A Comprehensive Review of the Nano-Abrasives Key Parameters Influencing the Performance in Chemical Mechanical Polishing
Abstract
1. Introduction
- (i)
- approach and physical interaction between the abrasive and the substrate, where both mechanical and chemical aspects are involved. The abrasive must come into close proximity with the substrate surface, a process driven by mechanical forces (e.g., downforce, pad-abrasive-substrate contact dynamics), but modulated by chemical affinities such as surface charge interactions and colloidal stability;
- (ii)
- chemical activation and bond weakening, wherein the abrasive interacts with the substrate at the atomic scale, forming transient bonds that chemically modify the surface and reduce the bond strength within the substrate lattice. Note that this step is highly sensitive to the surface chemistry and reactivity of the abrasive, as well as to the local pH, redox conditions, and presence of catalytic species in the slurry;
- (iii)
- material detachment, where sufficient mechanical energy, which supplied by the abrasive motion and contact forces, is required to overcome the reduced bond strength and enable the removal of substrate atoms. This stage is predominantly mechanical but occurs efficiently only when preceded by adequate chemical activation;
- (iv)
- complexation and stabilization of the removed species, typically through chelating agents present in the slurry that bind to the liberated atoms or reaction intermediates, preventing re-adsorption or particle agglomeration.
2. Physical Properties of Nanoabrasives
2.1. Size
2.2. Shape Factor
2.3. Hardness
2.3.1. Porosity
2.3.2. Core–Shell
3. Surface Chemical Properties of Nanoabrasives
3.1. Surface Doping of Chemical Elements
3.2. Surface Functionalization with Organic Groups
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
APTES | 3-AminoPropylTriEthoxySilane |
CMP | Chemical Mechanical Polishing |
COF | Coefficient Of Friction |
Ea | Young’s Modulus |
EEM | Elastic Emission Machining |
FJP | Fluid Jet Polishing |
H | Hardness |
IBF | Ion Beam Figuring |
IoT | Internet of Things |
MAA | MethAcrylic Acid |
MRF | Magnetorheological Finishing |
MRR | Material Removal Rate |
PCMP | Photocatalytic-assisted Chemical Mechanical Polishing |
PMMA | Poly(Methyl MethAcrylate) |
Ra | Arithmetic Mean Surface Roughness |
RB-SiC | Reaction-Bonded Silicon Carbide |
ROS | Reactive Oxygen Species |
Sa | Areal Arithmetic Mean Surface Roughness |
scCO2 | supercritical CO2 |
TSIC | N-[3-(Trimethoxysilyl)propyl]isothiouronium chloride |
UV | UltraViolet |
References
- Li, W.; Xin, Q.; Fan, B.; Chen, Q.; Deng, Y. A Review of Emerging Technologies in Ultra-Smooth Surface Processing for Optical Components. Micromachines 2024, 15, 178. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, Y.; Sun, K.; Fang, L. Effect of Water Film on the Plastic Deformation of Monocrystalline Copper. RSC Adv. 2016, 6, 96824–96831. [Google Scholar] [CrossRef]
- Shi, J.; Chen, J.; Fang, L.; Sun, K.; Sun, J.; Han, J. Atomistic Scale Nanoscratching Behavior of Monocrystalline Cu Influenced by Water Film in CMP Process. Appl. Surf. Sci. 2018, 435, 983–992. [Google Scholar] [CrossRef]
- Shi, J.; Fang, L.; Sun, K.; Peng, W.; Ghen, J.; Zhang, M. Surface Removal of a Copper Thin Film in an Ultrathin Water Environment by a Molecular Dynamics Study. Friction 2020, 8, 323–334. [Google Scholar] [CrossRef]
- Chen, J.; Shi, J.; Chen, Z.; Zhang, M.; Peng, W.; Fang, L.; Sun, K.; Han, J. Mechanical Properties and Deformation Behaviors of Surface-Modified Silicon: A Molecular Dynamics Study. J. Mater. Sci. 2019, 54, 3096–3110. [Google Scholar] [CrossRef]
