Hierarchical CuO Nanorods via Cyclic Voltammetry Treatment: Freestanding Electrodes for Selective CO2-to-Formate Conversion
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hierarchical CuO Nanorod Arrays on Polycrystalline Cu Foil
2.3. Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CO2RR | Electrochemical CO2 reduction reaction |
C2+ | Multi-carbon |
FE | Faradaic efficiency |
CV | Cyclic voltammetry |
CV-CuO | CV-activated CuO |
P-CuO | pristine CuO |
HER | Hydrogen evolution reaction |
XRD | X-ray diffraction |
XPS | X-ray photoelectron spectroscopy |
TEM | Transmission electron microscopy |
SEM | Scanning electron microscopy |
EIS | Electrochemical impedance spectroscopy |
ECSA | Electrochemical active surface area |
EBSD | Electron backscatter diffraction |
GC | Gas chromatography |
NMR | Nuclear magnetic resonance |
LSV | Linear sweep voltammetry |
SAED | Selected-area electron diffraction |
RHE | Reversible hydrogen electrode |
References
- Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C.T.; Fan, F.; Cao, C.; et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016, 537, 382–386. [Google Scholar] [CrossRef]
- Yang, Y.; Louisia, S.; Yu, S.; Jin, J.; Roh, I.; Chen, C.; Fonseca Guzman, M.V.; Feijóo, J.; Chen, P.-C.; Wang, H.; et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 2023, 614, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.; Huang, M.; Li, K.; Zhao, X.; Geng, Q.; Chen, S.; Xie, H.; Dong, X.A.; Wang, H.; Dong, F. The Crystal Plane is not the Key Factor for CO2-to-Methane Electrosynthesis on Reconstructed Cu2O Microparticles. Angew. Chem. Int. Ed. 2021, 61, e202114080. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.W.; Huang, M.; Zhao, X.L.; Mou, S.Y.; Dong, F. Interfacial Electrolyte Effects on Electrocatalytic CO2 Reduction. ACS Catal. 2022, 12, 331–362. [Google Scholar] [CrossRef]
- Huang, M.; Deng, B.W.; Zhao, X.L.; Zhang, Z.Y.; Li, F.; Li, K.L.; Cui, Z.H.; Kong, L.X.; Lu, J.M.; Dong, F.; et al. Template-Sacrificing Synthesis of Well-Defined Asymmetrically Coordinated Single-Atom Catalysts for Highly Efficient CO2 Electrocatalytic Reduction. ACS Nano 2022, 16, 2110–2119. [Google Scholar] [CrossRef]
- Deng, B.W.; Sun, D.M.; Zhao, X.Y.; Wang, L.L.; Ma, F.Y.; Li, Y.Z.; Dong, F. Accelerating acidic CO2 electroreduction: Strategies beyond catalysts. Chem. Sci. 2024, 15, 15087–15108. [Google Scholar] [CrossRef]
- Ye, Q.Q.; Zhao, X.Y.; Jin, R.B.; Dong, F.; Xie, H.T.; Deng, B.W. Advances and challenges in membrane electrode assembly electrolyzers for CO2 reduction. J. Mater. Chem. A 2023, 11, 21498–21515. [Google Scholar] [CrossRef]
- Ma, F.; Lu, X.; Zhao, X.; Wang, L.; Li, Z.; Deng, B.; Dong, F. Interface optimization and process scale-up study of electrocatalytic reduction of CO2 to CO in acidic flow electrolyzers. Energy Environ. Prot. 2024, 38, 151–159. [Google Scholar]
- Deng, B.; Zhao, X.; Li, Y.; Huang, M.; Zhang, S.; Dong, F. Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Sci. China Chem. 2023, 66, 78–95. [Google Scholar] [CrossRef]
- Cheng, D.; Zhao, Z.-J.; Zhang, G.; Yang, P.; Li, L.; Gao, H.; Liu, S.; Chang, X.; Chen, S.; Wang, T.; et al. The nature of active sites for carbon dioxide electroreduction over oxide-derived copper catalysts. Nat. Commun. 2021, 12, 395. [Google Scholar] [CrossRef]
- Gauthier, J.A.; Stenlid, J.H.; Abild-Pedersen, F.; Head-Gordon, M.; Bell, A.T. The Role of Roughening to Enhance Selectivity to C2+ Products during CO2 Electroreduction on Copper. ACS Energy Lett. 2021, 6, 3252–3260. [Google Scholar] [CrossRef]
