Tunable Strong Plasmon-Exciton Coupling in a Low-Loss Nanocuboid Dimer with Monolayer WS2
Abstract
1. Introduction
2. Structural Design and Mode Analysis
3. Results and Discussion
3.1. NCD-Monolayer WS2 Strong Coupling System
3.2. Coupled System Regulation Schemes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bose, R.; Cai, T.; Choudhury, K.R.; Solomon, G.S.; Waks, E. All-optical coherent control of vacuum Rabi oscillations. Nat. Photonics 2014, 8, 858–864. [Google Scholar] [CrossRef]
- Nomura, M.; Kumagai, N.; Iwamoto, S.; Ota, Y.; Arakawa, Y. Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system. Nat. Phys. 2010, 6, 279–283. [Google Scholar] [CrossRef]
- Reithmaier, J.P.; Sek, G.; Loffler, A.; Hofmann, C.; Kuhn, S.; Reitzenstein, S.; Keldysh, L.V.; Kulakovskii, V.D.; Reinecke, T.L.; Forchel, A. Strong coupling in a single quantum dot-semiconductor microcavity system. Nature 2004, 432, 197–200. [Google Scholar] [CrossRef] [PubMed]
- McKeever, J.; Boca, A.; Boozer, A.D.; Buck, J.R.; Kimble, H.J. Experimental realization of a one-atom laser in the regime of strong coupling. Nature 2003, 425, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Imamog¯lu, A.; Awschalom, D.D.; Burkard, G.; DiVincenzo, D.P.; Loss, D.; Sherwin, M.; Small, A. Quantum Information Processing Using Quantum Dot Spins and Cavity QED. Phys. Rev. Lett. 1999, 83, 4204–4207. [Google Scholar] [CrossRef]
- Khitrova, G.; Gibbs, H.M.; Kira, M.; Koch, S.W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90. [Google Scholar] [CrossRef]
- Chang, D.E.; Vuletić, V.; Lukin, M.D. Quantum nonlinear optics—Photon by photon. Nat. Photonics 2014, 8, 685–694. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, T.-X.; Su, M.-X.; Ma, Y.-Z.; Zhou, Z.-Q.; Li, C.-F.; Guo, G.-C. On-Demand Quantum Storage of Photonic Qubits in an On-Chip Waveguide. Phys. Rev. Lett. 2020, 125, 260504. [Google Scholar] [CrossRef]
- Aoki, T.; Dayan, B.; Wilcut, E.; Bowen, W.P.; Parkins, A.S.; Kippenberg, T.J.; Vahala, K.J.; Kimble, H.J. Observation of strong coupling between one atom and a monolithic microresonator. Nature 2006, 443, 671–674. [Google Scholar] [CrossRef]
- Thompson, R.J.; Rempe, G.; Kimble, H.J. Observation of normal-mode splitting for an atom in an optical cavity. Phys. Rev. Lett. 1992, 68, 1132–1135. [Google Scholar] [CrossRef]
- Törmä, P.; Barnes, W.L. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys. 2015, 78, 013901. [Google Scholar] [CrossRef]
- Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S.J.; Scherman, O.A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J.J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130. [Google Scholar] [CrossRef]
- Li, W.; Liu, R.; Li, J.; Zhong, J.; Lu, Y.-W.; Chen, H.; Wang, X.-H. Highly Efficient Single-Exciton Strong Coupling with Plasmons by Lowering Critical Interaction Strength at an Exceptional Point. Phys. Rev. Lett. 2023, 130, 143601. [Google Scholar] [CrossRef]
- Liu, R.; Geng, M.; Ai, J.; Fan, X.; Liu, Z.; Lu, Y.-W.; Kuang, Y.; Liu, J.-F.; Guo, L.; Wu, L. Deterministic positioning and alignment of a single-molecule exciton in plasmonic nanodimer for strong coupling. Nat. Commun. 2024, 15, 4103. [Google Scholar] [CrossRef]
- Gupta, S.N.; Bitton, O.; Neuman, T.; Esteban, R.; Chuntonov, L.; Aizpurua, J.; Haran, G. Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity. Nat. Commun. 2021, 12, 1310. [Google Scholar] [CrossRef]