- Seo, J. A Review on Chemical and Mechanical Phenomena at the Wafer Interface during Chemical Mechanical Planarization. J. Mater. Res. 2021, 36, 235–257. [Google Scholar] [CrossRef]
- Beyer, K.D.; Kondo, E. The Dynamics of the CMP Discovery for Device Applications in IBM. Oyo Buturi 2021, 90, 119–121. [Google Scholar] [CrossRef]
- Armini, S.; Whelan, C.M.; Maex, K. Engineering Polymer Core–Silica Shell Size in the Composite Abrasives for CMP Applications. Electrochem. Solid-State Lett. 2008, 11, H280. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, W.; Song, Z. Particle Size and Surfactant Effects on Chemical Mechanical Polishing of Glass Using Silica-Based Slurry. Appl. Opt. 2010, 49, 5480–5485. [Google Scholar] [CrossRef]
- Armini, S.; Whelan, C.M.; Moinpour, M.; Maex, K. Composite Polymer Core–Silica Shell Abrasives: The Effect of the Shape of the Silica Particles on Oxide CMP. J. Electrochem. Soc. 2008, 155, H401. [Google Scholar] [CrossRef]
- Yang, J.C.; Kim, H.; Kim, T. Study of Polishing Characteristics of Monodisperse Ceria Abrasive in Chemical Mechanical Planarization. J. Electrochem. Soc. 2009, 157, H235. [Google Scholar] [CrossRef]
- Chen, L.; Wen, J.; Zhang, P.; Yu, B.; Chen, C.; Ma, T.; Lu, X.; Kim, S.H.; Qian, L. Nanomanufacturing of Silicon Surface with a Single Atomic Layer Precision via Mechanochemical Reactions. Nat. Commun. 2018, 9, 1542. [Google Scholar] [CrossRef]
- Wen, J.; Ma, T.; Zhang, W.; Psofogiannakis, G.; van Duin, A.C.T.; Chen, L.; Qian, L.; Hu, Y.; Lu, X. Atomic Insight into Tribochemical Wear Mechanism of Silicon at the Si/SiO2 Interface in Aqueous Environment: Molecular Dynamics Simulations Using ReaxFF Reactive Force Field. Appl. Surf. Sci. 2016, 390, 216–223. [Google Scholar] [CrossRef]
- Peddeti, S.; Ong, P.; Leunissen, L.H.A.; Babu, S.V. Chemical Mechanical Polishing of InP. ECS J. Solid State Sci. Technol. 2012, 1, P184. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Wu, P.; Lin, Y.; Babu, S.V.; Li, Y. Interaction between Abrasive Particles and Films during Chemical-Mechanical Polishing of Copper and Tantalum. Thin Solid Film. 2006, 497, 321–328. [Google Scholar] [CrossRef]
- Katsuki, F.; Kamei, K.; Saguchi, A.; Takahashi, W.; Watanabe, J. AFM Studies on the Difference in Wear Behavior Between Si and SiO2 in KOH Solution. J. Electrochem. Soc. 2000, 147, 2328. [Google Scholar] [CrossRef]
- Langmuir Journal—ACS Publications. Available online: https://pubs-acs-org.inc.bib.cnrs.fr/journal/langd5 (accessed on 18 April 2025).
- Engineering SiO2 Nanoparticles: A Perspective on Chemical Mechanical Planarization Slurry for Advanced Semiconductor Processing. Available online: https://www.jstage.jst.go.jp/article/kona/42/0/42_2025001/_article (accessed on 18 April 2025).
- Ma, J.; Xu, N.; Cheng, J.; Pu, Y. A Review on the Development of Ceria for Chemical Mechanical Polishing. Powder Technol. 2024, 444, 119989. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Zhao, F.; Luo, H.; Wang, J.; Meng, F.; Zhou, H.; Zhuang, X.; Li, G. Review on Chemical Mechanical Polishing for Atomic Surfaces Using Advanced Rare Earth Abrasives. J. Phys. D Appl. Phys. 2024, 58, 023004. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, Z.; Gao, P.; Liu, T.; Boyjoo, Y.; Guo, D. Design of Composite Abrasives and Substrate Materials for Chemical Mechanical Polishing Applications. Appl. Nanosci. 2020, 10, 1379–1393. [Google Scholar] [CrossRef]
- Synthesis of Core–Shell Micro/Nanoparticles and Their Tribological Application: A Review. Available online: https://www.mdpi.com/1996-1944/13/20/4590 (accessed on 18 April 2025).