- Louisia, S.; Kim, D.; Li, Y.; Gao, M.; Yu, S.; Yang, P. The presence and role of the intermediary CO reservoir in heterogeneous electroreduction of CO2. Proc. Natl. Acad. Sci. USA 2022, 119, e2201922119. [Google Scholar] [CrossRef]
- Asiri, A.M.; Gao, J.; Khan, S.B.; Alamry, K.A.; Marwani, H.M.; Khan, M.S.J.; Adeosun, W.A.; Zakeeruddin, S.M.; Ren, D.; Grätzel, M. Revisiting the Impact of Morphology and Treatment State of Cu on CO2 Reduction Using Electrochemical Flow Cell. J. Phys. Chem. Lett. 2022, 13, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Brea, C.; Hu, G. Shifting and breaking scaling relations at transition metal telluride edges for selective electrochemical CO2 reduction. J. Mater. Chem. A 2022, 10, 10162–10170. [Google Scholar] [CrossRef]
- Ko, K.-J.; Kim, H.; Cho, Y.-H.; Lee, H.; Kim, K.-M.; Lee, C.-H. Overview of Carbon Monoxide Adsorption Performance of Pristine and Modified Adsorbents. J. Chem. Eng. Data 2022, 67, 1599–1616. [Google Scholar] [CrossRef]
- Rossi, K.; Buonsanti, R. Shaping Copper Nanocatalysts to Steer Selectivity in the Electrochemical CO2 Reduction Reaction. Acc. Chem. Res. 2022, 55, 629–637. [Google Scholar] [CrossRef]
- Yang, F.; Fang, W.; Wang, Q.; Deng, P.; Xia, B.Y. Optimizing Copper Treatment State to Promote Ethylene Generation in Efficient Carbon Dioxide Conversion. ACS Sustain. Chem. Eng. 2022, 10, 4677–4682. [Google Scholar] [CrossRef]
- Tamilmani, S.; Huang, W.; Raghavan, S.; Small, R. Potential-pH Diagrams of Interest to Chemical Mechanical Planarization of Copper. J. Electrochem. Soc. 2002, 149, G638. [Google Scholar] [CrossRef]
- Hori, Y. Electrochemical CO2 Reduction on Metal Electrodes; Springer: New York, NY, USA, 2008; Volume 42, pp. 89–189. [Google Scholar]
- De Luna, P.; Quintero-Bermudez, R.; Dinh, C.-T.; Ross, M.B.; Bushuyev, O.S.; Todorović, P.; Regier, T.; Kelley, S.O.; Yang, P.; Sargent, E.H. Catalyst electro-redeposition controls morphology and treatment state for selective carbon dioxide reduction. Nat. Catal. 2018, 1, 103–110. [Google Scholar] [CrossRef]
- Wen, C.F.; Zhou, M.; Liu, P.F.; Liu, Y.; Wu, X.; Mao, F.; Dai, S.; Xu, B.; Wang, X.L.; Jiang, Z.; et al. Highly Ethylene-Selective Electrocatalytic CO2 Reduction Enabled by Isolated Cu-S Motifs in Metal-Organic Framework Based Precatalysts. Angew. Chem. Int. Ed. 2022, 61, e202111700. [Google Scholar] [CrossRef]
- Hu, F.; Yang, L.; Jiang, Y.; Duan, C.; Wang, X.; Zeng, L.; Lv, X.; Duan, D.; Liu, Q.; Kong, T.; et al. Ultrastable Cu Catalyst for CO2 Electroreduction to Multicarbon Liquid Fuels by Tuning C-C Coupling with CuTi Subsurface. Angew. Chem. Int. Ed. 2021, 60, 26122–26127. [Google Scholar] [CrossRef]
- Yang, R.; Duan, J.; Dong, P.; Wen, Q.; Wu, M.; Liu, Y.; Liu, Y.; Li, H.; Zhai, T. In Situ Halogen-Ion Leaching Regulates Multiple Sites on Tandem Catalysts for Efficient CO2 Electroreduction to C2+ Products. Angew. Chem. Int. Ed. 2022, 61, e202116706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, C.; Zhu, J.; Zhou, Q.; Yu, R.; Wang, Y.; An, P.; Zhang, J.; Qiu, M.; Zhou, L.; et al. Dynamic Restructuring of Coordinatively Unsaturated Copper Paddle Wheel Clusters to Boost Electrochemical CO2 Reduction to Hydrocarbons **. Angew. Chem. Int. Ed. 2022, 61, e202112116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-D.; Liu, T.; Liu, C.; Zheng, D.-S.; Huang, J.-M.; Liu, Q.-W.; Yuan, W.-W.; Yin, Y.; Huang, L.-R.; Xu, M.; et al. Asymmetric Low-Frequency Pulsed Strategy Enables Ultralong CO2 Reduction Stability and Controllable Product Selectivity. J. Am. Chem. Soc. 2023, 145, 2195–2206. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Chang, X.; Chao, T.-H.; Li, C.; Goddard, W.A.; Cheng, M.-J.; Xu, B.; Lu, Q. Selective Enhancement of Methane Formation in Electrochemical CO2 Reduction Enabled by a Raman-Inactive Oxygen-Containing Species on Cu. ACS Catal. 2022, 6036–6046. [Google Scholar] [CrossRef]