- Zengin, G.; Wersäll, M.; Nilsson, S.; Antosiewicz, T.J.; Käll, M.; Shegai, T. Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. Phys. Rev. Lett. 2015, 114, 157410. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.G.R.; Hesami, L.; Khabir, K.M.; Howard, S.R.; Rab, M.A.; Noginova, N.; Noginov, M.A. Anomalous Dispersion in Reflection and Emission of Dye Molecules Strongly Coupled to Surface Plasmon Polaritons. Nanomaterials 2024, 14, 148. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Xing, Y.; Sun, Y.; Liu, Z.; He, S. Strong Coupling between a Single Quantum Emitter and a Plasmonic Nanoantenna on a Metallic Film. Nanomaterials 2022, 12, 1440. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Guo, J.; Huang, Y.; Liang, K.; Jin, L.; Li, J.; Deng, X.; Jiao, R.; Liu, Y.; Zhang, J.; et al. Plexcitonic Optical Chirality: Strong Exciton–Plasmon Coupling in Chiral J-Aggregate-Metal Nanoparticle Complexes. ACS Nano 2021, 15, 2292–2300. [Google Scholar] [CrossRef]
- Wu, F.; Li, N.; Ding, B.; Zhang, W. Plasmon–Exciton Strong Coupling Effects of the Chiral Hybrid Nanostructures Based on the Plexcitonic Born–Kuhn Model. ACS Photonics 2023, 10, 1356–1366. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, F.; Han, Z.; Shang, Y.; Liu, F.; Yu, H.; Yu, L.; Li, N.; Ding, B. Strong Light–Matter Interactions in Chiral Plasmonic–Excitonic Systems Assembled on DNA Origami. Nano Lett. 2021, 21, 3573–3580. [Google Scholar] [CrossRef]
- Cheng, Q.; Yang, J.; Sun, L.; Liu, C.; Yang, G.; Tao, Y.; Sun, X.; Zhang, B.; Xu, H.; Zhang, Q. Tuning the Plexcitonic Optical Chirality Using Discrete Structurally Chiral Plasmonic Nanoparticles. Nano Lett. 2023, 23, 11376–11384. [Google Scholar] [CrossRef]
- Liang, X.; Liang, K.; Deng, X.; He, C.; Zhou, P.; Li, J.; Qin, J.; Jin, L.; Yu, L. The Mechanism of Manipulating Chirality and Chiral Sensing Based on Chiral Plexcitons in a Strong-Coupling Regime. Nanomaterials 2024, 14, 705. [Google Scholar] [CrossRef] [PubMed]
- Fofang, N.T.; Grady, N.K.; Fan, Z.; Govorov, A.O.; Halas, N.J. Plexciton Dynamics: Exciton−Plasmon Coupling in a J-Aggregate−Au Nanoshell Complex Provides a Mechanism for Nonlinearity. Nano Lett. 2011, 11, 1556–1560. [Google Scholar] [CrossRef] [PubMed]
- Nan, F.; Zhang, Y.-F.; Li, X.; Zhang, X.-T.; Li, H.; Zhang, X.; Jiang, R.; Wang, J.; Zhang, W.; Zhou, L.; et al. Unusual and Tunable One-Photon Nonlinearity in Gold-Dye Plexcitonic Fano Systems. Nano Lett. 2015, 15, 2705–2710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Guo, Q.; Shi, Z.; Zhang, S.; Xu, H. Coherent Second Harmonic Generation Enhanced by Coherent Plasmon–Exciton Coupling in Plasmonic Nanocavities. ACS Photonics 2023, 10, 1529–1537. [Google Scholar] [CrossRef]
- Li, J.; Deng, X.; Jin, L.; Wang, Y.; Wang, T.; Liang, K.; Yu, L. Strong coupling of second harmonic generation scattering spectrum in a diexcitionic nanosystem. Opt Express 2023, 31, 10249–10259. [Google Scholar] [CrossRef]
- Wang, G.; Chernikov, A.; Glazov, M.M.; Heinz, T.F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001. [Google Scholar] [CrossRef]
- Hill, H.M.; Rigosi, A.F.; Roquelet, C.; Chernikov, A.; Berkelbach, T.C.; Reichman, D.R.; Hybertsen, M.S.; Brus, L.E.; Heinz, T.F. Observation of Excitonic Rydberg States in Monolayer MoS2 and WS2 by Photoluminescence Excitation Spectroscopy. Nano Lett. 2015, 15, 2992–2997. [Google Scholar] [CrossRef]