- Environmental Impact Assessment of Chemical Mechanical Planarization Consumables: Challenges, Future Needs, and Perspectives|ACS Sustainable Chemistry & Engineering. Available online: https://pubs-acs-org.inc.bib.cnrs.fr/doi/10.1021/acssuschemeng.4c03195?ref=pdf (accessed on 18 April 2025).
- Matijević, E.; Babu, S.V. Colloid Aspects of Chemical–Mechanical Planarization. J. Colloid Interface Sci. 2008, 320, 219–237. [Google Scholar] [CrossRef]
- Lu, Z.; Lee, S.-H.; Babu, S.V.; Matijević, E. The Use of Monodispersed Colloids in the Polishing of Copper and Tantalum. J. Colloid Interface Sci. 2003, 261, 55–64. [Google Scholar] [CrossRef]
- Zhou, C.; Shan, L.; Hight Robert, J.; Danyluk, S.; Ng, S.H.; Paszkowski, A.J. Influence of Colloidal Abrasive Size on Material Removal Rate and Surface Finish in SiO2 Chemical Mechanical Polishing. Tribol. Trans. 2002, 45, 232–238. [Google Scholar] [CrossRef]
- Lei, H.; Luo, J. CMP of Hard Disk Substrate Using a Colloidal SiO2 Slurry: Preliminary Experimental Investigation. Wear 2004, 257, 461–470. [Google Scholar] [CrossRef]
- Levert, J.A.; Korach, C.S. CMP Friction as a Function of Slurry Silica Nanoparticle Concentration and Diameter. Tribol. Trans. 2009, 52, 256–261. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, K.; Wang, F.; Di, W. Investigation on the Final Polishing Slurry and Technique of Silicon Substrate in ULSI. Microelectron. Eng. 2003, 66, 438–444. [Google Scholar] [CrossRef]
- Boripatkosol, S.; Bun-Athuek, N.; Khajornrungruang, P.; Suzuki, K.; Chanthawong, N.; Phaisalpanumas, P. Study on Relationship of the Material Removal Amount and the Increase in Abrasive Nanoparticle Size during Si-CMP. In Proceedings of the 2018 Third International Conference on Engineering Science and Innovative Technology (ESIT), North Bangkok, Thailand, 19–22 April 2018; pp. 1–3. [Google Scholar]
- Liang, C.; Wang, L.; Liu, W.; Song, Z. Non-Spherical Colloidal Silica Particles—Preparation, Application and Model. Colloids Surf. A Physicochem. Eng. Asp. 2014, 457, 67–72. [Google Scholar] [CrossRef]
- Lee, H.; Kim, M.; Jeong, H. Effect of Non-Spherical Colloidal Silica Particles on Removal Rate in Oxide CMP. Int. J. Precis. Eng. Manuf. 2015, 16, 2611–2616. [Google Scholar] [CrossRef]
- Dong, Y.; Lei, H.; Liu, W.; Chen, Y. Preparation of Ellipsoidal Rod-Shaped Silica Nanocomposite Abrasives by Chromium Ion/PEG200 Induced Method for Sapphire Substrates Chemical Mechanical Polishing. J. Alloys Compd. 2019, 777, 1294–1303. [Google Scholar] [CrossRef]
- Dong, Y.; Lei, H.; Chen, Y.; Liu, W.; Xu, L.; Wang, T.; Dai, S. Preparation of Irregular Silica Nanoparticles by the Polymer Templating for Chemical Mechanical Polishing of Sapphire Substrates. J. Electron. Mater. 2019, 48, 4598–4606. [Google Scholar] [CrossRef]
- Xu, L.; Lei, H. Nano-Scale Surface of ZrO2 Ceramics Achieved Efficiently by Peanut-Shaped and Heart-Shaped SiO2 Abrasives through Chemical Mechanical Polishing. Ceram. Int. 2020, 46, 13297–13306. [Google Scholar] [CrossRef]
- Chen, H.; Guo, D.; Xie, G.; Pan, G. Mechanical model of nanoparticles for material removal in chemical mechanical polishing process. Friction 2016, 4, 153–164. [Google Scholar] [CrossRef]