- Zhao, Y.; Zu, X.; Chen, R.; Li, X.; Jiang, Y.; Wang, Z.; Wang, S.; Wu, Y.; Sun, Y.; Xie, Y. Industrial-Current-Density CO2-to-C2+ Electroreduction by Anti-swelling Anion-Exchange Ionomer-Modified Oxide-Derived Cu Nanosheets. J. Am. Chem. Soc. 2022, 144, 10446–10454. [Google Scholar] [CrossRef]
- Yang, P.P.; Zhang, X.L.; Liu, P.; Kelly, D.J.; Niu, Z.Z.; Kong, Y.; Shi, L.; Zheng, Y.R.; Fan, M.H.; Wang, H.J.; et al. Highly Enhanced Chloride Adsorption Mediates Efficient Neutral CO2 Electroreduction over a Dual-Phase Copper Catalyst. J. Am. Chem. Soc. 2023, 145, 8714–8725. [Google Scholar] [CrossRef]
- Ma, X.H.; Yang, T.; He, D.Y.; Gao, X.P.; Jiang, W.; Li, D.M.; Sun, Y.H.; Lin, X.G.; Xu, J.; Wang, H.J.; et al. Carbonate shell regulates CuO surface econstruction for enhanced CO electroreduction. Nat. Synth. 2025, 4, 53–66. [Google Scholar] [CrossRef]
- Chen, S.; Ye, C.; Wang, Z.; Li, P.; Jiang, W.; Zhuang, Z.; Zhu, J.; Zheng, X.; Zaman, S.; Ou, H.; et al. Selective CO2 Reduction to Ethylene Mediated by Adaptive Small-molecule Engineering of Copper-based Electrocatalysts. Angew. Chem. Int. Ed. 2023, 62, e202315621. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, Y.; Wajrak, M.; Bhatelia, T.; Jiang, S.P.; Shao, Z. Grain boundary engineering: An emerging pathway toward efficient electrocatalysis. InfoMat 2024, 6, e12608. [Google Scholar] [CrossRef]
- Ding, M.; Chen, Z.; Liu, C.; Wang, Y.; Li, C.; Li, X.; Zheng, T.; Jiang, Q.; Xia, C. Electrochemical CO2 reduction: Progress and opportunity with alloying copper. Mater. Rep. Energy 2023, 3, 100175. [Google Scholar] [CrossRef]
- Ma, M.; Djanashvili, K.; Smith, W.A. Selective electrochemical reduction of CO2 to CO on CuO-derived Cu nanowires. Phys. Chem. Chem. Phys. 2015, 17, 20861–20867. [Google Scholar] [CrossRef]
- Raciti, D.; Livi, K.J.; Wang, C. Highly Dense Cu Nanowires for Low-Overpotential CO2 Reduction. Nano Lett. 2015, 15, 6829–6835. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Djanashvili, K.; Smith, W.A. Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays. Angew. Chem. Int. Ed. 2016, 55, 6680–6684. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Raciti, D.; Li, C.Y.; Livi, K.J.T.; Rottmann, P.F.; Hemker, K.J.; Mueller, T.; Wang, C. Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires. ACS Catal. 2017, 7, 8578–8587. [Google Scholar] [CrossRef]
- Raciti, D.; Wang, Y.X.; Park, J.H.; Wang, C. Three-Dimensional Hierarchical Copper-Based Nanostructures as Advanced Electrocatalysts for CO2 Reduction. ACS Appl. Energy Mater. 2018, 1, 2392–2398. [Google Scholar] [CrossRef]
- Li, D.; Huang, L.L.; Liu, T.T.; Liu, J.; Zhen, L.; Wu, J.; Feng, Y.J. Electrochemical reduction of carbon dioxide to formate via nano-prism assembled CuO microspheres. Chemosphere 2019, 237, 124527. [Google Scholar] [CrossRef]
- Nguyen-Phan, T.D.; Wang, C.J.; Marin, C.M.; Zhou, Y.Y.; Stavitski, E.; Popczun, E.J.; Yu, Y.; Xu, W.Q.; Howard, B.H.; Stuckman, M.Y.; et al. Understanding three-dimensionally interconnected porous oxide-derived copper electrocatalyst for selective carbon dioxide reduction. J. Mater. Chem. A 2019, 7, 27576–27584. [Google Scholar] [CrossRef]
- Jo, D.Y.; Ham, H.C.; Lee, K.Y. Facet-dependent electrocatalysis in the HCOOH synthesis from CO2 reduction on Cu catalyst: A density functional theory study. Appl. Surf. Sci. 2020, 527, 146857. [Google Scholar] [CrossRef]
