X.; Xu, J.; Dong, P.; Le, Z.; Yang, M.; Chen, J.; Xie, F.; Wang, N.; et al. Nickel-doped tungsten oxide promotes stable and efficient hydrogen evolution in seawater. Appl. Catal. B Environ. 2023, 325, 122397. [Google Scholar] [CrossRef]
- Yang, J.; Cao, Y.; Zhang, S.; Shi, Q.; Chen, S.; Zhu, S.; Li, Y.; Huang, J. Interstitial Hydrogen Atom to Boost Intrinsic Catalytic Activity of Tungsten Oxide for Hydrogen Evolution Reaction. Small 2023, 19, 2207295. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Zhou, G.; Yang, J.; Pang, H.; Zhang, M.; Zhao, Q.; Gu, X.; Tian, S.; Zhang, J.; Xu, L.; et al. NiS/MoS2 Mott-Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production. Chem. Eng. J. 2022, 443, 136321. [Google Scholar] [CrossRef]
- Li, T.; Yin, J.; Sun, D.; Zhang, M.; Pang, H.; Xu, L.; Zhang, Y.; Yang, J.; Tang, Y.; Xue, J. Manipulation of Mott−Schottky Ni/CeO2 Heterojunctions into N-Doped Carbon Nanofibers for High-Efficiency Electrochemical Water Splitting. Small 2022, 18, 2106592. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Chu, B.; Sun, Z.; Dong, L.; Wang, F.; Li, B.; Fan, M.; Chen, Z. Surface reconstruction and charge distribution enabling Ni/W5N4 Mott-Schottky heterojunction bifunctional electrocatalyst for efficient urea-assisted water electrolysis at a large current density. Appl. Catal. B Environ. 2023, 323, 122168. [Google Scholar] [CrossRef]
- Xue, Z.H.; Su, H.; Yu, Q.Y.; Zhang, B.; Wang, H.H.; Li, X.H.; Chen, J.S. Janus Co/CoP Nanoparticles as Efficient Mott–Schottky Electrocatalysts for Overall Water Splitting in Wide pH Range. Adv. Energy Mater. 2017, 7, 1602355. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, J.; He, W.; Liang, H.; Li, Y.; Cui, H.; Wang, C. Self-standing hollow porous Co/a-WOx nanowire with maximum Mott-Schottky effect for boosting alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 4603–4611. [Google Scholar] [CrossRef]
- Peng, L.; Su, L.; Yu, X.; Wang, R.; Cui, X.; Tian, H.; Cao, S.; Xia, B.Y.; Shi, J. Electron redistribution of ruthenium-tungsten oxides Mott-Schottky heterojunction for enhanced hydrogen evolution. Appl. Catal. B Environ. 2022, 308, 121229. [Google Scholar] [CrossRef]
- Zhao, Y.; Kumar, P.V.; Tan, X.; Lu, X.; Zhu, X.; Jiang, J.; Pan, J.; Xi, S.; Yang, H.Y.; Ma, Z.; et al. Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat. Commun. 2022, 13, 2430. [Google Scholar] [CrossRef]
- Liu, T.; Gao, W.; Wang, Q.; Dou, M.; Zhang, Z.; Wang, F. Selective Loading of Atomic Platinum on a RuCeOx Support Enables Stable Hydrogen Evolution at High Current Densities. Angew. Chem. Int. Ed. 2020, 59, 20423–20427. [Google Scholar] [CrossRef]
- Shang, X.; Liu, Z.Z.; Lu, S.S.; Dong, B.; Chi, J.Q.; Qin, J.F.; Liu, X.; Chai, Y.M.; Liu, C.G. Pt–C Interfaces Based on Electronegativity-Functionalized Hollow Carbon Spheres for Highly Efficient Hydrogen Evolution. ACS Appl. Mater. Interfaces 2018, 10, 43561–43569. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Chen, S.; Yan, H.; Wang, C.; Wu, C.; Haleem, Y.A.; Duan, S.; Lu, J.; Ge, B.; et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518. [Google Scholar] [CrossRef]