- Kong, H.; Wang, D.; Liu, W.; Song, Z. Preparation of Non-Spherical Colloidal Silica Nanoparticle and Its Application on Chemical Mechanical Polishing of Sapphire. J. Wuhan Univ. Technol. Mat. Sci. Ed. 2019, 34, 86–90. [Google Scholar] [CrossRef]
- Fang, L.; Sun, K.; Shi, J.; Zhu, X.; Zhang, Y.; Chen, J.; Sun, J.; Han, J. Movement Patterns of Ellipsoidal Particles with Different Axial Ratios in Three-Body Abrasion of Monocrystalline Copper: A Large Scale Molecular Dynamics Study. RSC Adv. 2017, 7, 26790–26800. [Google Scholar] [CrossRef]
- Shi, J.; Wei, X.; Chen, J.; Sun, K.; Fang, L. Influence of Abrasive Shape on the Abrasion and Phase Transformation of Monocrystalline Silicon. Crystals 2018, 8, 32. [Google Scholar] [CrossRef]
- Gao, P.; Liu, T.; Zhang, Z.; Meng, F.; Ye, R.-P.; Liu, J. Non-Spherical Abrasives with Ordered Mesoporous Structures for Chemical Mechanical Polishing. Sci. China Mater. 2021, 64, 2747–2763. [Google Scholar] [CrossRef]
- Lei, H.; Wu, X.; Chen, R. Preparation of Porous Alumina Abrasives and Their Chemical Mechanical Polishing Behavior. Thin Solid Film. 2012, 520, 2868–2872. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Z.; Lei, H.; Chen, R. Preparation of Porous Alumina-g-Polystyrene Sulfonic Acid Abrasive and Its Chemical Mechanical Polishing Behavior on Hard Disk Substrate. Microelectron. Eng. 2014, 116, 11–16. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Qin, J.; Chen, A. Monodispersed Mesoporous Silica (mSiO2) Spheres as Abrasives for Improved Chemical Mechanical Planarization Performance. J. Mater. Sci. 2016, 51, 5811–5822. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Zhang, Z.; Qin, F.; Liu, W.; Song, Z. Preparation of Monodisperse Polystyrene/Silica Core–Shell Nano-Composite Abrasive with Controllable Size and Its Chemical Mechanical Polishing Performance on Copper. Appl. Surf. Sci. 2011, 258, 1217–1224. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, G.; Wang, W.; Guo, D. Polishing Behavior of PS/SiO2 Core-Shell Nanoparticles with Different Shell Thickness on Fused Silica Chemical Mechanical Polishing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 563, 022048. [Google Scholar] [CrossRef]
- Gao, B.; Zhai, W.; Zhai, Q.; Zhang, M. Novel Polystyrene/CeO2-TiO2 Multicomponent Core/Shell Abrasives for High-Efficiency and High-Quality Photocatalytic-Assisted Chemical Mechanical Polishing of Reaction-Bonded Silicon Carbide. Appl. Surf. Sci. 2019, 484, 534–541. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, P. Preparation of Alumina/Silica Core-Shell Abrasives and Their CMP Behavior. Appl. Surf. Sci. 2007, 253, 8754–8761. [Google Scholar] [CrossRef]
- Amir, M.; Mishra, V.; Sharma, R.; Ali, S.W.; Khan, G.S. Polishing Performance of Recyclable and Reusable SiO2 Magnetic Nanoparticle-Based Polishing Nanoabrasive. Mater. Today Proc. 2022, 60, 773–776. [Google Scholar] [CrossRef]
- Lee, S.-H.; Lu, Z.; Babu, S.V.; Matijević, E. Chemical Mechanical Polishing of Thermal Oxide Films Using Silica Particles Coated with Ceria. J. Mater. Res. 2002, 17, 2744–2749. [Google Scholar] [CrossRef]