- Gonçalves, P.A.D.; Stenger, N.; Cox, J.D.; Mortensen, N.A.; Xiao, S. Strong Light–Matter Interactions Enabled by Polaritons in Atomically Thin Materials. Adv. Opt. Mater. 2020, 8, 1901473. [Google Scholar] [CrossRef]
- Zhou, J.; Gonçalves, P.A.D.; Riminucci, F.; Dhuey, S.; Barnard, E.S.; Schwartzberg, A.; García de Abajo, F.J.; Weber-Bargioni, A. Probing plexciton emission from 2D materials on gold nanotrenches. Nat. Commun. 2024, 15, 9583. [Google Scholar] [CrossRef]
- Luo, C.; Li, W.; Li, J.; Fu, Z.; Hu, N.; Yu, Z.; Chang, W.; Li, P.; Huang, X.; Liu, B.; et al. Room-Temperature Exciton Polaritons in Monolayer WS(2) Enabled by Plasmonic Bound States in the Continuum. Nano Lett. 2025, 25, 4361–4368. [Google Scholar] [CrossRef]
- Stuhrenberg, M.; Munkhbat, B.; Baranov, D.G.; Cuadra, J.; Yankovich, A.B.; Antosiewicz, T.J.; Olsson, E.; Shegai, T. Strong Light-Matter Coupling between Plasmons in Individual Gold Bi-pyramids and Excitons in Mono- and Multilayer WSe2. Nano Lett. 2018, 18, 5938–5945. [Google Scholar] [CrossRef]
- Wen, J.; Wang, H.; Wang, W.; Deng, Z.; Zhuang, C.; Zhang, Y.; Liu, F.; She, J.; Chen, J.; Chen, H.; et al. Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals. Nano Lett. 2017, 17, 4689–4697. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Li, J.Y.; Liu, J.; Xiang, Y.; Feng, H.; Liu, R.; Li, W.; Wang, X.H. Room-Temperature Strong Coupling of Few-Exciton in a Monolayer WS(2) with Plasmon and Dispersion Deviation. Nano Lett. 2024, 24, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, L.; Song, Z.; Xiao, J.; Li, L.; Zhang, G.; Wang, W. Ultrafast Investigation of the Strong Coupling System between Square Ag Nanohole Array and Monolayer WS2. Nano Lett. 2025, 25, 3391–3397. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Song, D.; Lin, C.; Zhang, H.; Zhang, S.; Xu, H. Plexciton Photoluminescence in Strongly Coupled 2D Semiconductor-Plasmonic Nanocavity Hybrid. ACS Nano 2025, 19, 5637–5648. [Google Scholar] [CrossRef]
- Munkhbat, B.; Baranov, D.G.; Bisht, A.; Hoque, M.A.; Karpiak, B.; Dash, S.P.; Shegai, T. Electrical Control of Hybrid Monolayer Tungsten Disulfide-Plasmonic Nanoantenna Light-Matter States at Cryogenic and Room Temperatures. ACS Nano 2020, 14, 1196–1206. [Google Scholar] [CrossRef]
- Liu, L.; Tobing, L.Y.M.; Wu, T.; Qiang, B.; Garcia-Vidal, F.J.; Zhang, D.H.; Wang, Q.J.; Luo, Y. Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals. Optica 2021, 8, 1416–1423. [Google Scholar] [CrossRef]
- Kleemann, M.E.; Chikkaraddy, R.; Alexeev, E.M.; Kos, D.; Carnegie, C.; Deacon, W.; de Pury, A.C.; Grosse, C.; de Nijs, B.; Mertens, J.; et al. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun. 2017, 8, 1296. [Google Scholar] [CrossRef]
- Verellen, N.; Lopez-Tejeira, F.; Paniagua-Dominguez, R.; Vercruysse, D.; Denkova, D.; Lagae, L.; Van Dorpe, P.; Moshchalkov, V.V.; Sanchez-Gil, J.A. Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods. Nano Lett. 2014, 14, 2322–2329. [Google Scholar] [CrossRef]
- Wersäll, M.; Cuadra, J.; Antosiewicz, T.J.; Balci, S.; Shegai, T. Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons. Nano Lett. 2016, 17, 551–558. [Google Scholar] [CrossRef]
- Wu, F.; Jiao, R.; Yu, L. A Semiclassical Model for Plasmon-Exciton Interaction From Weak to Strong Coupling Regime. IEEE Photonics J. 2021, 13, 1–10. [Google Scholar] [CrossRef]