- Zhao, J.; Zeng, Y.; Wang, J.; Xu, Q.; Chen, R.; Ni, H.; Cheng, G.J. Ultrahigh electrocatalytic activity with trace amounts of platinum loadings on free-standing mesoporous titanium nitride nanotube arrays for hydrogen evolution reactions. Nanoscale 2020, 12, 15393–15401. [Google Scholar] [CrossRef]
- Li, Y.F.; Lu, W.; Chen, K.; Duchesne, P.; Ali, F.M.; Xia, M.; Wood, T.E.; Ulmer, U.; Ozin, G.A. Cu Atoms on Nanowire Pd/HyWO3−x Bronzes Enhance the Solar Reverse Water Gas Shift Reaction. J. Am. Chem. Soc. 2019, 141, 14991–14996. [Google Scholar] [CrossRef]
- Wang, D.; Li, H.; Du, N.; Hou, W. Single Platinum Atoms Immobilized on Monolayer Tungsten Trioxide Nanosheets as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2021, 31, 2009770. [Google Scholar] [CrossRef]
- Chen, H.; Yu, J.; Liu, L.; Gao, R.-T.; Gao, Z.; Yang, Y.; Chen, Z.; Zhan, S.; Liu, X.; Zhang, X.; et al. Modulating Pt-N/O Bonds on Co-doped WO3 for Acid Electrocatalytic Hydrogen Evolution with Over 2000 h Operation. Adv. Energy Mater. 2024, 14, 2303635. [Google Scholar] [CrossRef]
- Sun, Y.; Bao, Y.; Yin, D.; Bu, X.; Zhang, Y.; Yue, K.; Qi, X.; Cai, Z.; Li, Y.; Hu, X.; et al. Oxygen vacancy-induced efficient hydrogen spillover in Ni17W3/WO3−x/MoO3−x for a superior pH-universal hydrogen evolution reaction. J. Mater. Chem. A 2024, 12, 11563–11570. [Google Scholar] [CrossRef]
- Kong, L.; Pan, L.; Guo, H.; Qiu, Y.; Alshahrani, W.A.; Amin, M.A.; Lin, J. Constructing WS2/WO3−x heterostructured electrocatalyst enriched with oxygen vacancies for accelerated hydrogen evolution reaction. J. Colloid Interface Sci. 2024, 664, 178–185. [Google Scholar] [CrossRef]
- Jiang, X.; Jang, H.; Liu, S.; Li, Z.; Kim, M.G.; Li, C.; Qin, Q.; Liu, X.; Cho, J. The Heterostructure of Ru2P/WO3/NPC Synergistically Promotes H2O Dissociation for Improved Hydrogen Evolution. Angew. Chem. Int. Ed. 2021, 60, 4110–4116. [Google Scholar] [CrossRef]
- Wang, F.; Dong, B.; Wang, J.; Ke, N.; Tan, C.; Huang, A.; Wu, Y.; Hao, L.; Yin, L.; Xu, X.; et al. Self-supported porous heterostructure WC/WO3−x ceramic electrode for hydrogen evolution reaction in acidic and alkaline media. J. Adv. Ceram. 2022, 11, 1208–1221. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, Y.; Chen, C.; Wang, T.; Zhang, M. Octopus tentacles-like WO3/C@CoO as high property and long life-time electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 281, 1–8. [Google Scholar] [CrossRef]
- Tian, H.; Cui, X.; Zeng, L.; Su, L.; Song, Y.; Shi, J. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 2019, 7, 6285–6293. [Google Scholar] [CrossRef]
- Sun, T.; Zhong, W.; Zhang, M.; Tang, Y.; Wang, J.; Xu, C.; Hu, L.; Wang, M. A low-cost 2D WO3/Ni3S2 heterojunction for highly stable hydrogen evolution. Mater. Chem. Front. 2021, 5, 8248–8254. [Google Scholar] [CrossRef]