- Zhao, X.; Long, R.; Chen, Y.; Chen, Z. Synthesis, Characterization of CeO2@SiO2 Nanoparticles and Their Oxide CMP Behavior. Microelectron. Eng. 2010, 87, 1716–1720. [Google Scholar] [CrossRef]
- Wang, L.; Ren, G.; Xie, W.; Zhang, J.; Pan, D.; Su, H.; Wang, S. Controllable Synthesis of Core-Shell SiO2@CeO2 Abrasives for Chemical Mechanical Polishing on SiO2 Film. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132901. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, W.; Wang, W.; Chen, A. Preparation, Characterization, and Application of Dendritic Silica-Supported Samarium-Doped Ceria Nanoparticles in Ultra-Precision Polishing for Silica Films. J. Nanopart Res. 2019, 21, 226. [Google Scholar] [CrossRef]
- Chen, Y.; Zuo, C.; Li, Z.; Chen, A. Design of Ceria Grafted Mesoporous Silica Composite Particles for High-Efficiency and Damage-Free Oxide Chemical Mechanical Polishing. J. Alloy. Compd. 2018, 736, 276–288. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, S.; Li, Y.; Wang, T.; Xie, L.; Lu, X. RE (La, Nd and Yb) Doped CeO2 Abrasive Particles for Chemical Mechanical Polishing of Dielectric Materials: Experimental and Computational Analysis. Appl. Surf. Sci. 2020, 506, 144668. [Google Scholar] [CrossRef]
- Ye, K.; Li, Y.; Yang, H.; Li, M.; Huang, Y.; Zhang, S.; Ji, H. An Ultrathin Carbon Layer Activated CeO2 Heterojunction Nanorods for Photocatalytic Degradation of Organic Pollutants. Appl. Catal. B Environ. 2019, 259, 118085. [Google Scholar] [CrossRef]
- Ma, J.; Xu, N.; Luo, Y.; Lin, Y.; Pu, Y. Enhancing the Polishing Efficiency of CeO2 Abrasives on the SiO2 Substrates by Improving the Ce3+ Concentration on Their Surface. ACS Appl. Electron. Mater. 2023, 5, 526–536. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, H.; Zhang, J.; Luo, L. Dual Impact of Nd3+ Doping on CeO2 Abrasives: Enhancing Chemical and Mechanical Effects in Chemical–Mechanical Polishing. Surf. Sci. Technol. 2025, 3, 6. [Google Scholar] [CrossRef]
- Liu, T.; Lei, H. Nd3+-Doped Colloidal SiO2 Composite Abrasives: Synthesis and the Effects on Chemical Mechanical Polishing (CMP) Performances of Sapphire Wafers. Appl. Surf. Sci. 2017, 413, 16–26. [Google Scholar] [CrossRef]
- Lei, H.; Gu, Q. Preparation of Cu-Doped Colloidal SiO2 Abrasives and Their Chemical Mechanical Polishing Behavior on Sapphire Substrates. J. Mater. Sci. Mater. Electron. 2015, 26, 10194–10200. [Google Scholar] [CrossRef]
- Ma, P.; Lei, H.; Chen, R. Preparation of Cobalt-Doped Colloidal Silica Abrasives and Their Chemical Mechanical Polishing Performances on Sapphire. Micro Nano Lett. 2015, 10, 657–661. [Google Scholar] [CrossRef]
- Ma, P.; Lei, H.; Chen, R. Preparation of Mg-Doped Colloidal Silica Abrasives and Their Chemical Mechanical Polishing Performances on Sapphire. J. Nanosci. Nanotechnol. 2016, 16, 9951–9957. [Google Scholar] [CrossRef]
- Lei, H.; Tong, K.; Wang, Z. Preparation of Ce-Doped Colloidal SiO2 Composite Abrasives and Their Chemical Mechanical Polishing Behavior on Sapphire Substrates. Mater. Chem. Phys. 2016, 172, 26–31. [Google Scholar] [CrossRef]