- Li, C.; Lu, X.; Srivastava, A.; Storm, S.D.; Gelfand, R.; Pelton, M.; Sukharev, M.; Harutyunyan, H. Second Harmonic Generation from a Single Plasmonic Nanorod Strongly Coupled to a WSe2 Monolayer. Nano Lett. 2021, 21, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, C.; Hu, G.; Wang, Z.; Zhao, J.; Wang, Z.; Chaykun, K.; Liu, L.; Chen, M.; Li, D.; et al. Ultrastrong exciton-plasmon couplings in WS2 multilayers synthesized with a random multi-singular metasurface at room temperature. Nat. Commun. 2024, 15, 3295. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Le-Van, Q.; Vaianella, F.; Maes, B.; Eizagirre Barker, S.; Godiksen, R.H.; Curto, A.G.; Gomez Rivas, J. Limits to Strong Coupling of Excitons in Multilayer WS2 with Collective Plasmonic Resonances. ACS Photonics 2019, 6, 286–293. [Google Scholar] [CrossRef]
- Geisler, M.; Cui, X.; Wang, J.; Rindzevicius, T.; Gammelgaard, L.; Jessen, B.S.; Gonçalves, P.A.D.; Todisco, F.; Bøggild, P.; Boisen, A.; et al. Single-Crystalline Gold Nanodisks on WS2 Mono- and Multilayers for Strong Coupling at Room Temperature. ACS Photonics 2019, 6, 994–1001. [Google Scholar] [CrossRef]
- Balci, S.; Kucukoz, B.; Balci, O.; Karatay, A.; Kocabas, C.; Yaglioglu, G. Tunable Plexcitonic Nanoparticles: A Model System for Studying Plasmon–Exciton Interaction from the Weak to the Ultrastrong Coupling Regime. ACS Photonics 2016, 3, 2010–2016. [Google Scholar] [CrossRef]
- Liu, R.; Zhou, Z.-K.; Yu, Y.-C.; Zhang, T.; Wang, H.; Liu, G.; Wei, Y.; Chen, H.; Wang, X.-H. Strong Light-Matter Interactions in Single Open Plasmonic Nanocavities at the Quantum Optics Limit. Phys. Rev. Lett. 2017, 118, 237410. [Google Scholar] [CrossRef]
- Davis, T.J.; Gómez, D.E.; Vernon, K.C. Simple Model for the Hybridization of Surface Plasmon Resonances in Metallic Nanoparticles. Nano Lett. 2010, 10, 2618–2625. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, W. Plexcitonic dynamics in plasmonic nanorod dimer strongly coupled to a single quantum dot via modulation of dark modes. Opt. Express 2025, 33, 10150–10164. [Google Scholar] [CrossRef]
- Zhang, S.; Genov, D.A.; Wang, Y.; Liu, M.; Zhang, X. Plasmon-induced transparency in metamaterials. Phys. Rev. Lett. 2008, 101, 047401. [Google Scholar] [CrossRef]
- Osberg, K.D.; Harris, N.; Ozel, T.; Ku, J.C.; Schatz, G.C.; Mirkin, C.A. Systematic study of antibonding modes in gold nanorod dimers and trimers. Nano Lett. 2014, 14, 6949–6954. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhou, N.; Shi, Z.; Guo, X.; Tong, L. Dark dimer mode excitation and strong coupling with a nanorod dipole. Photonics Res. 2018, 6, 887–892. [Google Scholar] [CrossRef]
- Liu, L.; Tobing, L.Y.M.; Yu, X.; Tong, J.; Qiang, B.; Fernández-Domínguez, A.I.; Garcia-Vidal, F.J.; Zhang, D.H.; Wang, Q.J.; Luo, Y. Strong Plasmon–Exciton Interactions on Nanoantenna Array–Monolayer WS2 Hybrid System. Adv. Opt. Mater. 2020, 8, 1901002. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, K.; Sheng, B.; Ma, W.; Chen, Z.; Li, X. Plasmonic Bound States in the Continuum to Tailor Exciton Emission of MoTe2. Nanomaterials 2023, 13, 1987. [Google Scholar] [CrossRef]
- Huang, J.-S.; Kern, J.; Geisler, P.; Weinmann, P.; Kamp, M.; Forchel, A.; Biagioni, P.; Hecht, B. Mode Imaging and Selection in Strongly Coupled Nanoantennas. Nano Lett. 2010, 10, 2105–2110. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Han, X.; Wang, K.; Xing, X.; Wang, M.; Lu, P. Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature. ACS Photonics 2018, 5, 3970–3976. [Google Scholar] [CrossRef]