- Wang, B.; Wang, L.; Qian, Y.; Yang, Y.; Isimjan, T.T.; Yang, X. Construction of a self-supporting Ni2P–WO3 heterostructure for highly efficient hydrogen evolution under both caustic and acidic conditions. Sustain. Energy Fuels 2021, 5, 2884–2892. [Google Scholar] [CrossRef]
- Chen, J.; Chen, C.; Qin, M.; Li, B.; Lin, B.; Mao, Q.; Yang, H.; Liu, B.; Wang, Y. Reversible hydrogen spillover in Ru-WO3−x enhances hydrogen evolution activity in neutral pH water splitting. Nat. Commun. 2022, 13, 5382. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Zhao, Y.; Wang, Y.; Zhang, Z.; Wu, T.; Qin, W.; Liu, S.; Jia, B.; Wu, H.; et al. Ultrahigh Pt-Mass-Activity Hydrogen Evolution Catalyst Electrodeposited from Bulk Pt. Adv. Funct. Mater. 2022, 32, 2112207. [Google Scholar] [CrossRef]
- Nguyen, N.A.; Chuluunbat, E.; Nguyen, T.A.; Choi, H.S. High electrocatalytic activity of Rh-WO3 electrocatalyst for hydrogen evolution reaction under the acidic, alkaline, and alkaline-seawater electrolytes. Int. J. Hydrog. Energy 2023, 48, 32686–32698. [Google Scholar] [CrossRef]
- Paudel, D.R.; Pan, U.N.; Ghising, R.B.; Kandel, M.R.; Prabhakaran, S.; Kim, D.H.; Kim, N.H.; Lee, J.H. Multi-interfacial dendritic engineering facilitating congruous intrinsic activity of oxide-carbide/MOF nanostructured multimodal electrocatalyst for hydrogen and oxygen electrocatalysis. Appl. Catal. B Environ. 2023, 331, 122711. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, F.; Graham, N.; Yu, W. Engineering Morphology and Electron Redistribution of a Ni/WO3 Mott–Schottky Bifunctional Electrocatalyst for Efficient Alkaline Urea Splitting. ACS Appl. Mater. Interfaces 2023, 15, 50116–50125. [Google Scholar] [CrossRef]
- Fan, X.; Liu, C.; Gao, B.; Li, H.; Zhang, Y.; Zhang, H.; Gao, Q.; Cao, X.; Tang, Y. Electronic Structure Engineering of Pt Species over Pt/WO3 toward Highly Efficient Electrocatalytic Hydrogen Evolution. Small 2023, 19, 2301178. [Google Scholar] [CrossRef]
- Jing, S.; Lu, J.; Yu, G.; Yin, S.; Luo, L.; Zhang, Z.; Ma, Y.; Chen, W.; Shen, P.K. Carbon-Encapsulated WOx Hybrids as Efficient Catalysts for Hydrogen Evolution. Adv. Mater. 2018, 30, 1705979. [Google Scholar] [CrossRef]
- Pi, Y.; Qiu, Z.; Sun, Y.; Ishii, H.; Liao, Y.F.; Zhang, X.; Chen, H.Y.; Pang, H. Synergistic Mechanism of Sub-Nanometric Ru Clusters Anchored on Tungsten Oxide Nanowires for High-Efficient Bifunctional Hydrogen Electrocatalysis. Adv. Sci. 2023, 10, 2206096. [Google Scholar] [CrossRef]
- Peng, Y.W.; Shan, C.; Wang, H.J.; Hong, L.Y.; Yao, S.; Wu, R.J.; Zhang, Z.M.; Lu, T.B. Polyoxometalate-Derived Ultrasmall Pt2W/WO3 Heterostructure Outperforms Platinum for Large-Current-Density H2 Evolution. Adv. Energy Mater. 2019, 9, 1900597. [Google Scholar] [CrossRef]
- Kadam, S.R.; Bar Ziv, R.; Bar Sadan, M. A cobalt-doped WS2/WO3 nanocomposite electrocatalyst for the hydrogen evolution reaction in acidic and alkaline media. New J. Chem. 2022, 46, 20102–20107. [Google Scholar] [CrossRef]