- Zhang, B.; Lei, H.; Chen, Y. Preparation of Ag2O Modified Silica Abrasives and Their Chemical Mechanical Polishing Performances on Sapphire. Friction 2017, 5, 429–436. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, Y.; Wang, C.; Wang, M.; Chen, A. Development of Ce/Cu Co-Doped Dendritic Mesoporous Silica Nanoparticles (DMSNs) as Novel Abrasive Systems toward High-Performance Chemical Mechanical Polishing. Ceram. Int. 2024, 50, 33235–33250. [Google Scholar] [CrossRef]
- Visintin, P.M.; Eichenlaub, S.K.; Portnow, L.E.; Carbonell, R.G.; Beaudoin, S.P.; Schauer, C.K.; DeSimone, J.M. Studies on CO2-Based Slurries and Fluorinated Silica and Alumina Particles for Chemical Mechanical Polishing of Copper Films. J. Electrochem. Soc. 2006, 153, G1064. [Google Scholar] [CrossRef]
- Lei, H.; Lu, H.; Luo, J.; Lu, X. Preparation of α-Alumina-g-Polyacrylamide Composite Abrasive and Chemical Mechanical Polishing Behavior. Thin Solid Film. 2008, 516, 3005–3008. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, H. Preparation of α-Alumina/Polymethacrylic Acid Composite Abrasive and Its CMP Performance on Glass Substrate. Microelectron. Eng. 2008, 85, 714–720. [Google Scholar] [CrossRef]
- Veera Dandu, P.R.; Penta, N.K.; Babu, S.V. Novel α-Amine-Functionalized Silica-Based Dispersions for Selectively Polishing Polysilicon and Si(100) over Silicon Dioxide, Silicon Nitride or Copper during Chemical Mechanical Polishing. Colloids Surf. A Physicochem. Eng. Asp. 2010, 371, 131–136. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, L.; Liu, W.; Song, Z. Surface Modification of Ceria Nanoparticles and Their Chemical Mechanical Polishing Behavior on Glass Substrate. Appl. Surf. Sci. 2010, 256, 3856–3861. [Google Scholar] [CrossRef]
- Sivanandini, M.; Dhami, S.S.; Pabla, B.S.; Gupta, M.K. Effect of 3-Mercaptopropyltrimethoxysilane on Surface Finish and Material Removal Rate in Chemical Mechanical Polishing. Procedia Mater. Sci. 2014, 6, 528–537. [Google Scholar] [CrossRef]
- Wang, D.; Xie, W.; Zhang, Z.; Wang, J.; Shi, C.; Meng, F.; Zhuang, X.; Tong, D.; Cao, C. Atomic Surface of Silicon Wafers Induced by Grafted Silica Nanoparticles and Sodium Carbonate. Appl. Surf. Sci. 2024, 664, 160234. [Google Scholar] [CrossRef]
- Pan, G.; Gu, Z.; Zhou, Y.; Li, T.; Gong, H.; Liu, Y. Preparation of Silane Modified SiO2 Abrasive Particles and Their Chemical Mechanical Polishing (CMP) Performances. Wear 2011, 273, 100–104. [Google Scholar] [CrossRef]
- Visintin, P.M.; Carbonell, R.G.; Schauer, C.K.; DeSimone, J.M. Chemical Functionalization of Silica and Alumina Particles for Dispersion in Carbon Dioxide. Langmuir 2005, 21, 4816–4823. [Google Scholar] [CrossRef]
- Veera Dandu, P.R.; Peethala, B.C.; Penta, N.K.; Babu, S.V. Role of Amines and Amino Acids in Enhancing the Removal Rates of Undoped and P-Doped Polysilicon Films during Chemical Mechanical Polishing. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 68–73. [Google Scholar] [CrossRef]
- Veera, P.R.D.; Natarajan, A.; Hegde, S.; Babu, S.V. Selective Polishing of Polysilicon during Fabrication of Microelectromechanical Systems Devices. J. Electrochem. Soc. 2009, 156, H487. [Google Scholar] [CrossRef]
Slurry Component | Function |
---|---|