- Tan, D.; Zhang, J.; Yao, L.; Tan, X.; Cheng, X.; Wan, Q.; Han, B.; Zheng, L.; Zhang, J. Multi-shelled CuO microboxes for carbon dioxide reduction to ethylene. Nano Res. 2020, 13, 768–774. [Google Scholar] [CrossRef]
- Tan, Z.; Peng, T.; Tan, X.; Wang, W.; Wang, X.; Yang, Z.; Ning, H.; Zhao, Q.; Wu, M. Controllable Synthesis of Leaf-Like CuO Nanosheets for Selective CO2 Electroreduction to Ethylene. Chemelectrochem 2020, 7, 2020–2025. [Google Scholar] [CrossRef]
- Tao, Z.X.; Wu, Z.S.; Wu, Y.S.; Wang, H.L. Activating Copper for Electrocatalytic CO2 Reduction to Formate via Molecular Interactions. ACS Catal. 2020, 10, 9271–9275. [Google Scholar] [CrossRef]
- Wang, Y.X.; Niu, C.L.; Zhu, Y.C.; He, D.; Huang, W.X. Tunable Syngas Formation from Electrochemical CO2 Reduction on Copper Nanowire Arrays. ACS Appl. Energy Mater. 2020, 3, 9841–9847. [Google Scholar] [CrossRef]
- Wang, S.; Kou, T.; Varley, J.B.; Akhade, S.A.; Weitzner, S.E.; Baker, S.E.; Duoss, E.B.; Li, Y. Cu2O/CuS Nanocomposites Show Excellent Selectivity and Stability for Formate Generation via Electrochemical Reduction of Carbon Dioxide. ACS Mater. Lett. 2020, 3, 100–109. [Google Scholar] [CrossRef]
- Zhang, X.; Sa, R.; Zhou, F.; Rui, Y.; Liu, R.; Wen, Z.; Wang, R. Metal-Organic Framework-Derived CuS Nanocages for Selective CO2 Electroreduction to Formate. CCS Chem. 2021, 3, 199–207. [Google Scholar] [CrossRef]
- Jiang, K.; Sandberg, R.B.; Akey, A.J.; Liu, X.; Bell, D.C.; Nørskov, J.K.; Chan, K.; Wang, H. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat. Catal. 2018, 1, 111–119. [Google Scholar] [CrossRef]
- Gomez Vidales, A.; Bruant, G.; Omanovic, S.; Tartakovsky, B. Carbon dioxide conversion to C1-C2 compounds in a microbial electrosynthesis cell with in situ electrodeposition of nickel and iron. Electrochim. Acta 2021, 383, 138349. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.Y.; Jiang, D.G.; Jia, D.D.; Liu, J.Q. Hierarchical CuO nanorod arrays generated on three-dimensional copper foam cyclic voltammetry treatment for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 10474–10483. [Google Scholar] [CrossRef]
- Vidales, A.G.; Omanovic, S.; Tartakovsky, B. In-situ Electrodeposition of Nickel on a Biocathode to Enhance Methane Production from Carbon Dioxide in a Microbial Electrosynthesis System. ECS Trans. 2020, 97, 565–572. [Google Scholar] [CrossRef]
- Cheng, Q.; Deng, B.; Dong, F. Effect of non-metallic P doping on electrocatalytic CO2 formance of In2O3 catalyst. Energy Environ. Prot. 2024, 38, 83–90. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Lu, X.; Deng, B. Hierarchical CuO Nanorods via Cyclic Voltammetry Treatment: Freestanding Electrodes for Selective CO2-to-Formate Conversion. Nanomaterials 2025, 15, 1349. https://doi.org/10.3390/nano15171349
Wang L, Lu X, Deng B. Hierarchical CuO Nanorods via Cyclic Voltammetry Treatment: Freestanding Electrodes for Selective CO2-to-Formate Conversion. Nanomaterials. 2025; 15(17):1349. https://doi.org/10.3390/nano15171349
Chicago/Turabian StyleWang, Lili, Xianlong Lu, and Bangwei Deng. 2025. "Hierarchical CuO Nanorods via Cyclic Voltammetry Treatment: Freestanding Electrodes for Selective CO2-to-Formate Conversion" Nanomaterials 15, no. 17: 1349. https://doi.org/10.3390/nano15171349
APA StyleWang, L., Lu, X., & Deng, B. (2025). Hierarchical CuO Nanorods via Cyclic Voltammetry Treatment: Freestanding Electrodes for Selective CO2-to-Formate Conversion. Nanomaterials, 15(17), 1349. https://doi.org/10.3390/nano15171349