- Dogra, N.; Kushvaha, S.S.; Dewasi, A.; Sharma, S. Unveiling the origin of high catalytic activity of WO3/MWCNT nanocomposites for the hydrogen evolution reaction. Catal. Sci. Technol. 2025, 15, 2327–2338. [Google Scholar] [CrossRef]
- Yang, W.; Li, M.; Zhang, B.; Liu, Y.; Zi, J.; Xiao, H.; Liu, X.; Lin, J.; Zhang, H.; Chen, J.; et al. Interfacial Microenvironment Modulation Boosts Efficient Hydrogen Evolution Reaction in Neutral and Alkaline. Adv. Funct. Mater. 2023, 33, 2304852. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, C.; Wei, L.; Wei, D.; Su, J.; Guo, L. Tailoring a local acidic microenvironment on amorphous NiMoB catalyst to boost alkaline and neutral hydrogen evolution reactions. Appl. Catal. B Environ. Energy 2025, 365, 124928. [Google Scholar] [CrossRef]
- Tan, H.; Tang, B.; Lu, Y.; Ji, Q.; Lv, L.; Duan, H.; Li, N.; Wang, Y.; Feng, S.; Li, Z.; et al. Engineering a local acid-like environment in alkaline medium for efficient hydrogen evolution reaction. Nat. Commun. 2022, 13, 2024. [Google Scholar] [CrossRef]
- Guo, J.; Zheng, Y.; Hu, Z.; Zheng, C.; Mao, J.; Du, K.; Jaroniec, M.; Qiao, S.-Z.; Ling, T. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy 2023, 8, 264–272. [Google Scholar] [CrossRef]
Catalysts | Electrolyte | Overpotential (mV) | Current Density (mA·cm−2) | Tafel Slope (mV·dec−1) | References |
---|---|---|---|---|---|
WO3 nanoparticles | 1 M H2SO4 | 800 | 45 | [66] | |
WO3 nanoplates | 1 M H2SO4 | 200 | 17.58 | 122 | [63] |
m-WO3 nanorods | 1 M H2SO4 | 200 | 23.86 | 113 | [63] |
WO3 nanoparticles | 0.5 M H2SO4 | 200 | 0.72 | 29 | [72] |
WO3 nanoparticles | 1 M KOH | 800 | 0.11 | 114 | [72] |
WO3 nanorods | 1 M H2SO4 | 800 | 23 | 188 | [70] |
bulk WO3 | 1 M H2SO4 | 800 | 15 | 213 | [70] |
WO3 nanoplates | 0.5 M H2SO4 | 106 | 10 | 78 | [73] |
WO3 nanorods | 0.5 M H2SO4 | 83 | 10 | 48 | [73] |
WO3 nanowires | 1 M H2SO4 | 100 | 38.4 | 116 | [71] |
WO3 nanorods | 0.5 M H2SO4 | 152 | 10 | 96 | [74] |
WO3 nanorods | 1 M KOH | 201 | 10 | 105 | [74] |
WO3 nanoplates | 0.5 M H2SO4 | 73 | 10 | 39.5 | [75] |
WO3 nanoplates | distilled water | 331 | 1 | 51.59 | [75] |
Catalysts | Electrolyte | Overpotential (mV) | Current Density (mA·cm−2) | Tafel Slope (mV·dec−1) | References |
---|---|---|---|---|---|
V-WO3 | 0.5 M H2SO4 | 38 | 10 | 41 | [56] |
Mn-WO3 | 0.5 M H2SO4 | 97 | 10 | 68 | [56] |
Mo-W18O49 | 0.5 M H2-saturated H2SO4 | 45 | 10 | 54 | [97] |
Pd-W18O49 | 0.5 M H2SO4 | 137 | 10 | 35 | [98] |
Ni-W18O49 | 1 M KOH | 240/350 | 10/100 | 92 | [99] |
1 at% Mo-W18O49 | 0.5 M H2SO4 | 262/462 | 10/50 | 49 | [100] |
Co-WO2.7−x | 1 M KOH | 59 | 10 | 86 | [59] |
Ni-WO2.7−x | 1 M KOH | 95 | 10 | 129 | [59] |
Zn--WO2.7−x | 1 M KOH | 530 | 10 | 72 | [59] |
Ni-WOx | 1 M KOH | 40.51/137.04 | 10/100 | 40 | [101] |
Ni-WOx | 1 M KOH seawater | 45.69/125.81 | 10/100 | 46 | [101] |
Catalysts | Electrolyte | Overpotential (mV) | Current Density (mA·cm−2) | Tafel Slope (mV·dec−1) | References |