Abrasive | The abrasive provides the mechanical and chemical actions needed to remove material from the surface. These fine particles, commonly silica (SiO2), alumina (Al2O3), or ceria (CeO2), interact with the wafer under pressure and motion, contributing to surface planarization. |
Dispersant | The dispersant helps maintain a stable and uniform distribution of abrasive particles in the slurry. It prevents agglomeration and sedimentation, ensuring consistent polishing performance and avoiding defects like scratching or uneven removal (e.g., polyacrylic acid). |
Oxidant | The oxidant in the slurry promotes chemical reactions that modify the surface of the material being polished. This typically results in the formation of a thin, soft oxide layer that is easier to remove by the abrasive particles, improving the efficiency of material removal and enabling selective polishing (e.g., H2O2). |
pH regulator | The pH regulator controls and maintains the acidity or alkalinity of the slurry. By adjusting the pH, it helps optimize the chemical reactions between the oxidant and the material being polished, ensuring consistent material removal rates and preventing unwanted side reactions or damage to the surface (e.g., HNO3 or KOH). |
Surfactant | The surfactant in CMP slurry helps reduce surface tension, improving the wetting properties of the slurry. This ensures better contact between the abrasive particles, the pad, and the surface being polished. It also aids in the dispersion of abrasive particles, preventing agglomeration and ensuring uniform polishing across the surface (e.g., polyethylene glycol, sodium lauryl sulfate). |
Nanoabrasive | Surface Substrate | Grafted Organic Group | References |
---|---|---|---|
SiO2 | Cu | -O(CH3)2(CH2)2C8F17 | [65] |
Al2O3 | Cu | -O3Si(CH2)2C8F17 | [65] |
Al2O3 | Soda Lime Glass | -O3Si(CH2)3OC(=O)C(=CH2)CH3 | [66,67] |
SiO2 | PolySi or SiO2 or Si3N4 | [-O3Si(CH2)3S+=C(NH2)2]Cl− | [68] |
CeO2 | Soda Lime Glass | -O3Si(CH2)2NH2 | [69] |
SiO2 | Fused silica Glass | -O3Si(CH2)2NH2 | [70] |
SiO2 | Si | -O3Si(CH2)2NH2 or -O3SiCH3 | [71] |
SiO2 | Si | -O3Si(CH2)2NH2 or -O3SiCH3 | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellahsene, H.; Sene, S.; Félix, G.; Larionova, J.; Ferrari, M.; Guari, Y. A Comprehensive Review of the Nano-Abrasives Key Parameters Influencing the Performance in Chemical Mechanical Polishing. Nanomaterials 2025, 15, 1366. https://doi.org/10.3390/nano15171366
Bellahsene H, Sene S, Félix G, Larionova J, Ferrari M, Guari Y. A Comprehensive Review of the Nano-Abrasives Key Parameters Influencing the Performance in Chemical Mechanical Polishing. Nanomaterials. 2025; 15(17):1366. https://doi.org/10.3390/nano15171366
Chicago/Turabian StyleBellahsene, Houda, Saad Sene, Gautier Félix, Joulia Larionova, Marc Ferrari, and Yannick Guari. 2025. "A Comprehensive Review of the Nano-Abrasives Key Parameters Influencing the Performance in Chemical Mechanical Polishing" Nanomaterials 15, no. 17: 1366. https://doi.org/10.3390/nano15171366
APA StyleBellahsene, H., Sene, S., Félix, G., Larionova, J., Ferrari, M., & Guari, Y. (2025). A Comprehensive Review of the Nano-Abrasives Key Parameters Influencing the Performance in Chemical Mechanical Polishing. Nanomaterials, 15(17), 1366. https://doi.org/10.3390/nano15171366