- Jiang, P.; Song, G.; Wang, Y.; Li, C.; Wang, L.; Yu, L. Tunable strong exciton-plasmon-exciton coupling in WS2-J-aggregates-plasmonic nanocavity. Opt. Express 2019, 27, 16613–16623. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Chervy, T.; Shalabney, A.; Azzini, S.; Orgiu, E.; Hutchison, J.A.; Genet, C.; Samorì, P.; Ebbesen, T.W. Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. Nano Lett. 2016, 16, 4368–4374. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. (Eds.) Particles Small Compared with the Wavelength. In Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 1998; pp. 130–157. [Google Scholar]
- Qin, J.; Chen, Y.H.; Zhang, Z.; Zhang, Y.; Blaikie, R.J.; Ding, B.; Qiu, M. Revealing Strong Plasmon-Exciton Coupling between Nanogap Resonators and Two-Dimensional S emiconductors at Ambient Conditions. Phys. Rev. Lett. 2020, 124, 063902. [Google Scholar] [CrossRef]
- Gao, Y.; Ge, J.; Sun, S.; Shen, X. Dark modes governed by translational-symmetry-protected bound states in the continuum in symmetric dimer lattices. Results Phys. 2022, 43, 106078. [Google Scholar] [CrossRef]
- Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015, 87, 347–400. [Google Scholar] [CrossRef]
- Novotny, L.; Hecht, B. Principles of Nano-Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Ramezani, M.; Halpin, A.; Fernández-Domínguez, A.I.; Feist, J.; Rodriguez, S.R.-K.; Garcia-Vidal, F.J.; Gómez Rivas, J. Plasmon-exciton-polariton lasing. Optica 2016, 4, 31–37. [Google Scholar] [CrossRef]
- Hakala, T.K.; Moilanen, A.J.; Väkeväinen, A.I.; Guo, R.; Martikainen, J.-P.; Daskalakis, K.S.; Rekola, H.T.; Julku, A.; Törmä, P. Bose–Einstein condensation in a plasmonic lattice. Nat. Phys. 2018, 14, 739–744. [Google Scholar] [CrossRef]
Structrues | Plasmonic Loss | Rabi Splitting | Coupling Strength 1 | 1 | |
---|---|---|---|---|---|
Square dimer [39] | 222–252 meV | 100.2–128.6 meV | 64–75 meV | 82–92 meV | |
Square dimer [55] | 248 meV | 138 meV | 84 meV | 91 meV | |
Nanorod [34] | 149 meV | 106 meV | 58 meV | 57 meV | |
Bipyramid [33] | 110 meV | 100 meV | 53 meV | 42 meV | |
Nanodisk [47] | 170 meV | 108 meV | 64 meV | 61 meV | |
Nanotrenches [31] | 130 meV | 87 meV | 48 meV | 49 meV | |
Nanocube on mirror [59] | 220 meV | 145 meV | 84 meV | 80 meV | |
Nanoprism-film gap [63] | 180 meV | 163 meV | 87 meV | 66 meV | |
Multi-singular metasurface [45] | 380 meV | 285 meV (unstrained) 450 meV (strained) | 116 meV (unstrained) 240 meV (strained) | 135 meV | |
Nanoparticle array [46] | 54–67 meV | 47–100 meV | 25–50 meV | 22–32 meV | 1.14–1.56 |
NCD (this work) | 60 meV | 60 meV | 31 meV | 24 meV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Chen, Z. Tunable Strong Plasmon-Exciton Coupling in a Low-Loss Nanocuboid Dimer with Monolayer WS2. Nanomaterials 2025, 15, 1497. https://doi.org/10.3390/nano15191497
Wu F, Chen Z. Tunable Strong Plasmon-Exciton Coupling in a Low-Loss Nanocuboid Dimer with Monolayer WS2. Nanomaterials. 2025; 15(19):1497. https://doi.org/10.3390/nano15191497
Chicago/Turabian StyleWu, Fan, and Zhao Chen. 2025. "Tunable Strong Plasmon-Exciton Coupling in a Low-Loss Nanocuboid Dimer with Monolayer WS2" Nanomaterials 15, no. 19: 1497. https://doi.org/10.3390/nano15191497
APA StyleWu, F., & Chen, Z. (2025). Tunable Strong Plasmon-Exciton Coupling in a Low-Loss Nanocuboid Dimer with Monolayer WS2. Nanomaterials, 15(19), 1497. https://doi.org/10.3390/nano15191497