---|---|---|---|---|---|
W/WO2 | 1.0 M KOH | 35 | 10 | 34 | [58] |
Ni2P/WO2.83 | 1.0 M KOH | 22.8/254.5 | 10/1000 | 53 | [61] |
WO3−x@CdS1−x | 1.0 M KOH | 191 | 10 | 61.9 | [69] |
Co/a-WOx | 1.0 M KOH | 36.3/55.1 | 10/20 | 53.9 | [107] |
Ru-WO2.72 | 0.5 M H2SO4 | 40 | 10 | 50 | [108] |
Pt-SA/ML-WO3 | N2-saturated 0.5 M H2SO4 | 22 | 10 | 27 | [115] |
Pt/N-CoWO3 | N2-saturated 0.5 M H2SO4 | 83/94/108 | 500/1000/2000 | 28 | [116] |
Ni17W3/WO3−x/MoO3−x | 1.0 M KOH | 16 | 10 | 34.9 | [117] |
Ni17W3/WO3−x/MoO3−x | 0.5 M H2SO4 | 14 | 10 | 32.6 | [117] |
Ni17W3/WO3−x/MoO3−x | 1.0 M PBS | 42 | 10 | 73.9 | [117] |
WS2/WO3−x | 0.5 M H2SO4 | 120 | 10 | 84.67 | [118] |
WS2/WO3−x | 1.0 M KOH | 151 | 10 | 97.29 | [118] |
Ru2P/WO3@NPC | 1.0 M KOH | 15 | 10 | 18 | [119] |
WC/WO3−x | 0.5 M H2SO4 | 107 | 10 | 59.3 | [120] |
WC/WO3−x | 1.0 M KOH | 123 | 10 | 72.4 | [120] |
Ar/H2-treated WO3/C@CoO/NF | 1.0 M KOH | 55 | 10 | 115 | [121] |
Pt/def-WO3@CFC | 0.5 M H2SO4 | 42 | 10 | 61 | [122] |
WO3/Ni3S2 | 1.0 M KOH | 249 | 100 | 45.06 | [123] |
Ni2P-WO3/CC | 1.0 M KOH | 105 | 10 | 64.2 | [124] |
Ni2P-WO3/CC | 0.5 M H2SO4 | 107 | 10 | 55.9 | [124] |
Ru-WO3−x | 1.0 M PBS | 19 | 10 | 41 | [125] |
PtCu/WO3@CF | 0.5 M H2SO4 | 41 | 10 | 45.90 | [126] |
Rh-WO3 | 0.5 M H2SO4 | 48 | 10 | 31 | [127] |
Rh-WO3 | 1.0 M KOH | 116 | 10 | 73 | [127] |
Rh-WO3 | 0.5 M NaCl/1.0 M KOH | 98 | 10 | 84 | [127] |
FeCu–BTC/WO3–WC | 1.0 M KOH | 99/220/286 | 10/50/100 | 73.2 | [128] |
Ni/WO3 | 1.0 M NaOH | 163 | 100 | [129] | |
Pt/WO3-600 | 0.5 M H2SO4 | 8/26 | 10/100 | 35 | [130] |
WOx@C/C | 0.5 M H2SO4 | 36 | 60 | 19.17 | [131] |
Ru SNC/W18O49 NWs | 0.5 M H2SO4 | 21 | 10 | 35 | [132] |
Pt2W/WO3/RGO | 0.5 M H2SO4 | 394 | 500 | [133] | |
Co-WS2/WO3 | 0.5 M H2SO4 | 321 | 10 | 108 | [134] |
Co-WS2/WO3 | 0.5 M KOH | 337 | 10 | 136 | [134] |
WO3/MWCNT | 1.0 M KOH | 200 | 10 | 70 | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, M.; Qin, Y.; Ji, W.; Zhang, Y.; Zhao, G. A Review of Strategies to Improve the Electrocatalytic Performance of Tungsten Oxide Nanostructures for the Hydrogen Evolution Reaction. Nanomaterials 2025, 15, 1163. https://doi.org/10.3390/nano15151163
Ding M, Qin Y, Ji W, Zhang Y, Zhao G. A Review of Strategies to Improve the Electrocatalytic Performance of Tungsten Oxide Nanostructures for the Hydrogen Evolution Reaction. Nanomaterials. 2025; 15(15):1163. https://doi.org/10.3390/nano15151163
Chicago/Turabian StyleDing, Meng, Yuan Qin, Weixiao Ji, Yafang Zhang, and Gang Zhao. 2025. "A Review of Strategies to Improve the Electrocatalytic Performance of Tungsten Oxide Nanostructures for the Hydrogen Evolution Reaction" Nanomaterials 15, no. 15: 1163. https://doi.org/10.3390/nano15151163
APA StyleDing, M., Qin, Y., Ji, W., Zhang, Y., & Zhao, G. (2025). A Review of Strategies to Improve the Electrocatalytic Performance of Tungsten Oxide Nanostructures for the Hydrogen Evolution Reaction. Nanomaterials, 15(15), 1163. https://doi.org/10.3390/nano15151163